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Abstract: Mild to severe traumatic brain injuries have lasting effects on everyday functioning. 

Issues relating to sensory problems are often overlooked or not addressed until well after the onset 

of the injury. In particular, vision problems related to ambient vision and the magnocellular pathway 

often result in posttrauma vision syndrome or visual midline shift syndrome. Symptoms from these 

syndromes are not restricted to the visual domain. Patients commonly experience proprioceptive, 

kinesthetic, vestibular, cognitive, and language problems. Neurooptometric rehabilitation often 

entails the use of corrective lenses, prisms, and binasal occlusion to accommodate the unstable 

magnocellular system. However, little is known regarding the neural mechanisms engaged during 

neurooptometric rehabilitation, nor how these mechanisms impact other domains. Event-related 

potentials from noninvasive electrophysiological recordings can be used to assess rehabilitation 

progress in patients. In this case report, high-density visual event-related potentials were recorded 

from one patient with posttrauma vision syndrome and secondary visual midline shift syndrome 

during a pattern reversal task, both with and without prisms. Results indicate that two factors 

occurring during the end portion of the P148  component (168–256 milliseconds poststimulus 

onset) map onto two separate neural systems that were engaged with and without neurooptometric 

rehabilitation. Without prisms, neural sources within somatosensory, language, and executive 

brain regions engage inefficient magnocellular system processing. However, when corrective 

prisms were worn, primary visual areas were appropriately engaged. The impact of using early 

neurooptometric rehabilitation for posttrauma vision syndrome, visual midline shift syndrome, 

and other similar subtle vision disorders to support neural reorganization is discussed.

Keywords: traumatic brain injury, posttrauma vision syndrome, visual midline shift syndrome, 

visual event-related potentials, source localization, neural reorganization

Introduction
Each year an average of 1.4 million individuals in the United States suffer a traumatic 

brain injury (TBI). TBI is often caused by a physical blow to the head or whiplash 

that results in an abrupt, trauma-induced physiological disruption of brain function.1 

Changes in rotational forces and acceleration-deceleration can damage brain tissue 

at both the neuronal and axonal levels.2,3 Recent innovations using neuroimaging 

techniques such as diffusion tensor imaging can identify injury to white matter tracts.4 

However, even in moderate to severe cases of TBI, neuroradiological examinations 

can appear normal despite persistent behavioral symptoms. Frequently, subtle sensory 

problems are often overlooked as contributors to poor performance.5–7

Vision problems are among the most common and pervasive TBI symptoms.8 Two 

examples of visual dysfunction related to TBI are posttrauma vision syndrome (PTVS) 
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and visual midline shift syndrome (VMSS).9,10 PTVS is 

characterized by exotropia, exophoria, convergence and 

accommodative insufficiency, oculomotor dysfunction, and 

increased myopia.10 Patients often report symptoms such 

as diplopia, blurred near vision, eye strain (asthenopia), 

 sensitivity to light (photophobia), and perceived movement of 

print or stationary objects. Related more to balance problems, 

VMSS is characterized by hemiplegia, hemiparesis, flexion, 

extension, and side neglect. These patients report walls 

appearing to move and tilted floors. The patient’s center of 

gravity will be shifted, often resulting in the patient leaning 

away from the affected side.

Both syndromes occur frequently following TBI and 

reflect widespread dysfunction across vision and other sen-

sory domains. One possible explanation is that the visual 

system heavily influences other systems. There certainly 

is ample evidence of a connection between the visual and 

vestibular systems.11,12 One primary function of the vestibular 

system is to provide compensatory eye movement to corre-

spond with head motion (eg, ocular reflex). The two systems 

are yoked together for stabilization of the visual scene while 

the head is in motion. Considering proprioceptive and kinetic 

systems, Padula and colleagues13 suggested that vision is 

the primary determinate of the visual egocenter (eg, visual 

midline), noting that yoked prisms successfully corrected 

posture and balance in patients with VMSS.

