Synthesis, characterization, and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of doxorubicin

Abstract: Poly (N-isopropylacrylamide-methyl methacrylic acid, PNIPAAm-MAA)-grafted magnetic nanoparticles were synthesized using silane-coated magnetic nanoparticles as a template for radical polymerization of N-isopropylacrylamide and methacrylic acid. Properties of these nanoparticles, such as size, drug-loading efficiency, and drug release kinetics, were evaluated in vitro for targeted and controlled drug delivery. The resulting nanoparticles had a diameter of 100 nm and a doxorubicin-loading efficiency of 75%, significantly higher doxorubicin release at 40°C compared with 37°C, and pH 5.8 compared with pH 7.4, demonstrating their temperature and pH sensitivity, respectively. In addition, the particles were characterized by X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. In vitro cytotoxicity testing showed that the PNIPAAm-MAA-coated magnetic nanoparticles had no cytotoxicity and were biocompatible, indicating their potential for biomedical application.

Keywords: magnetic nanoparticles, drug loading, doxorubicin release, biocompatibility

Introduction

Magnetic nanoparticles are a major class of nanoscale materials with the potential to revolutionize current clinical diagnostic and therapeutic techniques.1 Due to their unique physical properties and ability to function at the cellular and molecular level of biological interactions, magnetic nanoparticles are being actively investigated as the next generation of magnetic resonance imaging contrast agents2 and as carriers for targeted drug delivery.3,4 Although early research in the field can be dated back several decades, the recent surge of interest in nanotechnology has significantly expanded the breadth and depth of research into magnetic nanoparticles. With a wide range of applications in the detection, diagnosis, and treatment of illnesses, such as cancer,5 cardiovascular disease,6 and neurological disease,7–10 magnetic nanoparticles may soon play a significant role in meeting the health care needs of tomorrow (Figure 1).

As therapeutic tools, magnetic nanoparticles have been evaluated extensively for targeted delivery of pharmaceuticals through magnetic drug targeting,11–16 and by active targeting through attachment of high affinity ligands.17–19 With the ability to utilize magnetic attraction and/or specific targeting of disease biomarkers, magnetic nanoparticles offer an attractive means of remotely directing therapeutic agents specifically to a disease site, while simultaneously reducing dosage and the deleterious side effects associated with nonspecific uptake of cytotoxic drugs by healthy tissue.

Also referred to as magnetic targeted carriers, colloidal iron oxide particles in early clinical trials have demonstrated some degree of success with the technique...
and shown satisfactory tolerability in patients. Although not yet capable of reaching levels of safety and efficacy for regulatory approval, preclinical studies indicate that some of the shortcomings of magnetic drug targeting technology, such as poor penetration depth and diffusion of the released drug from the disease site, can be overcome by improvements in magnetic targeted carrier design. Furthermore, the use of magnetic nanoparticles as carriers in multifunctional nanoplatforms as a means of real-time monitoring of drug delivery is an area of intense interest. A significant challenge associated with the application of these magnetic nanoparticle systems is their behavior in vivo. The efficacy of many of these systems is often compromised due to recognition and clearance by the reticuloendothelial system prior to reaching the target tissue, as well as by an inability to overcome biological barriers, such as the vascular endothelium or the blood–brain barrier. The fate of these magnetic nanoparticles upon intravenous administration is highly dependent on their size, morphology, charge, and surface chemistry.

The physicochemical properties of nanoparticles directly affect their subsequent pharmacokinetics and biodistribution. To increase the effectiveness of magnetic nanoparticles, several techniques, including reducing size and grafting nonfouling polymers, have been used to improve their “stealthiness” and increase their blood circulation time to maximize the likelihood of reaching targeted tissues. The major disadvantage of most chemotherapeutic approaches to cancer treatment is that most are nonspecific. Therapeutic (generally cytotoxic) drugs are administered intravenously, leading to general systemic distribution.

