Substance abuse, hepatitis C, and aging in HIV: common cofactors that contribute to neurobehavioral disturbances

Randi Melissa Schuster1
Raul Gonzalez2
1Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA; 2Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA

Abstract: Although the prevalence of neurocognitive disturbances among individuals with HIV has decreased in recent years, rates of impairment still remain high. This review presents findings on comorbid conditions that may contribute to further neurocognitive impairments in this already vulnerable population. The authors will focus on three cofactors that have received substantial attention in the neuroAIDS literature: drug use, hepatitis C virus (HCV) coinfection, and aging. All three conditions commonly co-occur with HIV and likely interact with HIV in complex ways. Collectively, the extant literature suggests that drug use, HCV, and aging serve to worsen the neurocognitive profile of HIV through several overlapping mechanisms. A better understanding of how specific comorbidities interact with HIV may reveal specific phenotypes of HIV-associated neurocognitive disorder that may aid in the development of more effective behavioral and pharmacological treatment efforts.

Keywords: drug use, neurocognition, HIV cofactors; HIV-associated neurocognitive disorder (HAND)

Introduction

Since the advent of combined antiretroviral therapy (cART) in 1996, there has been a decrease in the percentage of individuals living with HIV who experience dementia; however, current estimates suggest that between 15% and 50% of patients with HIV continue to experience neurocognitive impairment. Importantly, significant functional impairments are observed with HIV-associated neurocognitive disorder (HAND) and these include problems with medication adherence, driving, and finance management. These impairments serve to worsen the quality of life for patients with HIV and they may have significant adverse health and economic outcomes.

Patterns of neurocognitive impairments among individuals with HIV typically include deficits in the domains of processing speed, memory, motor, and executive functioning. These impairments reflect abnormalities in prefrontal-striatal regions and connecting white matter. However, brain abnormalities are not circumscribed to these regions alone, as several studies show neuropathology and abnormal brain function in other areas, including the cerebellum and hippocampus.

When considering HAND prevalence rates, it is important to note that the HIV-seropositive (HIV+) population comprises a heterogeneous group of individuals whose demographics have shifted throughout the course of the HIV epidemic. The disease now affects individuals with a broad range of ages, ethnicities, and socioeconomic statuses. Along with nonuniform demographic profiles, the types of comorbid conditions present among individuals in this population may vary substantially. More than two decades
of neuroAIDS research have revealed that several common comorbid factors are relevant in influencing the impact that HIV may have on neurobehavioral functioning. This review focuses on three such factors – drug use, hepatitis C virus (HCV) coinfection, and aging – which have received substantial attention in the neuroAIDS literature. These cofactors have high rates of co-occurrence with HIV, they have independent adverse influences on neurocognition, and they overlap to some extent in their neuropathology.

HIV and co-occurring substance use

Substance use is often a vector for HIV, either directly through injection drug use or indirectly through increased engagement in risky sexual behaviors. Thus, it is not surprising that nearly half of adults with HIV have a comorbid substance use disorder. Current research findings generally suggest that substance use among those with HIV serves as an additive risk factor for neurocognitive impairment. Substances may interact with HIV through multiple complex mechanisms, including modulation of proinflammatory cytokines, oxidative stress, perturbation of dopaminergic signaling, worsening immune function, and compromising the blood–brain barrier (BBB). In this review, the authors discuss these mechanisms and the neurocognitive deficits typically observed across various substances that have been studied in the context of HIV.

The authors have also distilled key pieces of information from these studies and have presented them in Tables 1–5, organized by substance. As is typically the case with such endeavors, it was not possible to include all relevant information regarding a study; several judgment calls needed to be made regarding the type and format of information that was ultimately included. Across all of the tables, the authors included only studies that clearly had samples of substance users who primarily used the substance of focus for that section of the table. This was particularly challenging for opioids, since many of the studies of opioid users included samples that might have also injected cocaine or might have used significant amounts of other drugs. Finally, the authors highlighted neurocognitive domains in the study when evidence for additive or synergistic effects were found – sometimes such effects were not tested. Interested readers should refer to the original manuscripts for details on a given study.

Opioids

Although the incidence of HIV transmission among injection drug users (IDUs) has stabilized since 2000, injection drug use (IDU) represents the second-highest risk factor for HIV infection, accounting for 12% of new annual HIV infections, 19% of persons living with HIV, and 36% of AIDS cases. It is estimated that approximately three million IDUs are living with HIV, with the proportion of HIV+ IDUs as high as 40% in some countries. Of further significance, IDU confers increased risk for medication nonadherence and mortality among those with HIV. By far, opioids (specifically, heroin) is the class of drugs most commonly used among IDUs; however, it is important to note that injection of other substances including cocaine and methamphetamine (alone or in combination with heroin) is also common. Although most of the studies involving IDUs described in this review (Table 1) included a sample that consisted primarily of opioid users, some of the sample descriptions were not detailed enough to make this determination unequivocally. The authors opted to include such studies in the opioid section of this review based on epidemiological support, but the authors caution readers that the ability to generalize across these investigations may be limited by heterogeneous samples that might have been injecting other substances (most likely cocaine) in addition to opioids.

The principal manner by which opioids may exacerbate neurobehavioral disturbances in HIV is through their potent immunosuppressive effects, but the specific mechanisms by which this occurs are not well understood. Studies with nonhuman primate models of HIV have found that morphine is linked with markers of increased disease progression, modulation of cytokines, a blunted cell-mediated immune response, increased viral replication, and susceptibility to opportunistic infections. Others have similarly found evidence for opioids enhancing viral replication, reducing the effectiveness of CD4 and CD8 T-lymphocyte cells against HIV, and enhancing the likelihood of developing HIV encephalitis. Although the adverse effects of opioids on immune functioning have been extensively documented, others have suggested evidence for neuroprotective effects or no effect at all. Potential opposing mechanisms of opioids on HIV have been investigated in greater detail by others.