Impairment to the magnocellular visual pathway may 

lead to the symptoms evident in PTVS, VMSS, and other 

TBI-related visual dysfunctions. The magnocellular ambi-

ent pathway establishes a visual midline that matches other 

sensory inputs. Without the proper signals, interference can 

occur between the incorrect concept of the visual midline 

and sensory-motor functions, resulting in the multimodal 

symptoms of PTVS and VMSS (eg, spatial disorientation, 

impaired balance and posture, and poor visual memory and 

attention). Dysfunction within the ambient system is often 

best diagnosed using visually evoked potentials. This tech-

nique uses three electrodes placed on the scalp above the 

occipital and posterior frontal midline to detect changes in 

the P100 component while patients observe a checkerboard 

reversal task with and without corrective prisms and lenses. 

In PTVS, when prisms are introduced, the amplitude of the 

P100 component of visually evoked potentials increases. 

One interpretation is that the prisms are enhancing organiza-

tion and promoting feed-forward spatial information to the 

primary occipital visual regions.9

Despite the ability to use electrophysiological recordings 

for the assessment of cognitive impairments and evaluate 

prognosis,14–16 little is known about the mechanisms of 

rehabilitation. Evidence from severely impaired TBI patients 

during a pattern reversal task suggests that the distributed 

visual networks desynchronize across brain regions.17 While 

corrective prisms, lenses, and sectoral or binasal occlusion 

often lead to marked functional improvements in TBI and 

stroke patients,18,19 the neural mechanisms engaged in such 

changes remain unknown.

The purpose of the present case study was to better under-

stand how neurooptometric rehabilitation following TBI 

improves neural functioning. Visual event-related potentials 

(VERPs) were recorded from a patient with PTVS and second-

ary VMSS. She completed a pattern reversal VERP task under 

two different conditions: (1) with normal lenses (no prisms 

condition), and (2) with corrective prisms. A recent study uti-

lizing electroencephalography and functional magnetic reso-

nance imaging indicated that the early N75/P85 component 

elicited by the pattern reversal task was generated from primary 

visual cortex.20 Although studies have investigated behavioral 

changes with use of prisms in patients following a cerebrovas-

cular accident,13 to date no studies utilized neuroimaging to 

determine if prisms engage the same neural mechanisms during 

the pattern reversal task. The patient contacted the research 

team after learning about ongoing work involving TBI. The 

University of Lincoln-Nebraska’s Institutional Review Board 

approved this study, and the patient provided informed consent 

before participating.

Case presentation
A female, aged 44 years, was referred to a local neurooptom-

etrist following a head injury 11 months before VERP testing. 

Prior to TBI, the patient exhibited no signs of neurological 

impairment or major health concerns, aside from a shoulder 

and clavicle injury. Her head injury occurred when the patient 

fell in the shower, striking her head on a toilet, bathtub, and 

floor tiles in rapid succession. An undetermined period of 

unconsciousness and paralysis immediately  followed, after 

which the patient was able to stand and walk with some 

hesitancy that improved over a brief time. She did not 

seek immediate medical attention, but after experiencing 

increasingly severe headaches over several hours sought 

out an urgent care facility that subsequently diagnosed her 

with a closed head injury. Continued symptoms, including 

 headache, dizziness, short-term memory loss, frequent falls 

due to poor balance and depth perception, and nausea, left her 

unable to return to work. Magnetic resonance imaging and 

computed tomography scans were reported as unremarkable. 

Headaches described as throbbing and stinging ranged from 
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moderate (6/10) to severe (9.9/10) on the Migraine Disability 

Assessment.21 She localized this pain to the left frontal, bilat-

eral occipital, and occasionally bilateral temporal regions. 

She reported diminished sleep, averaging approximately 

4 hours a night. Visual problems consisted of phonophobia, 

blurred vision, sensitivity to bright light (photophobia), visual 

memory problems, and occasional episodes of diplopia. She 

also reported extreme difficulty with reading and reported 

seeing words “run off the page.” Aggressive physical therapy, 

occupational therapy, and speech therapy were sought. 

H owever, many of the symptoms persisted.

Prior to the injury, the patient was active in her career and 

known for abilities as an expert ambidextrous marksman. 