The nonspecific nature of this technique results in the well-known side effects of chemotherapy because the cytotoxic drug attacks normal healthy cells in addition to its primary target, ie, tumor cells. To overcome this great disadvantage, magnetic nanoparticles can be used to treat tumors in three different ways: specific antibodies can be conjugated to the magnetic nanoparticles to bind selectively to related receptors and inhibit tumor growth; targeted magnetic nanoparticles can be used for hyperthermia for tumor therapy; and drugs can be loaded into magnetic nanoparticles for targeted therapy. Targeted delivery of antitumor agents adsorbed on the surface of magnetic nanoparticles is a promising alternative to conventional chemotherapy (Figure 2).

Particles loaded with the drug are concentrated at the target site with the aid of an external magnet. The drugs are then released in the desired area. Magnetic particles smaller than 4 µm are eliminated by cells of the reticuloendothelial system, mainly in the liver (60%–90%) and spleen (3%–10%). Particles larger than 200 nm are usually filtered to the spleen, the cutoff point of which extends up to 250 nm, while particles up to 100 nm are mainly phagocytosed by liver cells.

In general, the larger the particles are, the shorter their plasma half-life. Functionalization of magnetic nanoparticles with amino groups, silica, polymers, various surfactants, or other organic compounds is usually performed in order to achieve better physical and chemical properties. Moreover, the core/shell structure of magnetic nanoparticles has the advantages of good dispersion, high stability against oxidation, and an appreciable amount of drug can be loaded into the polymer shell. Furthermore, lots of functional groups from polymers on the surface can be used...
for further functionalization to obtain various properties.40 It is preferable that magnetic nanoparticles retain sufficient hydrophilicity and, with coating, do not exceed 100 nm in size to avoid rapid clearance by the reticuloendothelial system.49 It has been found that surface functionalization also plays a key role in nanoparticle toxicity.

In this research we investigated the in vitro characteristics of our nanoparticles for drug delivery application.50 Of these temperature-sensitive polymer-coated magnetic nanoparticles, poly-N-isopropylacrylamide (PNIPAAm)-coated magnetic nanoparticles are of particular interest because of their stimuli (temperature) responsiveness and enhanced drug-loading ability. These characteristics are due to their large inner volume, amphiphilicity, capacity for manipulation of permeability, and response to an external temperature stimulus with an on–off mechanism. However, one potential problem with using PNIPAAm as a polymer coat is that its lower critical solution temperature, ie, the temperature at which a phase transition occurs, is below body temperature (32°C). To increase the lower critical solution temperature of PNIPAAm above body temperature, it has been copolymerized with different monomers.51,52

Two synthetic steps were used to manufacture magnetic nanoparticles coated with PNIPAAm and methacrylic acid (MAA).53 First, magnetic nanoparticles were covalently bound with vinyltriethoxysilane, a silane coupling agent, to produce a template site for radical polymerization. NIPAAm and MAA were then polymerized on the silicon layer around the magnetic nanoparticles via methylene-bis-acrylamide and ammonium persulfate as a cross-linking agent and an initiator, respectively. The resultant particles were characterized by X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and response to an external temperature stimulus with an on–off mechanism. However, one potential problem with using PNIPAAm as a polymer coat is that its lower critical solution temperature, ie, the temperature at which a phase transition occurs, is below body temperature (32°C). To increase the lower critical solution temperature of PNIPAAm above body temperature, it has been copolymerized with different monomers.51,52

Preparation of vinyltriethoxysilane-coated magnetic nanoparticles

Synthesis of superparamagnetic magnetite nanoparticles

Superparamagnetic magnetite (\(\text{Fe}_3\text{O}_4\)) nanoparticles were prepared using an improved chemical coprecipitation method. According to this method, 3.1736 g of \(\text{FeCl}_2\cdot4\text{H}_2\text{O}\) (0.016 mol) and 7.5684 g of \(\text{FeCl}_3\cdot6\text{H}_2\text{O}\) (0.028 mol) were dissolved in 320 mL of deionized water, such that \(\text{Fe}^{2+}/\text{Fe}^{3+} = 1/1.75\). The mixed solution was stirred under \(\text{N}_2\) at 80°C for one hour. Then, 40 mL of \(\text{NH}_3\cdot\text{H}_2\text{O}\) was injected into the mixture rapidly, stirred under \(\text{N}_2\) for another hour, and cooled to room temperature. The precipitated particles were washed five times with hot water and separated by magnetic decantation (Figure 3). Finally, the magnetic nanoparticles were dried under vacuum at 70°C.55