Neurobehavioral impairments among opioid users with HIV have often relied on samples of IDUs who primarily use heroin. In general, investigations have found a higher prevalence of dementia and global cognitive impairment among IDUs with HIV than among individuals with only one risk factor. HIV+ opioid users have also evidenced specific neurocognitive deficits, most reliably noted in the domains of attention, information processing, problem solving, working memory, and psychomotor speed. These deficits appear to persist even among HIV+ individuals who are asymptomatic.
Table 1: Studies examining opioid use, HIV, and neurocognitive impairment

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample</th>
<th>Sample sizes</th>
<th>Substance use characteristics</th>
<th>HIV disease characteristics</th>
<th>Domains assessed</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applebaum et al</td>
<td>Opioid-dependent outpatients in MMT</td>
<td>HIV+, 80; HIV-, 80</td>
<td>NR</td>
<td>NR</td>
<td>M CD4: 384.6</td>
<td>G, AE, DM, SIP, V, VC</td>
</tr>
<tr>
<td>Ayuso-Mateos et al</td>
<td>IDU outpatients at the HIV hospital clinic</td>
<td>HIV+, 65; HIV-, 49</td>
<td>NR</td>
<td>=10 years</td>
<td>M CD4: 439.2</td>
<td>RT</td>
</tr>
<tr>
<td>Bell et al</td>
<td>Edinburgh cohort of AIDS patients</td>
<td>HM/HIV+, 35; IDU/HIV+, 45</td>
<td>NR</td>
<td>NR</td>
<td>% HIV: HM/HIV+, 17; IDU/HIV+, 56</td>
<td>G</td>
</tr>
<tr>
<td>Del Pesce et al</td>
<td>Mixed community sample</td>
<td>IDU/Asy, 21; IDU/PGL, 18; IDU/HIV-, 30</td>
<td>=3 times/week</td>
<td>=8.8 years</td>
<td>M CD4: 809, Asy; 587, PGL</td>
<td>AE, DM, RT, SIP, V</td>
</tr>
<tr>
<td>McKegney et al</td>
<td>Patients in MMT; past participants of The Prevalence Survey</td>
<td>HIV+, 83; HIV-, 137 (baseline)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>AE, DM, MT, SIP, V</td>
</tr>
<tr>
<td>Rodriguez Salgado et al</td>
<td>Male Spanish heterosexual polysubstance-using IDUs with history of opioid dependence</td>
<td>In MMT: IDU/HIV+, 21; IDU/HIV-, 21; not in MMT: IDU/HIV+, 33; IDU/HIV-, 27; controls, 23</td>
<td>NR</td>
<td>Addicted M = 9.7 years</td>
<td>=3 months</td>
<td>Asy, half with detectable plasma VL</td>
</tr>
<tr>
<td>Silberstein et al</td>
<td>Patients in MMT; past participants of The Prevalence Survey</td>
<td>HIV+, 70; HIV-, 141</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>AE, DM, MT, SIP, V</td>
</tr>
<tr>
<td>Starace et al</td>
<td>Outpatients from Italian Multicentre Neuropsychological HIV Study</td>
<td>IDU/HIV+, 75; IDU/HIV-, 97; controls, 79</td>
<td>=2 years</td>
<td>50% used heroin</td>
<td>Asy</td>
<td>G, AE, DM, MT, SIP, V</td>
</tr>
</tbody>
</table>

Note: Bolded items indicate domains of significant impairment from both risk factors.

Abbreviations: AE, abstraction/executive; Asy, asymptomatic; DM, declarative memory; G, global; HIV-, HIV seronegative; HIV+, HIV seropositive; HIVE, HIV encephalitis; HM, homosexual men; IDU, injection drug use; M, mean; MMT, methadone maintenance therapy; MT, motor; NR, not reported; PGL, persistent generalized lymphadenopathy; RT, reaction time; SIP, speed of information processing; V, verbal/language; VC, visuospatial/constructional; VL, viral load.
Table 2: Studies examining cocaine (Coc) use, HIV, and neurocognitive impairment

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample Description</th>
<th>Sample sizes</th>
<th>Substance use characteristics</th>
<th>Frequency/amount of use</th>
<th>Duration of use</th>
<th>Length of abstinence</th>
<th>HIV disease characteristics</th>
<th>Domains assessed</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durvasula et al⁹⁵</td>
<td>Gay/bisexual urban-dwelling African American men from African American Health Project</td>
<td>SyHIV, 95; AsyHIV, 67; HIV-, 75</td>
<td></td>
<td>28.7% non-cocaine users; 27% past users (>12 months ago); 24.9%, infrequent users (<1 use/week); 19.4%, frequent users (>1 use/week)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>AE, DM, MT, RT, SIP, WM, V, VC</td>
<td>Only main effects for Coc and serostatus, no interactions or tests of additive effects</td>
</tr>
<tr>
<td>Levine et al⁹⁶</td>
<td>Mixed community sample of HIV+</td>
<td>RSU, 17; NSU, 23</td>
<td></td>
<td>M = 14.7 days in past 30</td>
<td>NR</td>
<td>NR</td>
<td>M CD4: RSU, 361; NSU, 504</td>
<td>WM</td>
<td>RSU had more impaired sustained attention (ie, total omissions and reaction time variability) than NSU</td>
</tr>
<tr>
<td>Martin et al⁹⁷</td>
<td>Men with high rates of cocaine abuse.</td>
<td>HIV+, 41; HIV-, 37</td>
<td>Greater % of HIV— than HIV+ used heroin, were IDUs and were on methadone</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>% Asy: 21; M CD4: 353; Md plasma VL: 1695</td>
<td>WM</td>
<td>HIV+ were more impaired on auditory WM than HIV—; deficits were equivalent at all disease stages</td>
</tr>
<tr>
<td>Meade et al⁹⁸</td>
<td>Mixed HIV+ community sample</td>
<td>Coc+, 25; Coc—, 39</td>
<td></td>
<td>M = 6.6 days in past 30</td>
<td>M = 18.1 years</td>
<td>NR</td>
<td>M CD4: Coc+, 539.2; Coc—, 701.1</td>
<td>G, AE, DM, SIP, V, VC</td>
<td>Coc+ more impaired than Coc—; G partially mediated the relationship between Coc use and medication adherence</td>
</tr>
</tbody>
</table>

Note: Bolded items indicate domains of significant impairment in group with both risk factors.

