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Background: Carbon nanotubes (CNTs) are novel materials with considerable potential in many 

areas related to nanomedicine. However, a major limitation in the development of CNT-based 

therapeutic nanomaterials is a lack of reliable and reproducible data describing their chemical and 

structural composition. Knowledge of properties including purity, structural quality,  dispersion 

state, and concentration are essential before CNTs see widespread use in in vitro and in vivo 

experiments. In this work, we describe the characterization of several commercially available 

and two in-house-produced CNT samples and discuss the physicochemical profiles that will 

support their use in nanomedicine.

Methods: Eighteen single-walled and multi-walled CNT raw materials were characterized using 

established analytical techniques. Solid CNT powders were analyzed for purity and structural 

quality using thermogravimetric analysis and Raman spectroscopy. Extinction coefficients for 

each CNT sample were determined by ultraviolet-visible near infrared absorption spectroscopy. 

Standard curves for each CNT sample were generated in the 0–5 µg/mL concentration range 

for dispersions prepared in 1,2-dichlorobenzene.

Results: Raman spectroscopy and thermogravimetric analysis results demonstrated that CNT 

purity and overall quality differed substantially between samples and manufacturer sources, and 

were not always in agreement with purity levels claimed by suppliers. Absorbance values for 

individual dispersions were found to have significant variation between individual single-walled 

CNTs and multi-walled CNTs and sources supplying the same type of CNT. Significant differ-

ences (P , 0.01) in extinction coefficients were observed between and within single-walled 

CNTs (24.9–53.1 mL·cm-1·mg-1) and multi-walled CNTs (49.0–68.3 mL·cm-1·mg-1). The results 

described here suggest a considerable role for impurities and structural inhomogeneities within 

individual CNT preparations and the resulting spectroscopic properties of their dispersions.

Conclusion: Raw CNT materials require thorough analytical workup before they can be used 

as nanoexcipients. This applies especially to the determination of CNT purity, structure, and 

concentration. The results presented here clearly demonstrate that  extinction  coefficients must 

be determined for individual CNT preparations prior to their use.

Keywords: carbon nanotubes, pharmaceutical characterization, Raman spectroscopy, 

 thermogravimetric analysis, ultraviolet-visible near infrared spectroscopy

Introduction
Tailored nanomaterials have become increasingly important in the development 

of targeted medical therapies and pharmaceutical products. As a result of their 

nanoscale dimensions, the physicochemical properties for the individual molecules 

of these materials can differ considerably compared with the bulk material from 

which they are obtained. The exceptionally high surface areas associated with many 
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nanoparticles provide them with an increased capacity to 

carry combinations of active targeting agents simultane-

ously, moieties that increase plasma half-life, and structures 

to facilitate controlled drug release. Properties related to 

molecular surfaces, such as surface charge density and 

hydrophobicity, can also provide a platform for formulat-

ing delivery vehicles tailored to drugs with low solubil-

ity or difficulties with in vitro and in vivo drug stability. 

Incorporating nanomaterials, such as carbon nanotubes 

(CNTs), into pharmaceutical formulations can result in 

enhanced biodistribution and pharmacokinetic proper-

ties, increasing the efficacy of a therapeutic product and 

potentially reducing unwanted side effects.1

In the past decade, CNTs have emerged as promis-

ing and potentially versatile materials in the f ield of 

nanomedicine.2–5 CNTs are seamless cylinders of graphene 

sheets which, depending on the number of individual 

graphene layers, can be classified as either single-walled 

or multi-walled CNTs. A significant research effort is cur-

rently being devoted to determining the feasibility of CNTs 

for use in the development of nanomedicines.2,6,7 However, 

cross-comparison of the CNT preparations used by many 

of these research groups is impeded by a persistent absence 

of standardized protocols for evaluating CNTs as excipi-

ents. While the underlying structure of CNTs is relatively 

simple, the materials themselves can differ tremendously 

depending on the synthesis technique and purification treat-

ments used during their manufacture.8–11 The combination 

of ill-defined standardization protocols and a high degree 

of variability in manufacturing and purification procedures 

complicate the determination and design of a single set of 

CNT standards.12

In recognition of the rapidly growing field of nano-

medicine, the US Food and Drug Administration (FDA) 

formed a Nanotechnology Task Force in 2006. The central 

aim of this task force was the determination of critical 

regulatory issues related to the approval of pharmaceuti-

cal products containing nanomaterials such as CNTs.13,14 

While no additional guidelines or regulatory require-

ments have been released for formulations containing 

nanoparticles, thorough physicochemical characterization 

of all constituents in these products is essential for FDA 

approval.15–17 Basic physicochemical characterization 

includes, but is not limited to, characterization of struc-

ture, composition, quality, purity, and reproducibility of 

nanoparticle synthesis.

In this work, we describe the characterization of several 

commercially sourced and in-house-produced single-

walled CNT and multi-walled CNT bulk samples with 

respect to their structure, purity, and solution properties 

using  thermogravimetric analysis (TGA), Raman spec-

troscopy, and ultraviolet-visible near infrared absorption 

spectroscopy. We observed that the overall quality of 

CNTs, including their reported purity, homogeneity, and 

solubility, differs significantly among the samples tested. 

These results clearly demonstrate that the physicochemi-

cal characteristics of CNTs, in particular their absorption 

properties, differ in regard to the CNT type and source, 

and even vary within individual samples. The progression 

of CNT-based nanomedicine formulations into a clinical 

setting will be dependent on enhanced characterization of 

their physicochemical and toxic properties as it relates to 

their use as bulk excipients.18–20

Materials and methods
Materials
1,2-dichlorobenzene (DCB), Chromasolv® 99% purity grade, 

was purchased from Sigma-Aldrich (Oakville, ON, Canada). 