Materials and methods

Materials

Ferric chloride hexahydrate (\(\text{FeCl}_3\cdot6\text{H}_2\text{O}\)), ferrous chloride tetrahydrate (\(\text{FeCl}_2\cdot4\text{H}_2\text{O}\)), ammonium hydroxide (25 wt%), and other chemicals of analytical grade were purchased from Fluka (Buchs, Switzerland). 1,4 dioxan, ammonium persulfate, AIBN (2 azobisisobutyronitrile), MAA, NIPAAm, methylene-bis-acrylamide (BIS), vinyltriethoxysilane, acetic acid, and ethanol were purchased from Sigma-Aldrich (St. Louis, MO) and used as received. Doxorubicin hydrochloride was purchased from Sigma-Aldrich. X-ray powder diffraction using a Rigaku D/MAX-2400 X-ray diffractometer with Ni-filtered Cu K\(\alpha\) radiation and scanning electron microscopy measurements were conducted using a VEGA/TESCAN. Drug-loading capacity and release behavior were determined using an ultraviolet 2550 spectrometer (Shimadzu, Japan, Tokyo). The infrared spectra of copolymers were recorded on a Perkin Elmer 983 infrared spectrophotometer (Perkin Elmer, Boston, MA) at room temperature. Magnetic properties were measured on a VSM/AGFM (Meghnatis Daghigh Kavir Co, Iran) vibrating sample magnetometer at room temperature.

Preparation of vinyltriethoxysilane-coated magnetic nanoparticles

The magnetic nanoparticles were coated with vinyltriethoxysilane via acid catalyst hydrolysis, followed by electrophilic substitution of ferrous oxide on the surface as shown in our previous study. In brief, 0.49 mL of vinyltriethoxysilane was hydrolyzed
using 3 mL of acetic acid in the presence of water and ethanol (1:100 vol/vol). A measured quantity (0.075 g) of magnetic nanoparticles was then dispersed by sonication at 100 W for 30 minutes in this solution. After 18 hours of vigorous mechanical stirring at room temperature (22°C–25°C), vinyltriethoxysilane-coated magnetic nanoparticles were obtained, washed with a mixture of water and ethanol (1:100 vol/vol) and collected using an external magnet. The particles were dispersed in water before the next step.

Immobilization of PNIPAAm-MAA on magnetic nanoparticles

Vinyltriethoxysilane-coated magnetic nanoparticles were used as a template to polymerize PNIPAAm-MAA in 1,4 dioxan. BIS was used as a cross-linking agent. In brief, 0.03 g of vinyltriethoxysilane-coated magnetic nanoparticles, 0.15 g of NIPAm, 0.013 g of MAA, and 0.0135 g of BIS were sonicated in 100 mL of cold water for 45 minutes. Then, 0.08 g of ammonium persulfate was added to the solution, and the reaction was carried out at room temperature under N₂ gas for 5 hours. The product was purified several times with deionized water by using a magnet to collect only the PNIPAAm-MAA-coated magnetic nanoparticles. PNIPAm-coated magnetic nanoparticles were also formulated using the same synthesis process as for PNIPAAm-MAA-coated magnetic nanoparticles, but without addition of MAA monomers (Figure 4).

Synthesis of hybrid nanoparticles

Doxorubicin was used as a model drug in our drug-loading and drug-release experiments. In brief, 5 mg of freeze-dried PNIPAAm-MAA-coated magnetic nanoparticles and 2.5 mg of doxorubicin were dispersed in 30 mL of phosphate buffer solution. The solution was stirred at 5°C for 3 days.

The doxorubicin-loaded PNIPAAm-MAA-coated magnetic nanoparticles were separated from the solution using an external magnet. The solution was then analyzed using an ultraviolet-visible spectrophotometer (Shimadzu) to determine the amount of nonencapsulated doxorubicin (λ_em 470 nm and λ_ex 585 nm). This value was then compared with the total amount of doxorubicin added to determine the doxorubicin-loading efficiency of the nanoparticles.