Abbreviations: AE, abstraction/executive; Asy, asymptomatic; Coc+, cocaine user; Coc—, cocaine non-user; DM, declarative memory; G, global; HIV—, HIV seronegative; HIV+, HIV seropositive; IDU, injection drug use; M, mean; Md, median; MT, motor; NR, not reported; NSU, non-recent stimulant user (negative urine toxicology and no use in past 4 weeks); RSU, recent stimulant user (positive urine toxicology); RT, reaction time; SIP, speed of information processing; Sy, symptomatic; V, verbal/language; VC, visuospatial/constructional; VL, viral load; WM, attention/working memory.
Table 3: Studies examining methamphetamine (MA) use, HIV, and neurocognitive impairment

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample</th>
<th>Sample sizes</th>
<th>Substance use characteristics</th>
<th>HIV disease characteristics</th>
<th>Domains assessed</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carey et alaaa</td>
<td>HIV+ sample from HNRC group</td>
<td>MA+/IS, 200; MA+/NS, 47; MA-/IS, 55; MA-/NS, 160</td>
<td>Frequency/amount of use: (\approx 1723) lifetime grams; Duration of use: (\approx 12.1) years; Length of abstinence: (\geq 10) days</td>
<td>Md plasma VL (log_{10}): MA+/IS, 4.4; MA+/NS, 2.7; MA-/IS, 4.9; MA-/NS, 2.7 % AIDS: MA+/IS, 100; MA+/NS, 36; MA-/IS, 100; MA-/NS, 43</td>
<td>G, AE, DM, MT, SIP, V, WM</td>
<td>Additive effect of serostatus and immunosuppression on G</td>
</tr>
<tr>
<td>Chana et alaaa</td>
<td>Autopsies of HIV+ research participants from HNRC group</td>
<td>MA+, 8; MA-, 12</td>
<td>Abuse within 18 months prior to death; Duration of use: (\geq 3) years of continuous use</td>
<td>% HIVe: MA+, 100; MA-, 66.7</td>
<td>G, AE, DM, MT, SIP, V, WM</td>
<td>MA+ with HIVe were more impaired on G than MA-; DM associated with neuronal loss; more neuronal loss in MA+</td>
</tr>
<tr>
<td>Letendre et alaaa</td>
<td>Mixed community sample from HNRC group</td>
<td>MA+/HIV+, 120; MA+, 119; HIV+, 119; control, 114</td>
<td>Dependence within past 18 months</td>
<td>NR</td>
<td>G, AE, DM, MT, SIP, V, WM</td>
<td>HCV, HIV, and MA independently associated with G</td>
</tr>
<tr>
<td>Rippeth et alaaa</td>
<td>Mixed community sample from HNRC group</td>
<td>MA+/HIV+, 43; MA+, 47; HIV+, 50; control, 60</td>
<td>% daily users: MA+/HIV+, 26; MA+, 49</td>
<td>M CD4: MA+/HIV+, 388; HIV+, 410; M plasma VL (log_{10}): MA+/HIV+, 2.7; HIV+, 2.9; % AIDS: MA+/HIV+, 55; HIV+, 47</td>
<td>G, AE, DM, MT, SIP, V, WM</td>
<td>Additive negative effects of MA and HIV status on neurocognitive impairment</td>
</tr>
<tr>
<td>Sadek et alaaa</td>
<td>Mixed community sample from HNRC group</td>
<td>MA+/HIV+, 86; MA+, 96; HIV+, 91; control, 89</td>
<td>Frequency/amount of use: (\approx 2597) lifetime grams; Duration of use: (\approx 11) years; Length of abstinence: (\geq 90) days</td>
<td>M CD4: MA+/HIV+, 393; HIV+, 429; M plasma VL (log_{10}): MA+/HIV+, 3.4; HIV+, 3.4; % AIDS: MA+/HIV+, 51; HIV+, 49</td>
<td>G, AE, DM, MT, SIP, WM</td>
<td>No differences between clinical groups G; all clinical groups more impaired than controls; MA+/HIV+ more impaired than controls</td>
</tr>
</tbody>
</table>

Note: Bolded items indicate domains of significant impairment in group with both risk factors.

Abbreviations: AE, abstraction/executive; DM, declarative memory; G, global; HCV, hepatitis C virus; HIV+, HIV seropositive; HIVe, HIV encephalitis; HNRC, HIV Neurobehavioral Research Center; IS, immunosuppressed (CD4 \(\leq 200\)); M, mean; MA+, methamphetamine user; MA-, methamphetamine non-user; Md, median; MT, motor; NR, not reported; NS, nonimmunosuppressed (CD4 > 200); SIP, speed of information processing; V, verbal/language; VL, viral load; WM, attention/working memory.
Table 4: Studies examining alcohol (Alc) use, HIV, and neurocognitive impairment