 Single-walled CNTs and multi-walled CNTs with a manufac-

turer reported purity of .95% were purchased from several 

suppliers, ie, NanoIntegris Inc (Skokie, IL), Cheap Tubes Inc 

(Brattleboro, VT), NanoLab Inc (Newton, MA), and Unidym 

Inc (Sunnyvale, CA). See Table 1 for a list and nomenclature 

of all 18 CNT samples and their properties as provided by 

the suppliers.

Synthesis of multi-walled CNT  
samples 11 and 12
In-house multi-walled CNTs (denoted MWNT 11 and 

MWNT 12) were synthesized via a catalytic chemical vapor 

deposition procedure in an SSP-354 synthesizer (Nanotech 

Innovations, Betatek Inc, Toronto, ON, Canada) under inert gas 

(argon 1 L/minute) conditions. A precursor CNT solution (Nan-

otech Innovations) was injected at a flow rate of 7.5 mL/hour, 

and the product was deposited onto a quartz cylindrical pro-

cess tube. The process tube had two heating zones, ie, zone 1, 

set to 225°C, and zone 2, set to 700°C. Upon cooling of 

the process tube, the deposited multi-walled CNT material 

was collected from zone 2 of the tube by careful scraping. 

A vial (25 mL) of precursor solution yielded about 200 mg 

of multi-walled CNTs. This synthesized CNT material was 

used without any further purification.

Thermogravimetric analysis
TGA of CNT powders was obtained in duplicate or trip-

licate using a Q500 TGA instrument (TA Instruments, 

Grimsby, ON, Canada). Sample masses analyzed ranged 

between 1 mg and 2 mg of CNT, as determined by the 
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TGA instrument. Platinum pans with samples were first 

equilibrated to 30°C, and then heated to 800°C at a rate of 

10°C/minute. An  oxidizing environment was maintained 

inside the chamber by the introduction of air at a flow rate 

of 25 mL/minute.

raman spectroscopy
CNTs were characterized in their dry state using a Senterra 

Dispersive Raman Spectrometer (Bruker Optics, Milton, ON, 

Canada), with a 532 nm Nd:YAg laser at room temperature. 

The laser beam was focused onto the sample with a 

Table 1 Properties of commercial carbon nanotubes as provided by suppliers

Sample Outer  
diameter  
(nm)

Inner  
diameter  
(nm)

Length  
(μm)

Ash  
content  
(wt%)

Purity  
(wt%)

Chemical  
impurities

Product Manufacturing  
method

SWNT 1 1–2 0.8–1.6 5–30 ,1.5 .90 0.08% Al 
0.41% Cl 
2.91% Co 
0.29% S

Cheaptubes  
SWNT 11

CCVD

SWNT 2 1.5 N/A 1–5 N/A .95 0% NanoLab PD15L15S  
(batch 43010)

CVD

SWNT 3 0.8–1.2 N/A 0.1–1 ,5 .93 ,5% Fe Unidym HiPco  
(batch SP10911)

CVD-HiPco

SWNT 4 1.2–1.7 N/A 0.1–4 ∼0.5 .95 0.23% Ni 
0.05% Y 
0.06% Fe

NanoIntegris PureTubes 
(batch P09-562)

Arc discharge

SWNT 5 1.2–1.7 N/A 0.1–4 ∼1 .95 0.07% Ni 
0.38% Y 
0.72% Fe 
5.39% I

NanoIntegris IsoNanotubes-M 
(batch M09-910)

Arc discharge

SWNT 6 1.2–1.7 N/A 0.1–4 ∼1 .95 0.07% Ni 
0.38% Y 
0.72% Fe 
5.39% I

NanoIntegris IsoNanotubes-S 
(batch S09-248)

Arc discharge

MWNT 1 8–15 3–5 10–50 ,1.5 .95 0.03% Al 
0.09% Cl 
0.12% S

Cheaptubes  
MWCNT15

CCVD

MWNT 2 20–30 5–10 10–30 ,1.5 .95 0.45% Cl 
0.26% Fe 
0.94% Ni

Cheaptubes  
MWCNT30

CCVD

MWNT 3 30–50 5–10 10–20 ,1.5 .95 0.21% Cl 
0.56% Fe 
1.87% Ni 
0.02% S

Cheaptubes  
MWCNT40

CCVD

MWNT 4 50–80 5–10 10–20 ,1.5 .95 0.21% Cl 
0.56% Fe 
1.88% Ni 
0.03% S

Cheaptubes  
MWCNT50

CCVD

MWNT 5 10–20 N/A 5–20 N/A .95 Fe, S NanoLab PD15L520 
(batch 41610)

CVD

MWNT 6 15–45 N/A 1–5 N/A .95 Fe, S NanoLab PD30L15  
(batch 40710)

CVD

MWNT 7 15–45 N/A 5–20 N/A .95 Fe, S NanoLab PD30L520 
(batch 60310)

CVD

MWNT 8 10–20 N/A 1–5 N/A .95 Fe, S NanoLab PD15L15  
(batch 181808)

CVD

MWNT 9 20–40 N/A 1–5 N/A .95 Fe, S NanoLab BPD30L15 
(batch 41410)

CVD

MWNT 10 20–40 N/A 5–20 N/A .95 Fe, S NanoLab BPD30L520 
(batch 81409)

CVD

MWNT 11 Manufactured in-house Nanotech Innovations 
(batch JP)

CCVD

MWNT 12 Manufactured in-house Nanotech Innovations 
(batch MI)

CCVD

Abbreviations: CCVD, catalytic chemical vapor deposition; CVD, chemical vapor deposition; N/A, not available; MWNT, multi-walled carbon nanotubes; SWNT, single-walled carbon 
nanotubes.
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20× objective and data were collected from 70–3700 cm-1 

at a power of 20 mW. All spectral analyses were performed 

using OPUS 6.0 software (Bruker Optics). Spectra were taken 

from three separate regions of the powder sample and overall 

average spectra were generated.