In vitro drug-release kinetics

To study drug release, four different sets of experiments were performed. These included two temperatures (40°C and 37°C) and two pH levels (5.8 and 7.4). In each drug-release experiment, 3.0 mg of the drug carrier bonded with smart polymer was sealed in a 30 mL of Na₂HPO₄-NaH₂PO₄ buffer solution at a pH of 5.8 or 7.4. The test tube with a closer was placed in a water bath maintained at 40°C up to the lower critical solution temperature or 37°C (higher than the lower critical solution temperature). The release medium (about 3 mL) was withdrawn at predetermined time intervals (1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 36, 48, 60, 80, 100, 130, 160, 190, and 220 hours). Thereafter, the samples were analyzed using an ultraviolet-visible spectrometer (Shimadzu) to determine the amount of doxorubicin released (λ_ex 470 nm and λ_em 585 nm for doxorubicin measurement).

Cell culture

In vitro cytotoxicity and cell culture study

An A549 lung cancer cell line (kindly donated by the Pharmaceutical Nanotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran) were cultured in RPMI 1640 (Gibco, Invitrogen, Paisley, UK) supplemented with 10% heat-inactivated fetal bovine serum (Gibco), 2 mg/mL sodium bicarbonate, 0.05 mg/mL penicillin G (Serva Co, Tübingen, Germany), and 0.08 mg/mL streptomycin (Merck Co, Germany), and incubated at 37°C with humidified air containing 5% CO₂. After culturing a sufficient amount of cells, the cytotoxic effect of PNIPAAm-MAA-coated magnetic nanoparticles was studied by MTT assay at 24, 48 and 72 hours.

Briefly, 1000 cells/well were cultivated in a 96-well plate (Figure 5). After 24 hours of incubation at 37°C in a humidified atmosphere containing 5% CO₂, the cells were treated with serial concentrations of doxorubicin-loaded PNIPAAm-MAA-coated magnetic nanoparticles (0 mg/mL to 0.57 mg/mL) for 24, 48 and 72 hours in a quadruplicate manner. Control cells received 0 mg/mL extract + 200 µL of culture medium containing 10% dimethylsulfoxide. After incubation, the medium in all wells was exchanged with fresh...
medium, and the cells were left for 24 hours in an incubator. The medium in all the wells was then removed carefully, and 50 µL of 2 mg/mL MTT dissolved in phosphate buffer solution was added to each well and the plate was covered with aluminum foil and incubated for 4.5 hours. After removing the contents of the wells, 200 µL of pure dimethylsulfoxide was added to the wells. Then, 25 µL of Sorensen's glycine buffer was added, and the absorbance of each well was immediately read at 570 nm using an EL ×800 microplate absorbance reader (Bio-Tek Instruments, Winookski, VT) with a reference wavelength of 630 nm (Figure 5).

Cell treatment
After determination of the IC₅₀, 1 × 10⁶ cells were treated with serial concentrations of doxorubicin-loaded PNIPAAm-MAA-coated magnetic nanoparticles (0.028, 0.057, 0.114, 0.142, 0.171, and 0.199 mg/mL). For control cells, the same volume of 10% dimethylsulfoxide without the doxorubicin-loaded PNIPAAm-MAA-coated magnetic nanoparticles was added to the flask containing control cells. The culture flasks were then incubated for 24 hours at 37°C in a humidified atmosphere containing 5% CO₂ (Figure 6).

Characterization
The infrared spectra were recorded using a Fourier transform infrared spectrophotometer (FT-IR, Nicolet NEXUS 670; ThermoScientific, Waltham, MA), and the sample and KBr were pressed to form a tablet. The magnetization curves of the samples were measured using vibrating sample magnetometry (Meghnatis Daghighe Kavir Co) at room temperature. Powder X-ray diffraction (Rigaku D/MAX-2400 X-ray diffractometer with Ni-filtered Cu Kα radiation) was used to investigate the crystal structure of the magnetic nanoparticles. The infrared spectra of the copolymers were recorded on a Perkin Elmer 983 infrared spectrometer (Perkin Elmer) at room temperature. The size and shape of the nanoparticles were determined using a scanning electron microscope (VEGA/TESCAN), whereby a sample was dispersed in ethanol and a small drop was spread onto a 400 mesh copper grid.