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample</th>
<th>Sample sizes</th>
<th>Substance use characteristics</th>
<th>Length of abstinence</th>
<th>HIV disease characteristics</th>
<th>Domains assessed</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durvasula et al.</td>
<td>Community sample of men from African American Health Project</td>
<td>HD/HIV+, 31; MD/HIV+, 27; LD/HIV+, 81; ND/HIV+, 48; HD/HIV−, 49; MD/HIV−, 53; LD/HIV−, 112; ND/HIV−, 96</td>
<td>HD, ≥21 drinks/week; MD, 7–21 drinks/week; LD, <7 drinks/week</td>
<td>NR</td>
<td>M CD4: HD/HIV+, 803.3; MD/HIV+, 769.8; LD/HIV+, 672.4; ND/HIV+, 723.9</td>
<td>AE, DM, MT, RT, SIP, WM, V, VC</td>
<td>Interactive effect; HD/HIV+ were more impaired than other seropositives and HD/HIV−</td>
</tr>
<tr>
<td>Fama et al.</td>
<td>Mixed community sample from the SRI Neuroscience Program</td>
<td>Alc+/HIV+, 47; Alc+, 38; HIV+, 40; control, 39 (baseline)</td>
<td>Lifetime kg about 880.9 (Alc+/HIV+, Alc+) and 51.9 (HIV+, control)</td>
<td>=161 days</td>
<td>M CD4: Alc+/HIV+, 437.0; HIV+, 527.9 % AIDS: Alc+/HIV+, 32; HIV+, 25</td>
<td>DM, WM</td>
<td>Alc+/HIV+ performed worse on immediate memory than HIV+ and control</td>
</tr>
<tr>
<td>Green et al.</td>
<td>Gay and bisexual men</td>
<td>Alc+/HIV+, 21; Alc+, 12; HIV+, 29; control, 18</td>
<td>Past 12 month grams/week about 3.2 (Alc+/HIV+, Alc+) and 49.3 (HIV+, control)</td>
<td>NR</td>
<td>M CD4: Alc+/HIV+, 446.2; HIV+, 493.2</td>
<td>G, AE, DM, MT, RT, SIP, V, WM</td>
<td>Alc+/HIV+ performed worse than HIV−</td>
</tr>
<tr>
<td>Rothlind et al.</td>
<td>Mixed community sample from the SRI Neuroscience Program</td>
<td>HD/HIV+, 56; LD/HIV+, 70; HD/HIV, 70; LD/HIV−, 72</td>
<td>Lifetime drinks/month about 179.2 (HD/HIV+, HD/HIV−) and 14.4 (LD/HIV+, LD/HIV−)</td>
<td>≥12 hours</td>
<td>M CD4: HD/HIV+, 373; LD/HIV+, 36</td>
<td>AE, DM, MT, SIP, VC, WM</td>
<td>HIV− heaviest drinkers most impaired</td>
</tr>
<tr>
<td>Sassoon et al.</td>
<td>Mixed community sample from the SRI Neuroscience Program</td>
<td>Alc+/HIV+, 55; Alc+, 44; HIV+, 43; control, 49</td>
<td>Lifetime kg about 868.5 (Alc+/HIV+, Alc+) and 54.3 (HIV+, control)</td>
<td>M = 6 months</td>
<td>M CD4: Alc+/HIV+, 462.2; HIV+, 535.8</td>
<td>AE, MT, SIP, VC</td>
<td>Alc+/HIV+ were most impaired</td>
</tr>
<tr>
<td>Schulte et al.</td>
<td>Mixed community sample from the SRI Neuroscience Program</td>
<td>Alc+/HIV+, 20; Alc+, 18; HIV+, 19; control, 19</td>
<td>Lifetime kg about 720.0 (Alc+/HIV+, Alc+) and 73.1 (HIV+, control)</td>
<td>M = 8.5 months</td>
<td>M CD4: Alc+/HIV+, 511.3; HIV+, 495.6</td>
<td>AE, RT</td>
<td>Alc+/HIV+ were most impaired</td>
</tr>
</tbody>
</table>

Note: Bolded items indicate domains of significant impairment in groups with both risk factors.

Abbreviations: AE, abstraction/executive; Alc+, alcohol user; Alc−, alcohol non-user; DM, declarative memory; G, global; HD, heavy (or chronic) drinker; HIV−, HIV seronegative; HIV+, HIV seropositive; LD, light drinker; M, mean; MD, moderate drinker; MT, motor; ND, nondrinker; NR, not reported; RT, reaction time; SIP, speed of information processing; SRI, Stanford Research Institute; V, verbal/language; VC, visuospatial/constructional; VL, viral load; WM, attention/working memory.
Table 5: Studies examining cannabis (CAN) use, HIV, and neurocognitive impairment

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample</th>
<th>Sample sizes</th>
<th>Substance use characteristics</th>
<th>HIV disease characteristics</th>
<th>Domains assessed</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang et al<sup>202</sup></td>
<td>Mixed community sample</td>
<td>CAN+/HIV+, 21; CAN+, 24; HIV+, 21; control, 30</td>
<td>Frequency/amount of use: 16 days/month, 197.1 lifetime grams</td>
<td>Duration of use: 238.7 months</td>
<td>Length of abstinence: 39.9 months</td>
<td>M: CD4: CAN+/HIV+, 343.9; HIV+, 274.9 M: plasma VL: CAN+/HIV+, 28,087; HIV+, 65,999</td>
</tr>
<tr>
<td>Cristiani et al<sup>200</sup></td>
<td>Mixed community sample</td>
<td>CAN+/SyHIV, 55; CAN+/AsyHIV, 79; SyHIV, 32; AsyHIV, 48; CAN+, 49; control, 25</td>
<td>Frequency/amount of use: 326.2 uses/year</td>
<td>Duration of use: NR</td>
<td>Length of abstinence: NR</td>
<td>M: CD4: CAN+/SyHIV, 182.4; CAN+/AsyHIV, 55.1; SyHIV, 272.7; AsyHIV, 520.6</td>
</tr>
<tr>
<td>Gonzalez et al<sup>201</sup></td>
<td>Polysubstance users from Chicago community and an urban Veterans Affairs Medical Center</td>
<td>CAN+/HIV+, 17; CAN+, 23; HIV+, 25; control, 21</td>
<td>Frequency/amount of use: NR</td>
<td>Duration of use: NR</td>
<td>Length of abstinence: NR</td>
<td>18% AIDS Md CD4: 366 48% had undetectable plasma VL</td>
</tr>
</tbody>
</table>

Note: Bolded items indicate domains of significant impairment in groups with both risk factors.