Preparation of CNT dispersions
Stock CNT solutions (approximately 0.05 mg/10 mL) were 

prepared using an XP6U ultra microbalance (sensitive to 

0.1 µg) equipped with a universal antistatic kit (Mettler 

Toledo, Toronto, ON, Canada). Approximately 1 mL of 

DCB was added to a vial containing the bulk CNT mate-

rial, followed by analytical transfer to a 20 mL scintillation 

vial, rinsing to ensure complete transfer of all the CNT 

material with a final volume of 8.5 mL. The CNT disper-

sion was sonicated in a bath sonicator for 500 minutes 

and fully dispersed CNT solutions were transferred to a 

10 mL volumetric flask and the volume was brought up to 

10 mL with DCB.

Ultraviolet-visible near infrared 
spectrophotometry
All absorption studies were performed using a SpectraMax 

ultraviolet-visible near infrared spectrophotometer (Molecular 

Devices, Sunnyvale, CA). Scans in the range of 200–1000 nm 

were collected every 10 nm. All DCB CNT samples were 

analyzed immediately after preparation using acrylic 

96-well plates (Corning Inc, Corning, NY) with a 200 µL 

sample volume. For analysis, measurements were taken at a 

500 nm wavelength with a 0.596 cm path length. For each 

of the 18 CNT samples, five independent CNT DCB stock 

solutions, were prepared according to the procedure described 

above. Standard curves composed of seven concentration 

points were generated for each independent stock solution. 

From each stock solution, three independent sets of standards 

were prepared, resulting in a standard curve representing the 

average absorption intensity of 15 measurements.

Statistical evaluation
Raw absorption data and average extinction coefficients were 

evaluated using one-way analysis of variance followed by a 

Tukey multiple comparison post-test statistical analysis (with 

a 95% confidence interval) using GraphPad Prism software 

(v 4; GraphPad Software Inc, San Diego, CA).

Results and discussion
Evaluating the effectiveness of CNT-based pharmaceutical 

formulations in treated cells or organisms requires the 

consideration of several parameters related to CNT 

concentration and dose. These include properties, such as 

CNT dimensions, surface topology, structural defects, and 

extent of impurities present in the samples. Often these 

pharmaceutically relevant specifications are provided by the 

manufacturer, but there is no standardized testing methodol-

ogy or requirement for the reporting of these values or relative 

interbatch consistency. We feel this lack of reporting is most 

obvious when addressing the determination of extinction 

coefficients for CNT materials, which are required for the 

calculation of accurate CNT concentrations in suspension.

The aim of this study was to characterize CNT materials 

employing standard analytical techniques that are generally 

accessible in most nanomaterial  laboratories. We subjected 

CNT materials to analysis by TGA, Raman spectroscopy, and 

ultraviolet-visible near infrared absorption spectroscopy in 

order to assess their quality as pharmaceutical excipients effi-

ciently and to compare our values with manufacturer specifi-

cations. Techniques such as TGA provide information about 

the amount of impurity and residual metal catalyst remaining 

in synthesized CNTs, which is very important when address-

ing toxicological considerations.21 While TGA can also pro-

vide information regarding coarse CNT structure,22 it must 

be evaluated in combination with additional data obtained 

from Raman spectroscopy. Raman spectroscopy itself is 

an indispensable technique for the qualitative and struc-

tural characterization (extent of defect sites) of CNTs 

and, most specifically, the determination of single-walled 

CNT  diameter.23 Finally, the determination of extinction 

 coefficients for each CNT material using ultraviolet-visible 

near infrared absorption spectroscopy provides a critical 

parameter for reliable CNT concentration determination.

To facilitate a rational selection of candidates from the 

large variety of commercially available single-walled CNT 

and multi-walled CNT materials, we defined four basic 

pharmaceutically applicable requirements, ie, #50 nm outer 

diameter,24 relatively narrow diameter distribution, #20 µm 

length,4,24–28 and 95% by weight structural purity (samples 

contained at least 95% CNTs by weight). Based on the fulfill-

ment of these four basic parameters, we purchased 16 CNT 

materials from several manufacturers (Table 1), and to evalu-

ate noncommercial sources, we synthesized two multi-walled 

CNT samples using a commercially available instrument.

Thermogravimetric analysis
TGA yields measurements of sample weight change as a 

function of temperature under a controlled atmosphere. 

In air, amorphous carbon burns at 200°C–400°C while CNTs 
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decompose at far higher temperatures, typically 800°C.22 

Compositional purity of CNT samples can be assessed by 

quantification of the residual mass (ash content) remaining 

after heating the samples to 800°C.21 Figure 1 illustrates 

combustion characteristics, ash content, and oxidation tem-

perature for each of the single-walled CNT and multi-walled 

CNT materials we examined. Of the total 18 CNT samples 

used for this study, single-walled CNT samples 5 and 6 

(NanoIntegris Isonanotubes-S and -M) were not subjected to 

TGA because the required sample size was cost prohibitive. 