Results
Synthesis of PNIPAAm-MAA-coated Fe₃O₄ nanoparticles
The processes for synthesis of PNIPAAm-MAA-coated Fe₃O₄ nanoparticles and the loading of doxorubicin onto them are shown in Figure 4. The Fe₃O₄ nanoparticles were prepared by chemical coprecipitation of Fe²⁺ and Fe³⁺ ions under alkaline conditions. The concentration ratio of Fe²⁺/Fe³⁺ was selected to be 1:1.8 rather than the stoichiometric ratio of 1:2, because Fe³⁺ is prone to oxidation and becoming Fe⁴⁺ in solution. Fe₃O₄ nanoparticles prepared by the coprecipitation method have a number of hydroxyl groups on the surface from being in contact with the aqueous phase. Vinyltriethoxysilane-modified Fe₃O₄ nanoparticles were achieved by the reaction between vinyltriethoxysilane and the hydroxyl groups on the surface of magnetite. Two reactions were involved in the process.
First, the vinyltriethoxysilane was hydrolyzed to highly reactive silanol species in the solution phase under alkaline conditions. Their condensation with surface free –OH groups of magnetite to form stable Fe—O—Si bonds then takes place. Oligomerization of the silanols in solution also occurs as a competing reaction, with their covalent binding to the surface. Surface-grafted polymerization by NIPAAm and MAA also involves two reactions which take place simultaneously. Graft polymerization occurs on the surface of the vinyltriethoxysilane-modified Fe$_3$O$_4$ nanoparticles, while random polymerization takes place in the solution. In order to decrease random polymerization, the following strategies were adopted. After azobisisobutyronitrile was dissolved in the modified nanoparticle-suspended solution, the solution was kept overnight for the nanoparticles to absorb as much azobisisobutyronitrile as possible onto the surface. An optimal concentration of initiator was selected, BIS was used as cross-linking agent, and the monomers were added dropwise in the reaction. The unreacted oligomers were separated by magnetic decantation after the reaction.

![Graph A](image1.png)

Figure 6 IC$_{50}$ of (A) doxorubicin-loaded PNIPAAm-MAA-coated magnetic nanoparticles and (B) pure doxorubicin on A549 tumor cell line after 24, 48, and 72 hours of treatment.

Abbreviations: DOX, doxorubicin; PNIPAAm, poly (N-isopropylacrylamide); MAA, methyl methacrylic acid.

![Graph B](image2.png)

Figure 7 X-ray diffraction patterns of (A) pure Fe$_3$O$_4$ nanoparticles and (B) PNIPAAm-MMA-grafted Fe$_3$O$_4$ nanoparticles.

Abbreviations: PNIPAAm, poly (N-isopropylacrylamide); MAA, methyl methacrylic acid.
Characterization of Fe$_3$O$_4$ and PNIPAAm-MAA-coated Fe$_3$O$_4$ nanoparticles

X-ray diffraction patterns

Figure 7 shows the X-ray diffraction patterns for the pure Fe$_3$O$_4$ and PNIPAAm-MAA-grafted Fe$_3$O$_4$ nanoparticles. It is apparent that the diffraction pattern of our Fe$_3$O$_4$ nanoparticles is close to the standard pattern for crystalline magnetite (Figure 7A). The characteristic diffraction peaks, marked by their respective indices (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1), and (4 4 0) could be well indexed to the inverse cubic spinel structure of Fe$_3$O$_4$ (JCPDS card 85–1436), and were also observed for PNIPAAm-MAA-grafted Fe$_3$O$_4$ nanoparticles (Figure 7B). This indicates that modified graft polymerization on the surface of the Fe$_3$O$_4$ nanoparticles did not lead to any crystal phase change. The average crystalline size D was about 15 nm, obtained from the Sherrer equation:

$$D = \frac{K\lambda}{\beta \cos \theta}$$

where K is a constant, λ is the X-ray wavelength, and β is the peak width of half-maximum.