Upon retrospective completion of the Edinburgh Ha ndedness 

Inventory22 and subsequent verification by her husband, before 

the injury she scored as ambidextrous with slight left-handed 

tendencies (mean laterality quotient = −0.25, where +1.00 indi-

cates that all tasks are performed exclusively with the right 

hand and −1.00 indicates that all tasks are performed only with 

the left hand). On the day of VERP testing, the Edinburgh 

Handedness Inventory indicated that she was primarily left-

handed due to her inability to execute fine motor movements 

using her right hand (mean laterality quotient = −0.75).

Her neurooptometrist confirmed a diagnosis of PTVS and 

secondary VMSS. These results were verified by visually 

evoked potentials test and Clinical Test of Sensory Interaction 

and Balance (Table 1). In addition, examination indicated a 

two-prism diopter left hypertropia secondary to partial paresis 

of the third cranial nerve. Hyperacusis was also diagnosed. 

Therapeutic prisms, both eyes (1 diopter in), including midpu-

pil binasal occlusion in a clipon frame with additional correc-

tive refractive lenses were prescribed right eye (3/4 diopter up), 

left eye (3/4 diopter down) for diplopia. After a subsequent fall, 

prism strength was changed to 3 diopters up and in (45 degrees) 

right eye and 3 diopters up and out (45 degrees) left eye with 

continued binasal occlusion (clipon frames). This prescription 

was used during VERP testing.

Visual acuity
Five months prior to VERP session, the patient’s best cor-

rected visual acuity initially tested as 20/100 (left eye), 20/40 

(right eye), and 20/70 (both eyes). Corrected vision with 

lenses and prisms was 20/20 (left eye), 20/20 (right eye), 

and 20/15 (both eyes).

Overall visual perceptual ability
The patient completed the Motor-Free Visual Perception 

Test, Third Edition23 twice on the same day 3 months prior 

to VERP testing. First, without corrective prisms, the patient 

scored a standard score of ,55 (raw score = 33, ,1% rank). 

The patient then completed the task with corrective prisms 

and scored a standard score of 137 (raw score = 63, 99% 

rank). These results corresponded to previous tests suggest-

ing that her vision functions and visual-perceptual abilities 

were positively correlated.24

Speech and language
Without prisms, the patient’s speech was highly affected. 

A pronounced stutter occurred during virtually every vocal-

ization, with five to eight rapid repetitions of initial syllables 

before final word completion. However, the patient appeared 

largely unaware of the stutter. Language comprehension was 

not affected, although the patient noted her own struggle to 

recall the correct words. Within 3 minutes of putting the prisms 

back on, her speech fluency improved markedly although the 

stutter did not disappear entirely (∼80% clear speech).

Balance and walking
Without the prisms, the patient was assisted to the VERP test-

ing room in a wheelchair due to her inability to walk without 

periodically falling. At the end of the test session, wearing the 

Table 1 Positive diagnostic results for posttrauma vision 
syndrome and visual midline shift syndrome

No prisms With prisms

Visual evoked response
Low-density checkerboard
 Amplitude 4.92 μV 13.2 μV
 Latency 40 milliseconds 16.66 milliseconds
High-density checkerboard
 Amplitude 4.38 μV 9.95 μV
 Latency 88.33 milliseconds 21.66 milliseconds
Modified CTSIB
COg alignment Right, 34% Front, 20%
Mean COg sway velocity
 Firm stand-eyes open 2 degrees/second 0.4 degrees/second
 Firm stand-eyes closed 2.5 degrees/second 0.6 degrees/second
 Foam stand-eyes open 2.7 degrees/second 1.5 degrees/second
 Foam stand-eyes closed – 2.4 degrees/second

Notes: Patient was unable to complete the foam stand-eyes closed in no prisms 
condition. During the visual evoked response diagnostic test, both low-and high-
density checkerboards were presented while visual event-related potentials were 
recorded. With prisms, amplitudes were approximately 8 μV higher and occurred 
25 milliseconds faster than the no prisms condition. These results are consistent 
with positive diagnosis for posttrauma vision syndrome. During the modified Clinical 
Test of Sensory Interaction and Balance, the patient stood on either a firm or foam 
platform and was asked to maintain her balance with her eyes open or closed. 
Results indicate substantially less sway velocity with prisms compared to the no 
prisms condition. Altogether, center of gravity alignment decreased from 34% in 
the no prisms condition to 20% in the with prisms condition. These results are 
consistent with positive diagnosis for visual midline shift syndrome.
Abbreviations: COg, center of gravity; CTSiB, Clinical Test of Sensory interaction 
of Balance.
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Figure 1 Epoch-averaged visual event-related potential recordings from both conditions for 256-electrode high-density array. The front of the head is at the top of each 
sphere with the left hemisphere on the left. Positive voltage is displayed up. Time course is 800 milliseconds from stimuli onset. The amplitudes of visual event-related 
potentials for the no prisms condition (A) are much smaller than for the with prisms condition (B). in addition, the visual event-related potentials appear much better 
organized for the with prisms condition across the scalp, particularly in frontal and centroparietal regions. 
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prisms, she stood up from the chair without help and walked 