Experimentally determined residual ash content for single-

walled CNT samples 1, 3, and 4 as well as multi-walled CNT 

samples 1–4 can be compared with those reported by the 

corresponding suppliers (Figure 1, gray columns). As shown, 

single-walled CNT sample 3 was found to have a slightly 

lower ash content than reported, while single-walled CNT 

samples 1 and 4 and multi-walled CNT samples 1–4 yielded 

a higher value than claimed by the suppliers. In general, it 

was found that 10 of the 16 samples had an ash content ≤ 5%. 

The residual masses for multi-walled CNT samples 12, 10, 

9, 8, and 5 (NanoLab) and single-walled CNT sample 1 

(CheapTubes) were clearly higher than previously reported. 

Of special concern was single-walled CNT sample 1, which 

demonstrated an exceedingly high difference between the 

manufacturers claimed ash content of less than 1.5% and 

our measured ash content of 38%. As produced, multi-walled 

CNT samples 11 and 12 (synthesized in-house) showed a high 

oxidation temperature indicative of a relatively low density 

of defect sites and 5%–7.5% ash content (Figure 1).

In all multi-walled CNT samples, an initial mass loss 

of approximately 5% at temperatures from 200°C to 400°C 

was observed (data not shown). This loss can be attributed 

to decomposition of polyaromatic fragments and amorphous 

carbon species, suggesting that the purity of most samples was 

$95%.  However, single-walled CNT samples 1–4 showed a 

higher mass loss (about 10%) before the nanotube oxidation 

temperature,  corresponding to a lower fraction of CNT and 

higher amorphous carbon content in the total carbon material 

(data not shown).

Ash content generally represents the amount of oxidized 

metal catalyst remaining in CNT samples following their 

synthesis. Metal content in CNTs is considered an impurity 

that can significantly affect the pharmacological properties of 

these nanomaterials, potentially resulting in undesired toxic 

effects. It is important to note that the manufacturer/supplier 

statements about CNT purity can be misleading because they 

sometimes refer only to overall carbonaceous content and not 

to the actual nanotube content of the material.

Multi-walled CNTs generally decompose at tempera-

tures higher than those for single-walled CNTs due to their 

multilayered structure.21 Accordingly, we observed higher 

oxidation temperatures for all multi-walled CNT samples. 

In-house characterization 800
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Figure 1 Ash content and oxidation temperature of carbon nanotubes. The ash content and oxidation temperature for four single-walled carbon nanotubes and twelve multi-
walled carbon nanotubes was experimentally determined using thermogravimetric analysis. Ash content is illustrated in the histogram, and oxidation temperature is in the scatter 
plot. Experimentally determined thermogravimetric analysis values (black bars or dots) are contrasted to the manufacturers’ reported values, where available (gray bars or dots). 
Abbreviations: SWNT, single-walled carbon nanotubes; MWNT, multi-walled carbon nanotubes.
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However, CNT oxidation temperature can also be affected 

by structural defects in the nanotube sidewalls. A higher 

density of defect sites suggests that the structural quality of 

multi-walled CNT samples 1–4 is higher as compared with 

multi-walled CNT samples 5, 6, 9, and 10, which had lower 

oxidation temperatures. This observation can be explained 

by manufacturer claims that the latter two samples are 

bamboo-like multi-walled CNTs for which a higher number 

of structural defects is expected. The influence of the struc-

tural composition in the nanotube material on the oxidation 

temperature is also evident in the observation of higher 

than expected oxidation temperatures for single-walled 

CNT samples 4–6 (NanoIntegris materials, Figure 1) which 

may be a result of their high levels of purity and crystalline 

structure, as suggested by a very low I
D
/I

G
 ratio in the Raman 

analysis (Figure 2).29

raman spectroscopy
Raman spectroscopy is a common technique for the quali-

tative characterization of CNT structural parameters, par-

ticularly of single-walled CNTs. Raman spectroscopy can 

provide detailed information regarding both the purity of 

a CNT sample as well as structural information, including 

diameter distribution, electronic structure, and chirality of 

a single-walled CNT sample.23 Several scattering modes 

dominate the Raman spectrum of CNTs. These modes include 

the radial breathing mode (RBM) in the low wavenumber 

range (about 100–300 cm-1), which results from low-energy 

radial vibrations of carbon atoms in the nanotube lattice,30 

where all the carbon atoms are moving in-phase out of plane 

in the radial direction, the G-mode (about 1600 cm-1), a 

tangential vibrational mode characteristic to all graphitic 

materials, neighboring atoms move in opposite directions 

along the surface of the tube as in two dimensional graphite, 

the dispersive disorder-induced D-band (at wavenumbers 

below the G-mode) indicating the presence of defective 

sites in the single-walled CNT lattice, where C–C bonds are 

sp3-hybridized instead of the regular sp2 hybridization, and the 

G′-mode (at wavenumbers above the G-mode), representing 

a second-order related harmonic of the D-mode.31

Unfortunately, many of the characteristic properties that 

are present in the Raman spectra of single-walled CNTs are 

not as evident when studying multi-walled CNTs. As a result 

of the ensemble average over all inner tube diameters, the 

Raman signals are generally broadened and the RBM signal 

from large diameter multi-walled CNTs is usually too weak to 

be observed.31 For these samples, high resolution microscopic 

methods, such as transmission electron microscopy or atomic 

force microscopy, must be employed to obtain information 

about CNT diameters.

Raman spectra of CNT powders were used to evaluate 

the dimensions and structural purity of CNTs (Figure 2). 
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These spectra represent averaged data from 18 different dry 

CNT powders, obtained from excitation at a 532 nm laser 

wavelength. The spectra of single-walled CNT samples 

consistently demonstrated a much higher Raman intensity 

as compared with multi-walled CNT samples. The highest 

Raman intensities as well as lowest noise and sharpest features 

are observed for NanoIntegris samples (single-walled CNT 

samples 4–6) indicative of high nanotube quality and purity. 