Abbreviations: AE, abstraction/executive; Asy, asymptomatic; Can+, cannabis user; Can-, cannabis non-user; DM, declarative memory; G, global; HIV+, HIV seropositive; M, mean; Md, median; NR, not reported; PL, procedural learning; RT, reaction time; SIP, speed of information processing; Sy, symptomatic; V, verbal/language; VC, visuospatial/constructional; VL, viral load; WM, attention/working memory.
Cocaine may exert a putative effect on HIV disease progression by compromising the integrity of the BBB. An intact BBB is important to limit infected cells from crossing into the central nervous system (CNS), infecting microglia, and causing an inflammatory response. Not surprisingly, increased BBB permeability is associated with accelerated disease progression and is characteristic of the brains of AIDS patients with advanced and diffuse neurocognitive disturbances such as HIV-associated dementia. A number of different mechanisms for the adverse effects of cocaine on the BBB have been postulated. For example, cocaine and HIV proteins may damage the microvasculature of endothelial cells through downregulation of tight junction proteins, resulting in increased microvascular permeability of the BBB. Various cytokines that may be potentiated through cocaine administration can also be detrimental to BBB integrity. Furthermore, cocaine-mediated upregulation of adhesion molecules expressed on the surface of endothelial cells may result in increased adhesion and transmigration of monocytes into the CNS.

Much less is known about the combined effects of HIV and cocaine on brain functioning, despite the wealth of information on their independent effects. It is reasonable to hypothesize that the co-occurrence of HIV and cocaine use would aggravate dysfunction in brain structures known to be preferentially affected by each, such as structures along prefrontal-striatal circuits. Despite this, evidence for synergistic effects is mixed. For instance, a preclinical investigation found that cocaine did not contribute to the pathological characteristics of HIV encephalitis (eg, astrogliosis and microgliosis) in HIV-infected mice. In contrast, Yao and colleagues found a synergistic effect between cocaine and gp120 that resulted in dendritic swelling and spine loss in rat hippocampal cell cultures. Chang and colleagues found that individuals with HIV showed decreased dopamine transporter (DAT) density in the putamen and in the caudate, regardless of cocaine history. However, Meade and colleagues showed that chronic cocaine dependence among HIV patients was associated with bilateral frontoparietal cortical hypoactivation during a delay-discounting task as compared with nonusing HIV patients, indicative of a less efficient use of cognitive resources.

Studies focusing on the conjoint influence of HIV and cocaine on neuropsychological test performance have also yielded equivocal results. Durvasula and colleagues found only independent influences of HIV and recent cocaine use on psychomotor speed, but no interactions in a sample with relatively modest amounts of cocaine use. In contrast,
cocaine use was reported to magnify deficits in global cognitive functioning, verbal memory, processing speed, and visuospatial construction, which partially mediated the link between cocaine use and functional outcomes, among those with HIV. In a sample comprised primarily of past cocaine users, deficits in auditory working memory were observed among those with HIV regardless of disease stage. Levine et al found that cocaine compounded the adverse effects of a positive HIV serostatus among a sample with a history of stimulant use (primarily cocaine), resulting in slower processing speed and poorer sustained attention.

Methamphetamine

Methamphetamine use (Table 3) and HIV frequently co-occur, particularly among men who have sex with men (MSM), with over 10% of HIV+ MSM in New York and San Francisco reporting having used methamphetamine in the previous 3 months. Methamphetamine use is also associated with increased engagement in high-risk sex, thereby increasing the chances for viral transmission and reinfection with a heterologous HIV strain (ie, HIV superinfection). Like cocaine, methamphetamine is also a psychostimulant that may worsen brain injury among HIV-infected individuals through similar mechanisms: immunosuppression, cerebrovascular injury, neurotoxicity, and inflammation. Preclinical studies suggest that methamphetamine may potentiate brain injury in the context of HIV through modulation of cytokine production, inflammation, and further suppression of immune function. Dose-dependent adverse effects of methamphetamine on viral load and cytokine production have been shown through in vitro studies. Indeed, a variety of different HIV-comparable animal models have shown that methamphetamine is linked to poorer immune functioning and increased viral burden in HIV. Cytokine levels were found to be significantly elevated in the striatum in mice who were infected with HIV and co-treated with methamphetamine. Simian immunodeficiency virus (SIV)-infected rhesus macaques who were administered methamphetamine showed increased brain viral levels and heightened activation of natural killer cells as compared with controls.

Methamphetamine may also compound the brain injury in HIV through cerebrovascular insults, including microinfarcts and vasoconstriction. Methamphetamine synergistically magnifies oxidative stress from viral proteins and decreases antioxidants in the brain, thus damaging membrane proteins and lipids in a manner that results in decreased tight junction protein expression and a weakened BBB. Mahajan et al found independent and synergistic influences of gp120 and methamphetamine on the modulation of endothelial tight junctions, resulting in hyperpermeable BBB and increased transmigration of toxins and infected leukocytes.

Methamphetamine may also potentiate HIV-associated neurotoxicity. This appears to take place through mechanisms similar to those of cocaine; that is, through oxidative stress and neurotoxicity, with striatal dopaminergic neurons most susceptible to injury. Dopaminergic neurodegeneration and reduced DAT binding are even observed with low doses of methamphetamine and tat. Data from postmortem human tissue investigations support interactive effects of methamphetamine and HIV resulting in neuronal injury and accelerated programmed cell death, particularly in the brains of patients with HIV encephalitis. Cai and Cadet exposed cells to tat and methamphetamine alone and found no toxic effects, but their co-treatment resulted in increased cell death. Similarly, Langford et al showed that the co-treatment of methamphetamine and tat in hippocampal neurons resulted in decreased neuronal survival, increased oxidative stress, and dysregulated mitochondrial calcium potential. These investigations provide compelling evidence that methamphetamine and HIV proteins exert interactive neurotoxic effects.