down a narrow hall with a normal gait to use a hairdryer.

Behavior
Researchers observed drastic differences in mood with and 

without the prisms. Without prisms, her demeanor appeared 

to be anxious, she moved restlessly in her chair, and her eyes 

rapidly darted from side-to-side as she observed items in front 

of her. During the electrode net application, she sat silent and 

answered direct questions with minimal vocalizations. When she 

wore the prisms, her behavior changed abruptly. She no longer 

appeared anxious, her gaze was markedly steady, and she initi-

ated friendly conversation and laughed. Altogether, she appeared 

more relaxed throughout the remainder of the session.

Method
Testing was conducted using a 256 silver/silver chloride high-

density electrode array to record VERPs using Net Station® 

4.4.2 software (Electric Geodesics Inc, Eugene, OR). In a 

within-subject design, the patient completed the first run of 

the VERP checkerboard pattern reversal task with corrective 

lenses that did not contain the prisms. For complete details of 

stimuli and procedures, see the Supplementary Data section. 

Next, prisms were attached as a clipon to the patient’s lenses 

while she remained in the electrode net during a 30-minute 

break between tests. The purpose of this break was to allow 

ample time for the patient to visually adjust to the new prisms. 

Once this interval ended, a second presentation of the VERP 

task occurred.

Results
After preprocessing the raw signal (see Supplemental 

Data section), 69 single-trial epochs were included in 

the analysis. VERP trial data averaged across all epochs 

are displayed in Figure 1 for both the no prisms and with 

prisms conditions. Next, a series of three distinct analysis 

approaches were used to analyze the VERP data obtained 

from the patient: (1) a principal components analysis – 

analysis of variance (ANOVA) procedure, (2) a dynamic 

channel selection strategy, and (3) a neural source analysis. 

These three approaches and their results are described in 

order below.

Principal components analysis – ANOVA
In this procedure, the principal components analysis serves 

as a multivariate, independent method to extract temporal 

components or factors that accounted for the maximum vari-

ability in the single-trial epochs. The output of this analysis 

serves as the dependent measures in an ANOVA procedure 

that assessed the statistical significance of these factors 

between conditions. In this way, temporal factors associ-

ated with particular time windows of the VERP were 

derived that significantly differed between conditions 

(eg, no prisms  versus with prisms).25

All single-trial epochs were submitted to the tempo-

ral principal components analysis in which the 200 time 

points (sampled at 4 milliseconds intervals) were treated as 

 variables and individual VERP trials were treated as cases. 

Factors were orthogonally rotated using varimax rotation. 

After applying an eigenvalue greater than 1.0 criterion,26 nine 

factors that accounted for 92.12% of the total variability in 

the data set were identified for subsequent analyses. Bartlett 

component scores from the principal components analysis 

were submitted to an ANOVA to identify the sources of vari-

ability in the VERPs. The ANOVA design included repeated 

measures for condition (two: no prisms, with prisms) and 
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Figure 2 grand average of visual event-related potentials of all trials for both conditions. Temporal factor 6 and factor 9 are displayed in gray boxes from 168–256 
milliseconds, highlighting the end portion of the P148 component. Calibration marker is −0.1 μV to 0.15 μV with positive voltage up. Time course is 800 milliseconds from 
stimuli onset. 
Abbreviation: ms, milliseconds.
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Figure 3 Scalp topographies for temporal factor 6 (168–228 milliseconds from 
stimuli onset) and factor 9 (208–228 milliseconds from stimuli onset). Anterior scalp 
locations appear at the top of the sphere. Posterior scalp locations appear at the 
bottom of the sphere. Color map ranges from peak positivity (red; 3.32 μV) to peak 
negativity (blue; −3.35 μV). Bidirectional arrows (A) and (B) highlight peak positivity 
that appear in the with prisms condition 30–45 milliseconds before the no prisms 
condition. Arrow (C) indicates a peak positivity appearing at the end of the time 
frame in with prisms condition, but not the no prisms condition. 
Abbreviation: ms, milliseconds.