Size, morphology, and core-shell structure of nanoparticles

Scanning electron micrographs of pure Fe$_3$O$_4$ nanoparticles are shown in Figure 8A and Fe$_3$O$_4$ nanoparticles grafted by PNIPAAm-MAA are shown in Figure 8B. In Figure 8A, the nanoparticles were strongly aggregated, which was due to the nanosize of the Fe$_3$O$_4$, and were about 20–75 nm in size, according to the results of X-ray powder diffraction. After graft polymerization, the size of the particles increased to 60–100 nm, and dispersion of the particles was greatly improved (Figure 8B), which can be explained by the electrostatic repulsion force and steric hindrance between the polymer chains on the surface of the Fe$_3$O$_4$ nanoparticles.

Fourier transform infrared spectroscopy

To evaluate the effect of graft polymerization, the homopolymers and unreacted monomers were extracted in ethanol to be...
separated from the grafted nanoparticles. Fourier transform infrared spectroscopy was used to show the structure of Fe$_3$O$_4$ (Figure 9A), vinyltriethoxysilane-modified Fe$_3$O$_4$ (Figure 9B), and PNIPAAm-MAA-grafted Fe$_3$O$_4$ (Figure 9C). From the infrared spectra shown in Figure 9, the absorption peaks at 568 cm$^{-1}$ belonged to the stretching vibration mode of Fe–O bonds in Fe$_3$O$_4$. Comparing the infrared spectra in Figure 9A and Figure 9B, vinyltriethoxysilane-modified Fe$_3$O$_4$ showed absorption peaks at 1603 and 1278 cm$^{-1}$ attributable to the stretching vibrations of C=C and the bending vibration of Si–C bonds, a peak at 1411 cm$^{-1}$ due to the bending vibration of the =CH$_2$ group, and additional peaks centered at 1116, 1041, 962, and 759 cm$^{-1}$, most probably due to the symmetric and asymmetric stretching vibration of framework and terminal Si–O– groups. All of these indicated the presence of vinyltriethoxysilane. They also indicated that the reactive groups had been introduced onto the surface of the magnetite. The absorption peaks of C=C and =CH$_2$ groups disappeared, and additional peaks at 1724, 1486, 1447 and 1387 cm$^{-1}$ due to the stretching vibrations of C=O, the bending vibration of –CH$_2$–, –CH–, and –CH$_3$ absorption peaks at 1147, 906, and 847 cm$^{-1}$ belonged to the stretching vibration of the alkyl groups from NIPAAm. However, identification of a peak attributable to the stretching vibrations of C–N (normally at about 1100 cm$^{-1}$) was problematic due to other overlapping peaks, but the element analysis method demonstrated the presence of the N element of NIPAAm in PNIPAAm-MAA-grafted Fe$_3$O$_4$ nanoparticles. Overall, these Fourier transform infrared spectra provided supportive evidence that the –CH=CH$_2$ group initiated polymerization of NIPAAm and MAA polymer chains, which were successfully grafted onto the Fe$_3$O$_4$ nanoparticle surface.

Magnetism test

The magnetic properties of the nanoparticles were analyzed using vibrating sample magnetometry at room temperature. Figure 10 shows the hysteresis loops for the samples. The saturation magnetization was found to be 34.5 and 17.6 emu/g for vinyltriethoxysilane-modified Fe$_3$O$_4$ and PNIPAAm-MAA-grafted Fe$_3$O$_4$, respectively, which was less than for the pure Fe$_3$O$_4$ nanoparticles (70.9 emu/g). With its large saturation magnetization, the PNIPAAm-MAA-grafted Fe$_3$O$_4$ could be separated from the reaction medium rapidly and easily in a magnetic field. In addition, there was no hysteresis in the magnetization, with both remanence and coercivity being zero, suggesting that these magnetic nanoparticles were superparamagnetic. When the external magnetic field was removed, the magnetic nanoparticles could be well dispersed by gentle shaking. These magnetic properties are critical for applications in the biomedical and bioengineering fields.

Figure 9 Fourier transform infrared spectra of (A) pure Fe$_3$O$_4$ nanoparticles, (B) Fe$_3$O$_4$ nanoparticles modified by vinyltriethoxysilane, and (C) PNIPAAm-MAA-grafted Fe$_3$O$_4$ nanoparticles.