Neuroimaging studies suggest that HIV and methamphetamine may augment brain injury, but the effects appear to be additive rather than synergistic. Interestingly, HIV and methamphetamine may exert overlapping but opposite influences on cortical brain volumes. HIV was associated with decreased volumes and methamphetamine was associated with increased volumes in structures of the basal ganglia and cortex. The increased volume associated with methamphetamine use was thought to reflect abnormal dendritic pruning and sprouting. Ances et al examined the interaction between HIV and methamphetamine on cerebral blood flow in response to a finger-tapping paradigm within the lenticular nucleus, a component of the basal ganglia containing high concentrations of dopaminergic terminals. Significant main effects (but no interaction) for HIV infection and methamphetamine were found, with both independently associated with lower cerebral blood flow and greater changes in cerebral blood flow in response to the task. Taylor and colleagues found that the relationship between viral load and abnormal cerebral metabolites in frontal gray matter...
and basal ganglia was more pronounced in individuals who abused methamphetamine than in those who did not, suggesting that methamphetamine may exaggerate the damaging effects of HIV on neuronal integrity.

Methamphetamine use among those with HIV has been associated with poorer neurocognitive outcomes. In general, HIV+ methamphetamine users show more pronounced global cognitive deficits than HIV+ individuals without a history of methamphetamine use. Executive functioning, motor skills, and learning appear to be the domains most sensitive to additive HIV and methamphetamine effects. Chana and colleagues found that methamphetamine users with HIV had greater degeneration of interneurons in the frontal cortex than those without a history of methamphetamine use at the time of death, which was associated with greater premorbid global and memory impairment. More studies are needed on how comorbid HIV and methamphetamine may affect everyday functioning, but current findings do not suggest compounding effects on functional outcomes.

Alcohol

Rates of alcohol use (Table 4) are significantly higher among HIV+ individuals than those in the general population, with rates of alcohol use disorders estimated to be between two and four times higher in those with HIV. Heavy alcohol use among those with HIV is associated with decreased medication adherence, health care utilization, and overall survival, along with increased HIV risk behaviors. As with the other substances covered in this review, alcohol is thought to interact with HIV through cytokine modulation, adverse effects on immune functioning, oxidative stress, damage to cerebrovasculature, and neurotoxicity.

Although the immunomodulatory effects of alcohol are a subject of contention in the literature, most evidence suggests alcohol exerts adverse effects on the immune functioning of those with HIV. Both chronic and acute alcohol consumption are thought to increase inflammatory responses, viral replication, and susceptibility to opportunistic infections in both murine and human models of HIV. Chronic ethanol administration has been shown to upregulate cytokines in the cerebral cortex of mice. Even a single, acute administration of alcohol was associated with increased susceptibility to pathogens through attenuation of tumor necrosis factor alpha. In SIV-infected macaques, alcohol exposure is associated with increased viral load, increased proinflammatory cytokines, impaired immune response, and, ultimately, accelerated disease progression.

Alcohol may also serve to exacerbate HIV-associated neurotoxicity, presumably through oxidative stress, resulting in enhanced neuronal injury and apoptosis. This is supported by animal models showing that ethanol administration leads to greater oxidative stress and protein oxidation of gp120 than saline administration. In vitro studies of human brain microvascular endothelial cells showed that co-treatment of HIV proteins and alcohol was associated with a synergistic increase in apoptosis of endothelial cells, resulting in decreased structural integrity of the BBB and augmented neuroinvasion and HIV proliferation in the brain.

Neuropathology and neuroimaging studies investigating the combined effects of chronic alcohol use and HIV infection generally show enhanced abnormalities in the periventricular white matter, subcortical gray matter, and brain stem of alcohol users with HIV. Pfefferbaum and colleagues found metabolic abnormalities in parietal-occipital gray matter and adjacent white matter in patients with a dual diagnosis of HIV and alcoholism, which were not present in cases of HIV or alcoholism alone. Additionally, alcohol may potentiate white matter hyperintensities in the corpus callosum and frontal regions.

Only a few studies to date have addressed the combined effects of alcohol use and HIV on neurocognitive functioning. The available evidence suggests that both quantitative (amount of use, frequency of use) and qualitative indices (abuse or dependence) of alcohol use exert independent, additive, and synergistic influences on neuropsychological functioning among those with HIV. The domains of attention, memory, and processing speed most consistently show signs of impairment. An interactive influence of HIV infection and alcohol was observed on measures of verbal reasoning, reaction time, and auditory information processing in a well-matched sample of patients stratified by their serostatus and history of alcohol use disorder—patients with HIV who abused alcohol showed the greatest signs of impairment. Others reported that HIV alone was not associated with deficits in attentional processes, but was linked to deficits on Stroop performance when combined with alcohol abuse. Interactive effects of HIV and alcohol have also been cited in the domains of psychomotor speed, attention, and learning using a modified version of the digit-symbol task. However, the compounding influences of alcohol and HIV most consistently emerge among samples of heavy recent drinkers.

Cannabis

The influence of cannabis (Table 5) on HAND is an important phenomenon to consider, given the high rates of cannabis
use among HIV-infected populations162,163 and accumulating evidence supporting its medical value in mitigating some of the common symptoms of HIV.164–166 Delta-9-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis, exerts many of its psychoactive effects through modulation of signaling in the basal ganglia, prefrontal cortex, and hippocampus – structures commonly affected by HIV.167–169 Similar to HIV, neuroimaging data also show dysfunction of prefrontal-striatal and hippocampal structures in the context of cannabis use.170–172 Despite this, little remains known about how cannabis affects brain functioning among individuals with HIV.