Of notable exception, single-walled CNT sample 1 exhibited 

a very low overall Raman intensity and the spectral features 

compare more with those of the multi-walled CNT samples. 

This result suggests that this sample also contained a high frac-

tion of multi-walled CNTs, which agrees with our observation 

of lower structural purity from the TGA analysis (Figure 1).

Structural quality
The intensity ratio of the Raman D-band to G-band is often used 

to estimate the density of structural defects in CNTs, providing 

a relative measure for the structural quality of a sample.21,32 If 

both of these bands are similar in intensity, the density of struc-

tural defects is assumed to be high. Figure 3 illustrates the band 

intensity I
D
/I

G
 ratios for all CNT samples, where a lower ratio 

indicates fewer defects and therefore higher structural quality. 

We observed the highest structural quality in single-walled CNT 

samples 4, 5, and 6, all of which were obtained from NanoInte-

gris. We consistently observed a considerably higher I
D
/I

G
 ratio 

for all purchased multi-walled CNTs, which is indicative of a 

greater number of structural defects, most likely resulting from 

their growth in multiple graphite layers, whereas the in-house 

produced multi-walled CNT samples 11 and 12 had the low-

est I
D
/I

G
 ratio of all the multi-walled CNT samples, indicating 

generally higher structural quality. As  previously observed in 

the TGA (Figure 1) and Raman (Figure 2) data, single-walled 

CNT sample 1 exhibited a considerably higher defect density 

than any of the other single-walled CNT samples, leading to 

the conclusion that single-walled CNT sample 1 contains a 

higher fraction of multi-walled CNTs. For the bamboo-like 

multi-walled CNT samples 9 and 10, we expected a high num-

ber of surface defects due to the particular structure of these 

nanotubes, which is confirmed by their high I
D
/I

G
 ratio and 

slightly lower oxidation temperatures in TGA measurements. 

In all of the other CNT samples we examined, similar I
D
/I

G
 ratio 

correlations are not as evident.

Diameter estimation of single-walled CNT samples
Within the characteristic Raman modes of single-walled 

CNTs, the RBM is of special interest, because the  frequency 
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occur are strongly correlated with the tube diameter, d
t
, 

with ϖ
RBM 

= C1
/d

t 
+ C2

.31 The constants, C
1
 and C

2
, have 

to be determined experimentally because they depend on 

the synthesis process and aggregation state of individual 

single-walled CNTs.31,33 Values reported in literature for the 

parameter C
1
 vary among experiments, and any independent 

confirmation for values of C
2
 are lacking.34 Using the most 

pronounced RBM-related peaks in the single-walled CNT 

spectra, we have calculated the diameters of the single-walled 

CNTs for 15 different pairs of C
1
 and C

2
. The respective 

average diameter for each single-walled CNT sample is listed 

in Table 2 and is compared with the diameter reported by the 

suppliers. In addition to the C
1
 and C

2
 parameters obtained in 

our results, we also used the commonly adopted parameters 

for C
1
 = 223.5 cm-1 ⋅ nm and C

2
 = 12.5 cm-1, which have 

previously been reported for HiPco single-walled CNTs.35 

In our analysis, we found that the calculated average diam-

eter values for each of the CNT samples corresponded well 

with the dimensions reported by suppliers. Furthermore, 

using different sets of parameters for C
1
/C

2
 to calculate the 

diameters from the observed RBM peaks did not significantly 

affect our results.

Because Raman scattering in CNTs is a resonant process, 

only those CNTs for which one of the bandgaps is equal to 

the energy of the excitation laser contribute to the RBM in a 

spectrum.36 Since all known synthesis routes yield a range of 

electronic types31,33 that are distributed around a mean tube 

diameter,24 the excitation wavelength must be varied to obtain 

a full picture of all single-walled CNT diameters present in 

a sample.36 It is also well established that the bundling and 

aggregation of CNTs will result in shifted peak positions. 

Thus, the determination of single-walled CNT diameters 

from Raman spectra is afflicted with inaccuracies when not 

performed on well dispersed single-walled CNT suspensions. 

Consequently, results obtained from the dried CNT powders 

should be considered a first estimate of the dimensions of 

nanotubes present in an unknown sample and are only used 

to compare with manufacturer specifications.

Ultraviolet-visible near infrared 
absorption spectroscopy and standard 
CNT curves
Ultraviolet-visible near infrared spectroscopy is a standard 

analytical technique to determine the presence and concen-

tration of a material in solution. Using Beer–Lambert’s law 

(A = ε ⋅ c ⋅ l) and a calibration curve generated with known 

concentrations (c), the extinction coefficient (ε) can be 

determined from the slope of the curve, and a known path 

length (l).

Dispersion in DCB
As a consequence of the hydrophobic nature of graphene 

sidewalls and the strong π-π interactions between individual 

tubes, pristine CNTs have a strong tendency to aggregate and 

are practically insoluble in most solvents. Using CNTs for 

pharmaceutical applications raises a concern with regards 

to proper dispersion, and consequently accurate determina-

tion of concentration. Therefore, ultraviolet-visible near 

infrared absorbance will be highest only for maximally 

exfoliated CNTs.37 If dispersed CNTs reaggregate over the 

course of an experiment, absorbance values will gradually 

decrease affecting the accuracy of the experiment. It has 

previously been demonstrated that single-walled CNTs show 

the highest solubility in organic solvents such as DCB, and 

in order to maximize dispersability of CNTs, we chose this 

solvent for our ultraviolet-visible near infrared absorption 

experiments.38

We have used a specific strategy to obtain well dispersed 

CNTs in the organic solvent DCB, avoiding reaggregation 

and ensuring proper determination of absorbance values. 