Abbreviations: PNIPAAm, poly (N-isopropylacrylamide); MAA, methyl methacrylic acid.
Drug-loading efficiency

Doxorubicin, an anticancer drug, was used for drug-loading and drug-release studies. In brief, 20 mg of lyophilized nanoparticles and 5 mg of doxorubicin were dispersed in phosphate buffer solution. The solution was stirred at 4°C for 3 days to allow doxorubicin to entrap within the nanoparticle network. This value was then compared with the total amount of doxorubicin to determine the doxorubicin loading efficiency of the nanoparticles. The amount of nonentrapped doxorubicin in the aqueous phase was determined using an ultraviolet-visible spectrometer (Shimadzu). This procedure enables analysis of doxorubicin solutions with removal of most interfering substances. The entrapment efficiency of doxorubicin within the nanoparticles was calculated by the difference between the total amount used to prepare the nanoparticles and the amount of doxorubicin present in the aqueous phase. Loading efficiency was calculated according to the following formula:

\[
\text{Loading efficiency} \% = \left(\frac{\text{Amount of loaded drug in mg}}{\text{Amount of added drug in mg}} \right) \times 100\%
\]

Drug release

After 200 hours in phosphate buffer solution (0.1 M, pH 7.4, 5.8) at 37°C and 40°C, the release behavior of the nanoparticles was studied. The percentage of cumulative release of doxorubicin at 40°C was significantly higher than at 37°C (Figure 11). The pH-responsive release profiles from the hybrid nanoparticles are shown in Figure 11 (pH 5.8 and 7.4). The release rate decreased with increasing pH values. The pKa value of the amino group in doxorubicin was about 8.2. Thus, the electrostatic interaction existed in neutral surroundings and disappeared at acid surroundings. The pH of the tumor was 5.0–6.0, which is lower than the pH of normal tissue, so doxorubicin in the hybrid nanoparticles could be released at the tumor site.

In vitro cytotoxicity study

The MTT assay is an important method for evaluating the cytotoxicity of biomaterials in vitro. Using this assay, absorbance has a significant linear relationship with cell numbers. The corresponding optical images of cells are shown in Figure 12. In the current work, the MTT assay showed that doxorubicin-loaded PNIPAAm-MAA-coated magnetic nanoparticles have time-dependent but not dose-dependent cytotoxicity in an A549 lung cancer cell line.
The MTT assay also showed that pure doxorubicin has dose-dependent but not time-dependent cytotoxicity in the A549 lung cancer cell line (IC$_{50}$ 0.15–0.16 mg/mL). Therefore, there is a need for further study of doxorubicin-loaded PNIPAAm-MAA-coated magnetic nanoparticles in an A549 lung cancer cell line in the future. However, the results of our current work demonstrate that the IC$_{50}$ values for doxorubicin-loaded PNIPAAm-MAA-coated magnetic nanoparticles and pure doxorubicin are about 0.16, 0.20, and 0.15 mg/mL, respectively, in an A549 lung cancer cell line.

Discussion

In this work, we have characterized the in vitro behavior of PNIPAAm-MAA-coated magnetic nanoparticles for targeted and controlled drug delivery applications. The saturation magnetization was found to be 34.5 and 17.6 emu/g for vinyltriethoxysilane-modified Fe$_3$O$_4$ and PNIPAAm-MAA-grafted Fe$_3$O$_4$, respectively, ie, less than for the pure Fe$_3$O$_4$ nanoparticles (70.9 emu/g) by vibrating sample magnetometry. This difference suggests that a large amount of silane and polymers were coated onto the surface of the Fe$_3$O$_4$ nanoparticles. Fourier transform infrared spectroscopy was used to show the structure of Fe$_3$O$_4$, vinyltriethoxysilane-modified Fe$_3$O$_4$, and PNIPAAm-MAA-grafted Fe$_3$O$_4$. The X-ray powder diffraction data only showed peaks attributable to magnetite and revealed that modified and grafted polymerization onto the surface of Fe$_3$O$_4$ nanoparticles did not lead to crystal phase change. The size, morphology, and core-shell structure of the synthesized nanoparticles was analyzed by scanning electron microscopy. Close examination of a scanning electron microscopic image (inset in Figure 7) reveals the presence of magnetic nanoparticles (about 10 nm diameter) at the center with a PNIPAAm-MAA coating surrounding them. The size of the magnetic core was similar to earlier reported values for magnetic nanoparticles synthesized by similar methods. In comparison with PNIPAAm-coated magnetic nanoparticles, there was clearly less agglomeration of magnetic nanoparticles in the core. This might be a result of higher mixing capability due to utilization of a mechanical stirrer and the electrostatic charge repulsion from the carboxylic group of MAA in the PNIPAAm-MAA coating, which would further reduce the magnetic dipole interactions and promote stability.