Substantial preclinical evidence suggests that cannabis may be immunosuppressive and it may worsen the course of HIV. However, human studies yield equivocal results. Specifically, preclinical cellular and animal studies confirm that the active constituents of cannabis can suppress immune function,173,174 promote lymphocyte apoptosis,175 promote tumor growth,176 and increase HIV receptor expression and replication.177 Evidence in support of the deleterious health influences of cannabis includes studies showing that among HIV+ patients, cannabis use is associated with more opportunistic infections,177–179 sexually transmitted diseases,180 poorer overall health,181 increased HIV viral load,182,183 lower CD4 counts,181 and more rapid progression to AIDS.184 Yet, others have failed to find relationships between cannabis use and increased risk of infection.185–187 More rapid progression to AIDS,188–190 or with immune biomarkers.182,191,192 The picture is further complicated by data showing that cannabinoids may be neuroprotective through inhibition of proinflammatory cytokine production.193–195 Recently, an in vivo experimental investigation of rhesus macaques found that THC ameliorated SIV progression, decreased mortality, and improved retention of body mass.196

It is reasonable to suspect that the presence of both HIV and cannabis use may potentiate neurocognitive impairments, given that cannabis has also been shown to impair episodic memory and executive functioning.197–199 Cristiani and colleagues200 found evidence for an HIV-cannabis interaction, such that symptomatic HIV+ individuals who used cannabis exhibited the most global neuropsychological deficits, with memory most prominently impaired. Evidence of additive adverse effects of cannabis use on complex motor skills in abstinent HIV+ polysubstance users has also been reported.201 Chang et al202 used magnetic resonance spectroscopy to compare HIV+ cannabis users, HIV+ nonusers, cannabis users without HIV, and healthy controls and found evidence of negative additive effects of cannabis use and HIV for some (but not all) metabolites in the basal ganglia and thalamus; however, there was no interaction between cannabis and HIV on neurocognitive functioning. Thus, current findings are mixed, but the available evidence leans toward supporting adverse effects of comorbid HIV and cannabis on neuropsychological performance.

HCV and HIV

Over 20% of those with HIV in the United Kingdom and Spain also have HCV coinfection,203,204 with dual diagnosis rates as high as 90% in London, Italy, and Australia for those with percutaneous exposure (eg, IDU).205–207 High rates of coinfection are problematic, given that the presence of both diseases is associated with poor outcomes.203,208–210 Both HIV and HCV are neuroinvasive, cross the BBB via infected leukocytes,211,212 and replicate in brain tissue.213–215 Given the high rates of comorbidity and the common routes of transmission and progression, a growing number of investigations have been devoted to examining the compounding effects on neuropsychological functioning in HIV-HCV coinfection.

Several mechanisms for how HIV and HCV may interact to affect brain functioning have been suggested, and are the topic of several prior reviews.218–221 Collectively, they suggest that cytokine modulation and neurotoxicity are key processes that likely contribute to more pronounced cognitive dysfunction among individuals with dual infections. There is evidence that HIV and HCV may enhance cytokine production and increase inflammatory response.222,223 Additionally, HCV may potentiate the effects of HIV neurotoxic proteins in microglia and astrocytes, leading to enhanced neuroimmune activation, suppression of neuronal autophagy, and, ultimately, cell death and overall neurodegeneration.224

The influence of HIV-HCV coinfection on neuropsychological functioning has also been reviewed.225–228 Although some studies suggest only independent adverse influences of HIV or HCV on neuropsychological functioning,14,229 the growing consensus is that coinfected individuals fare worse on neuropsychological measures than monoinfected individuals or healthy controls, with additive influences seen primarily in the domains of executive functioning and processing speed.218,230–232 This trend emerges even when common comorbidities are carefully controlled. For example, Cherner and colleagues233 examined the unique impact of HIV, HCV, and methamphetamine use on neuropsychological profiles. They found evidence for increasing decrements in the domains of learning, recall, fine motor speed, and problem solving with the addition of each disorder, suggesting additive effects of HCV and HIV. In response to these published findings, van
Gorp and Hinkin234 underscored the importance of elucidating how risk for neuropsychological impairment increases in cases of HIV-HCV coinfected. The authors of this commentary highlighted the need for further investigations aimed at better understanding (1) how additional high-frequency cofactors (eg, drug/alcohol use, head injury, psychiatric illness) further compromise cognitive functioning and (2) how such cognitive deficits translate into functional impairment.

Aging and HIV

Those with HIV are living longer because of more effective and sophisticated regimens of cART, transforming the course of HIV infection from an acute, life-threatening illness into a manageable, chronic disease. Indeed, older patients comprise a growing segment of the infected population, with 25\% of individuals with HIV and 32\% of people with AIDS over 50 years of age in the United States.235 Additionally, rates of new infections among senior populations have also increased dramatically. In 2009, 16.5\% of new HIV diagnoses and 23\% of new AIDS diagnoses were made to patients over 50 years of age.235 Recent reports project that older adults will account for 50\% of people living with HIV by 2015.236

Older patients with HIV are vulnerable to neurocognitive decline associated with normal aging, as well as to various medical complications that can emerge and which may worsen their neurocognitive health. They are more likely to develop Kaposi’s sarcoma, which is linked with progressive age-related declines in immunocompetence and thymic activity.237–239 Importantly, thymic activity is associated with poor immune reconstitution, which is correlated with increased risk for AIDS and for other diseases.240–242 Similarly, older patients with HIV have a greater incidence of hypercholesterolemia, diabetes, and lower immuno-resiliency, all of which can further compromise neurocognitive functioning.243 Dendritic damage, axonal injury, and Alzheimer’s-like plaque deposition in the hippocampus244,245 are also seen with aging and likely adversely affect neurocognition.