In order to achieve a CNT concentration in DCB below the 

solubility limit in our stock solution, a very small amount of 

Table 2 Comparison of SWNT diameters as reported by manufacturer and determined experimentally through raman spectroscopy

CNT sample Reported  
diameter (nm)

ϖRBM (cm-1) Overall average diameter (nm)  
using different published  
parameters for C1 and C2

28

Determined  
diameter (nm) with 
C1 = 223.5 cm-1 ⋅ nm,  
C2 = 12.5 cm-1

SWNT 1 1–2 154.17 1.55 ± 0.13 1.58
SWNT 2 1.5 139.51 1.72 ± 0.15 1.76
SWNT 3 0.8–1.2 272.49 0.87 ± 0.06 0.86
SWNT 4 1.2–1.7 167.37 1.43 ± 0.12 1.44
SWNT 5 1.2–1.7 171.16 1.39 ± 0.11 1.41
SWNT 6 1.2–1.7 156.12 1.53 ± 0.13 1.56

Abbreviations: CNT, carbon nanotube; SWNT, single-walled carbon nanotubes; ϖRBM, frequency of radial vibrations; C1, C2, constants for ϖRBM = C1/dt + C2.
25
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approximately 50 µg CNT material was used for dispersion. 

The stock CNT DCB solutions had a final concentration of 

approximately 0.05 mg/10 mL and were sonicated in a bath 

sonicator while monitoring the absorption at a wavelength 

of 500 nm. Using this method, an optimal sonication time 

of 8 hours was established, which ensured that a maximum 

ultraviolet-visible near infrared absorbance value was 

measured.

Extinction coefficients of CNTs in DCB
From each of the stock CNT solutions, seven independent 

standards were prepared in triplicate and measured using a 

96-well plate. Figure 4 shows the average standard curves for 

all of the 18 CNT samples. Each of the seven data points in 

these standard curves represents an average of 15  independent 

measurements and shows linearity, with R2 values between 

0.9902 and 0.9999. Table 3 lists the average extinction coef-

ficients for single-walled CNTs and multi-walled CNTs, 

which range between 24.9 and 54.2 mL·cm-1·mg-1 and 49.0 

and 68.3 mL·cm-1·mg-1, respectively.

We hypothesized that experimentally determined extinc-

tion coefficients can differ greatly between different types of 

CNTs (single-walled CNTs vs multi-walled CNTs), CNTs 

with different physical properties (outer diameter, length, and 

purity) and CNTs synthesized using various manufacturing 

methods. This hypothesis was confirmed when we calculated 

the statistical deviation in the measured extinction coefficients 

for all of the CNT samples. Extinction coefficients for single-

walled CNT samples 1 and 2 were significantly different from 

all other single-walled CNTs (P , 0.05) and multi-walled 

CNTs (P , 0.001), but were not significantly different from 

each other. The extinction coefficient for single-walled CNT 

sample 3 (HiPco) was different from most of the multi-walled 

CNT samples (3, 4, 6, 7, 8, and 9, P , 0.01). Among the 

multi-walled CNTs, sample 1 was significantly different from 

multi-walled CNT samples 4, 5, 6, and 8, while multi-walled 

CNT sample 6 differed significantly from all six single-walled 

CNTs and nine of the MWNTs (P , 0.05). Interestingly, we 

observed that the extinction coefficient for NanoLab multi-

walled CNT sample 6 was significantly different when com-

pared with multi-walled CNT sample 2, which had a similar 

diameter of 30 nm (P , 0.001), but did not show significant 

differences when compared with multi-walled CNT samples 

3 and 4 (Cheaptubes, diameters 30–80 nm). Other significant 

differences in the extinction coefficients included multi-walled 

CNT sample 1 when compared with multi-walled CNT 

samples 4 and 8 (P , 0.05), and multi-walled CNT sample 

5 versus multi-walled CNT sample 8 (P , 0.05), which are 

from the same manufacturer, and have the same reported 

outer diameter.

The results presented in Figure 4 also clearly demonstrate 

that absorbance values can differ significantly when compar-

ing single-walled CNTs with multi-walled CNTs and when 

comparing different manufacturing sources of the same types 

of CNTs. Statistical analysis indicated that absorbance values 

for single-walled CNT samples 1 and 2 were significantly dif-

ferent from the other single-walled CNT samples (P , 0.001) 

and all other multi-walled CNT samples (P , 0.01). The 

difference between the 12 multi-walled CNT samples was 

not significant (P . 0.05) within the full concentration range, 
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Figure 4 Experimentally determined average standard curves of carbon nanotube dispersions in 1,2-dichlorobenzene. Absorbance values for a seven-point dilution series of 
carbon nanotube samples was measured using an ultraviolet-visible near infrared spectrophotometer at a wavelength of 500 nm. Average absorbance values for (A) the six 
single-walled carbon nanotubes (P , 0.05), (B) six NanoLab multi-walled carbon nanotubes (P . 0.05) and (C) four Cheaptubes multi-walled carbon nanotubes (P . 0.05), 
and our two inhouse multi-walled carbon nanotubes (P . 0.05). 
Note: P values were calculated using one-way analysis of variance with a Tukey multiple comparison post-test for n = 15 at a 95% confidence value. 
Abbreviations: SWNT, single-walled carbon nanotubes; MWNT, multi-walled carbon nanotubes.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