We believe that coating magnetic nanoparticles with a biocompatible polymer is necessary when high concentrations of magnetic nanoparticles are used. The drug-release study indicates that the PNIPAAm-MMA is a temperature-sensitive polymer, whereby at its lower critical solution temperature the nanoparticles go through a phase change to collapse and release more drug. After 200 hours, 60% of the bonded doxorubicin was released at 40°C, whereas at 37°C about 43% was released. The release profile for doxorubicin over the first 30 minutes is also shown in Figure 11. After 30 minutes, the percentages of cumulative release of doxorubicin were only 0.046% at 37°C, whereas at 40°C it was 2.4%. The system is shown to release its payload over a short burst release period with changes in temperature. Since the measurement time was very short while the drug release predetermined time interval was significantly large, the influence of the returned medium on drug release during the measurement time is expected to be insignificant. The doxorubicin release profiles demonstrated that our nanoparticles were sensitive to temperature, with significantly higher release at 40°C than at 37°C. The in vitro cytotoxicity test showed that the doxorubicin-loaded PNIPAAm-MAA-coated magnetic nanoparticles had no cytotoxicity and were biocompatible, which means that there is potential for biomedical application. Also, the IC$_{50}$ of doxorubicin-loaded PNIPAAm-MAA-coated magnetic nanoparticles in an A549 lung cancer cell line showed that they are time-dependent.
Conclusion

Superparamagnetic iron oxide nanoparticles were prepared via an improved chemical coprecipitation method, and magnetite (Fe_3O_4) nanoparticles were then modified by vinyltriethoxysilicane and reactive groups were introduced onto the surface of the nanoparticles. NIPAAm and MAA were then grafted onto the surface of the modified Fe_3O_4 nanoparticles by surface-initiated radical polymerization. The results indicate that the polymer chains were effectively grafted onto the surface of the Fe_3O_4 nanoparticles. The functionalized particles remained dispersive and superparamagnetic. These particles were used for encapsulation of doxorubicin under mild conditions and could be used in drug delivery. The resulting particles were characterized by X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. An in vitro cytotoxicity study demonstrated that the modified Fe_3O_4 nanoparticles had no cytotoxicity and were biocompatible. This study suggests that supercritical fluid technology is a promising technique to produce drug-polymer magnetic composite nanoparticles for the design of controlled drug-release systems. Our current work demonstrates that doxorubicin-loaded, modified Fe_3O_4 nanoparticles have a potent antiproliferative effect in an A549 cancer cell line and inhibits cell growth in a time-dependent manner. Therefore, these nanoparticles could be natural potent chemopreventive and chemotherapeutic agents for patients with lung cancer, and constituents of these nanoparticles may be appropriate candidates for drug development. Future work will include in vivo investigation of the targeting capability and effectiveness of these nanoparticles in the treatment of lung cancer.65,66

Acknowledgments

The authors are grateful for the financial support of the Iran National Science Foundation, Drug Applied Research Center Tabriz University of Medical Sciences, and the Department of Medicinal Chemistry at Tabriz University of Medical Sciences.

Disclosure

The authors report no conflicts of interest in this work.

References

57. Wu ChengLin, HE Huan, GAO HongJun, et al. Synthesis of Fe₃O₄@SiO₂@polymer nanoparticles for controlled drug release. 2010;53:514–518.