Both HIV and aging exert a similar pattern of effects on immune function, including an overall reduction in CD4 T cells, inversion of CD4:CD8 ratios, shorter telomere length of CD8 T cells, increased susceptibility to apoptosis, reduced capacity to proliferate mitogens, changes in cytokine production, and a shift to more maturely differentiated T cells.246–248 Not surprisingly, there is evidence for both additive and synergistic influences of HIV and aging on immunological perturbations and a subsequent acceleration in progression to AIDS.249,250 For instance, it was found that older age was associated with a depleted pool of naïve CD4 and CD8 lymphocytes,251 which is predictive of poorer immune reconstitution after treatment initiation.252

Neuroimaging studies suggest conjoint adverse effects of HIV and aging on brain structure and function. Ernst and Chang253 demonstrated that HIV infection resulted in a fivefold increase in inflammatory and glial metabolites in the basal ganglia, beyond what would be expected in normal aging. Using similar methodologies, Chang and colleagues254 showed independent, parallel effects of HIV and aging on metabolic markers in the basal ganglia and frontal white matter, suggestive of adverse additive influences on neuronal integrity and gliosis. However, the impact of HIV on neuronal integrity in frontal white matter appeared more prominent in younger HIV+ individuals than in older HIV+ individuals. HIV and aging have also been demonstrated to have similar pathophysiological effects in the visual cortex through the use of functional magnetic resonance imaging.12

Most of the current research findings suggest that aging is a risk factor for accelerated and more severe neurocognitive decline among those with HIV, as both conditions have been viewed as concomitant neurodegenerative processes,244,253,255 although some have reported no interactions.256 Researchers have cited rates of severe cognitive impairment (eg, dementia) up to three times higher in older HIV+ patients as compared with younger cohorts, although longer durations of viral infection among older adults may influence these findings.257–259 Chernier and colleagues255 conducted a cross-sectional investigation comparing HIV patients over the age of 75 with those under the age of 35. Cerebrospinal fluid (CSF) viral burden and age were both independently and interactively predictive of neurocognitive impairment, even after controlling for substance use and mental health confounds. Specifically, older adults with detectable CSF viral load were twice as likely to exhibit cognitive impairment as those without detectable viral load. Those with more advanced disease may be more susceptible to the negative influence of age on HAND.260 Others have suggested that aging with HIV may result in qualitatively different patterns of neurocognitive impairments.244,261 For instance, HIV+ older adults evidenced increasingly inconsistent performance across neurocognitive domains compared with younger individuals, thought to be reflective of increased injury to prefrontal-striatal circuits.262 Genetic factors, such as the presence of the apolipoprotein E4 allele, may also increase risk of dementia among those aging with HIV.257 Importantly, HIV+ older individuals with cognitive impairment show greater emotional, psychosocial, and functional deficits (eg, medication adherence) than those without pronounced cognitive deficits.263,264
Conclusion

The research findings presented in this review underscore the importance of considering what comorbid conditions commonly present among individuals with HIV. Clearly, substance use disorders, HCV coinfection, and even the age of the patient may have a significant impact on their neurocognition. Yet, the interactions of HIV with these comorbid factors are complex and not yet completely understood. Nonetheless, several potential mechanisms by which they may interact frequently occur in the literature and include immune suppression, damage to cerebrovasculature, oxidative stress, inflammation, and neurotoxicity.

Collectively, the evidence more frequently suggests additive adverse effects when HIV is present alongside the conditions covered in this review. However, it is important to consider that such studies are beset with significant challenges due to the high rates of additional comorbid conditions that tend to present with substance use disorders, HCV, and older age. For example, substance use is often accompanied by a high rate of additional comorbidities including head injury, cerebrovascular disorders, malnutrition, and a spectrum of psychiatric illnesses including mood disorders, anxiety disorders, post-traumatic stress disorder, psychosis, and attention-deficit/hyperactivity disorder, all of which will likely influence neurocognition. Similarly, HCV is often also associated with liver disease, depression, and lower education. Older age also has many associated medical conditions, including hypertension, hypercholesterolemia, diabetes, and higher prevalence of degenerative dementias. All of these may also affect neurocognition adversely. To further complicate matters, all of these risk factors (ie, substance use, HCV, and older age) may be present, singly or in combination, among the HIV+ samples of many of the studies the authors reviewed. The extent to which different studies assess and control for these additional risk factors varies substantially. Furthermore, the effects of polypharmacy (eg, psychotropics, opioid replacement therapy, cART) on neurocognitive outcomes remain understudied in combination with comorbid conditions. This contributes to significant heterogeneity that hampers comparisons across studies and, ultimately, limits the conclusions that can be drawn. Because of this, it is critical for future investigations to use a clear and comprehensive set of inclusion and exclusion criteria and carefully control for potential confounding variables, as well as to provide detailed data on the presence of these comorbidities in their sample.

The multitude of permutations of factors that may interact to affect neurocognition in HIV is daunting. Nonetheless, the continually growing focus on how HIV interacts with comorbid conditions is a welcomed trend, especially when considering how often these disorders co-occur and how rarely their combined effects on neurocognition were studied historically. Much remains to be known about the interactions of other common systemic illnesses and HIV, the impact of drug-drug interactions and polypharmacy, and how aging with HIV may affect functional outcomes and the ability to live independently. Importantly, further refining understanding of the neurocognitive profiles of individuals with HIV with various comorbid conditions may help to identify specific HAND phenotypes, which will aid in the development of more specific treatments, both pharmacologically and behaviorally.

Acknowledgments

The authors thank Inga Salija for her assistance with preparing the review. This publication was made possible by grants K23DA023560 (PI: Gonzalez) and F31DA032244-01 (PI: Schuster) from the National Institute on Drug Abuse (NIDA). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NIDA or the National Institutes of Health.

Disclosure

The authors report no conflicts of interest in this work.

References