411

Pharmaceutical characterization of carbon nanotubes

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2012:7

but at the higher concentrations (5 µg/mL), multi-walled CNT 

samples 5, 6, and 8 showed differences from the other multi-

walled CNTs. This could indicate that during preparation of 

the higher concentration samples, taking larger volumes from 

the original stock solutions can introduce increased error if the 

sample is not completely homogeneous. This further implies 

that when analyzing unknown CNT samples these types of 

transfer errors can lead to an overestimation or underestima-

tion of CNT concentrations by up to 30%–40%. This is illus-

trated by the standard curves presented in Figure 5A and B for 

two representative samples, ie, multi-walled CNT samples 2 

and 3, which have similar specifications for synthetic method 

and purification and are from the same manufacturer (Cheap-

tubes). The relative standard deviation on precision (repeat-

ability) for the full concentration range in multi-walled CNT 

sample 2 is ,3.5%, whereas in multi-walled CNT sample 

3 it is ,11.4%. According to TGA analysis (Figure 1) and 

Raman spectra (Figure 2), both samples are equal in purity 

and structural quality. However, while multi-walled CNT 

sample 2 emerges as a rather homogenous material with an 

average extinction coefficient of 51.4 ± 2.9 mL·cm-1·mg-1 

relating to a percentage deviation of 5.6%, multi-walled 

CNT sample 3 with a similar extinction coefficient of 

58.0 ± 7.3 mL·cm-1·mg-1 shows higher heterogeneity with 

12.6% deviation. The coefficient of variation values for the 

average extinction coefficients in Table 3 (ranging between 

4% and 18%) are partly an indication of the variability in 

sampling due to heterogeneity within each CNT material. The 

heterogeneity of each CNT sample is important when con-

sidering the pharmaceutical quality of a CNT sample. Once 

acceptable limits have been established, some CNT samples 

would have to be rated unsuitable because the material may 

be too heterogeneous for proper evaluation.

Variability in ultraviolet-visible near infrared absor-

bance and hence the experimental extinction coefficient, 

can also originate from different structural compositions, 

physicochemical properties, and impurities in the final CNT 

material. These differences are a consequence of synthesis 

procedures and purification methods. Looking closer at the 

NanoIntegris single-walled CNTs, samples 4 (Puretubes), 

5 (Isonanotubes-M), and 6 (Isonanotubes-S), we can observe 

a slight but clear influence of electronic type on the extinc-

tion coefficient (Figure 6). Depending on the chiral vector, a 

single-walled CNT can be either metallic or semiconducting, 

and as a consequence, a single-walled CNT sample normally 

consists of approximately one-third metallic and two-thirds 

semiconducting nanotubes.39 Single-walled CNT samples 5 

and 6 are purified CNTs according to their electronic type, 

with the former being metallic and the latter semiconduct-

ing single-walled CNTs. Single-walled CNT sample 4 is the 

nanotube material prior to separation according to these two 

electronic types. The ratio of 1:2 of metallic to semiconduct-

ing single-walled CNTs in single-walled CNT sample 4 is 

well reflected in the standard curves presented in Figure 6. 

The standard curve of single-walled CNT sample 4 is 

an exact superposition of the standard curves of single-

walled CNT samples 5 and 6 in a ratio of 1:2, respectively. 

 Correspondingly, the average extinction coefficients (Table 3) 

of single-walled CNT sample 4 can be obtained by simple 

weighed addition of single-walled CNT samples 5 and 6 with 

51.7 mL·cm-1·mg-1 ⋅ 1/3 + 54.2 mL·cm-1·mg-1 ⋅ 2/3 equals to 

53.4 mL·cm-1·mg-1 (with the experimental value for single-

walled CNT sample 4 being 53.1 ± 2.9mL·cm-1·mg-1).

When attempting to compare extinction coefficients deter-

mined here with those found in the literature, we discovered 

Table 3 Average extinction coefficients (εave, with corresponding 
variation) of carbon nanotubes in 1,2-dichlorobenzene

Sample εave ± SD (n = 5)  
(mL ⋅ cm-1 ⋅ mg-1)

CV%

SWNT 1 24.9 ± 4.5 18.1
SWNT 2 30.5 ± 2.3 7.5
SWNT 3 43.8 ± 3.1 7.1
SWNT 4 53.1 ± 2.9 5.5
SWTN 5 51.7 ± 6.6 12.8
SWTN 6 54.2 ± 3.1 5.7
MWNT 1 49.0 ± 5.8 11.8
MWNT 2 51.4 ± 2.9 5.6
MWNT 3 58.0 ± 7.3 12.6
MWNT 4 60.9 ± 8.4 13.8
MWNT 5 49.4 ± 3.2 6.5
MWNT 6 68.3 ± 2.8 4.1
MWNT 7 56.3 ± 3.9 6.9
MWNT 8 61.3 ± 6.9 11.3
MWNT 9 56.1 ± 5.6 10.0
MWNT 10 53.5 ± 6.4 12.0
MWNT 11 55.3 ± 5.8 10.5
MWNT 12 53.0 ± 4.1 7.7

Notes: Using the Beer–Lambert Law A = ε ⋅ c ⋅ l, where ultraviolet-visible absorbance 
at 500 nm (A500) was experimentally determined, concentration (c) represents the 
stock solution concentrations used in the standard curves, and pathlength (l) was 0.596 
cm. [Statistical analysis was performed by one-way analysis of variance followed by a 
Tukey multiple comparison post-test, significant results: SWNT 1 versus SWNT 3–6 
(P , 0.001) and versus MWNT 1–12 (P , 0.001); SWNT 2 versus SWNT 3–6 (P , 
0.05) and versus MWNT 1–12 (P , 0.001); SWNT 3 versus MWNT 3, 4, and 6–9 
(P , 0.05); MWNT 6 versus SWNT 1–6 (P , 0.01) and versus MWNT 1, 2, 5, and 
7–12 (P , 0.05); MWNT 1 versus MWNT 4 and 8 (P , 0.05), MWNT 5 versus 
MWNT 8 (P , 0.05)].
Abbreviations: CV, coefficient of variation; MWNT, multi-walled carbon nanotubes; 
SWNT, single-walled carbon nanotubes; SD, standard deviation.
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that there is a general misconception regarding the validity 

of previously calculated values, and many research groups 

incorrectly apply these extinction coefficients to their specific 

nanotube system. For example, the extinction coefficient for 

HiPco single-walled CNT in DCB was calculated by Bahr 

et al to be 28.6 mL·cm-1·mg-1 at 500 nm,38 as compared with 

our experimentally determined value of 43.8 mL·cm-1·mg-1 for 

single-walled CNTs also produced by the HiPco method but by 

a different manufacturer. The extinction coefficient value pub-

lished by Bahr et al38 was subsequently used by three different 

groups to analyze single-walled CNT dispersions in micelles,40 

single-walled CNTs in aqueous solutions,41 and multi-walled 

CNTs dispersed in surfactants.42 Since the different diameter, 

purity, chirality type, and solvent effects may alter the value 

of the extinction coefficient significantly, this value must be 

determined for each CNT material exclusively.
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Figure 6 Experimental standard curves of single-walled carbon nanotube sample 4–6 dispersions in 1,2-dichlorobenzene. Experimentally determined seven-point average 
standard curves of NanoIntegris single-walled carbon nanotube samples 4–6 (P . 0.05) were determined using an ultraviolet-visible near infrared spectrophotometer at a 
wavelength of 500 nm. The inset shows the standard curve at higher concentration for better comparison. The standard curve of single-walled carbon nanotube sample 4 
is an exact superposition of the standard curves of single-walled carbon nanotube samples 5 and 6 in a ratio of 1:2, respectively (representing the structural composition of 
single-walled carbon nanotube sample 4). 
Note: P values were calculated using one-way analysis of variance with a Tukey multiple comparison post-test for n = 15 at a 95% confidence value. 
Abbreviations: SWNT, single-walled carbon nanotubes; MWNT, multi-walled carbon nanotubes.
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Conclusion
In this study, TGA, Raman spectroscopy, and ultraviolet-

visible near infrared absorbance spectroscopy were used to 

characterize and compare sixteen different commercially 

available and two noncommercial CNT materials. Our aim 

was to assess the level of purity and quality of these materials 

for potential incorporation in pharmaceutical formulations. 

Of particular interest, we determined extinction coefficients 

for single-walled CNT and multi-walled CNT dispersions in 

DCB as a standard solvent.

In summary, we found that each CNT raw material requires 

a thorough pharmaceutical workup to be valid and accurate 

before it can be used in in vitro or in vivo  experiments. 

Ultraviolet-visible near infrared absorbance analysis identi-

fied a significant variation in extinction coefficients depend-

ing on the source, CNT type, single-walled CNT electronic 

type, and manufacturing process. These results clearly 

demonstrated that there is no one single extinction coefficient 

that can be universally applied to all types of CNTs, and it is 

critical to use the appropriate extinction coefficient for each 

CNT material to ensure reliable concentration determination. 

Furthermore, we also observed that some CNT materials 

exhibited considerable inhomogeneities, resulting in signifi-

cant variations in the extinction coefficients calculated from 

the same CNT batch.

Because CNTs from different sources can be synthesized 

using a variety of techniques, all of which are known to yield 

fairly inhomogeneous materials that contain many impuri-

ties, their characterization proves to be a persistent hurdle in 

the identification and selection of approved standards. It is 

worth mentioning that, for now, most efforts are dedicated to 

single-walled CNT standards, and the first National Institute 

of Standards and Technology (NIST)-certified single-walled 

CNT material is anticipated to be available at the earliest in 

2012 (B Simard, personal communication). Several organiza-

tions such as NIST43 and the International Organization for 

Standardization,12 as well as other research groups,44 have been 

working on the development of a compendium of standard-

ized measurements and protocols for the characterization of 

single-walled CNTs and multi-walled CNTs. In addition to 

the analytical techniques presented here, the recommended 

techniques for CNT characterization also include transmission 

electron microscopy, scanning electron microscopy, energy-

dispersive X-ray analysis, near infrared photoluminescence 

spectroscopy, evolved gas analysis–gas chromatography–mass 

spectrometry, measurement of moisture content, ash content, 

metallic constituents, volatile content, polyaromatic hydro-

carbon content, and carbon materials.12

While time-consuming, rigorous physicochemical 

characterization is necessary to obtain well defined CNTs, 

especially in the scope of biomedical and pharmaceutical 

applications. The quality of CNT materials used in experi-

ments to assess their effects in biological systems is clearly 

important. The specific degree of chemical and defined 

structural purity needs to be considered carefully to obtain 

relevant results. The knowledge of accurate concentration 

values is essential to reproducible dosing and measurement 

of observed effects. The overall level of accuracy needed for 

all physicochemical parameters mentioned will depend on 

the width of an excipient’s function-toxicity window. This 

is a concept similar to a drug-therapeutic window, which 

defines the concentration range for an active ingredient that 

is expected to be clinically effective without unwanted side 

effects. There is an urgent need for the definition of standard-

ized guidelines for pharmaceutical grade CNTs, to encourage 

and enable manufacturers to offer high quality CNT materials 

that are suitable for incorporation in pharmaceuticals and 

other medicinal products.
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