electrode scalp regions (18: left orbital, right orbital, left 

inferior frontal, right inferior frontal, left prefrontal, right 

prefrontal, left inferior temporal, right inferior temporal, 

left temporal, right temporal, left temporoparietal, right tem-

poroparietal, left parietal, right parietal, left inferior occipital, 

right inferior occipital, left occipital, right occipital) using 

Greenhouse–Geisser correction.

The results reported below focused only on the principal 

components analysis components that differed between the 

no prisms and with prisms conditions. ANOVA identified 

a main effect of condition for factor 9 [F(1, 68) = 5.67, 

P = 0.02, observed power = 0.651, d = 0.29] and an 

electrode region x condition interaction for factor 6 [F(17, 

1156) = 2.67, P = 0.04, observed power = 0.694, d = 0.29]. 

Figure 2  illustrates these temporal factors in gray boxes 

superimposed on the centroid or grand average waveform 

that was averaged across all 138 trials. Together, factor 6 

(168–228 m illiseconds) and factor 9 (208–256 milliseconds) 

characterize VERP activity that occurred near the late por-

tion of the P148 component (168–256 milliseconds). The 

scalp topographies for each of these factors are illustrated in 

Figure 3 at intervals corresponding to the beginning, peak, 

and end latencies for each factor indicated in the gray boxes. 

Peaks of negativity (illustrated in blue) shift from anterior 

(front of the head is at the top of sphere in the figure) to pos-

terior scalp locations (back of the head). The bidirectional 

arrows, (a) and (b), indicate latency differences between 

conditions, in which negative peaks reliably appeared 

30–45 milliseconds earlier in the with prisms condition than 

in no prisms condition. At the end of the time frame, arrow 

(c) indicates a positive voltage shift (illustrated in red) that 

occurred in the with prisms condition but not during the no 

prisms condition.

Dynamic channel selection
To further investigate the specificity of the VERP difference 

between the lens-no lens conditions, a dynamic channel 

selection strategy was implemented which employed spa-

tiotemporal modeling, dynamic channel selection, univariate 

classification, and decision fusion.27 The goal of dynamic 

channel selection strategy was to identify spatiotemporal 

elements that carried the most discriminatory information 

for correctly classifying different brain responses. For each 

observation, 69 single-trial spatiotemporal VERP arrays were 

considered. The average spatiotemporal arrays in Figure 4 

illustrate which of the electrode sites had peak distribution 

differences for each condition across time. From 51,200 

possible electrode site x time spatiotemporal elements, 1285 

elements best represented the differences between conditions 

and were submitted to the classification procedure. Half 

of the data were used for training and the remaining half 

to test classification accuracy. Each sample was classified 

using a Gaussian classifier and decisions were fused into a 

single fusion vector. Results indicate that VERPs recorded 

during the no prisms condition were accurately classified 

87.56% while the with prisms condition was accurately 

classified 87.09%. Overall, average classification accuracy 

was 87.32%. Such high levels of distinct classifications 

indicate that the VERPs reliably differed between the two 

conditions.
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Source analysis
As a final analysis step, brain source analyses were con-

ducted to estimate the neural sources responsible for 

generating the scalp recorded VERPs that varied between 

conditions. With high-density VERPs it is possible to 

produce source analysis maps of cortical activation super-

imposed on an adult magnetic resonance imaging template 

brain. Single trials were input to separate analyses for each 

condition into the GeoSource® software program (v2.0; 

Electrical Geodesics) employing the standardized low 

resolution brain electromagnetic tomography solution (see 

Supplemental Data for details). From the timeframes identi-

fied by the temporal principal components analysis, source 

waveforms within each Brodmann’s area were generated 

using a finite difference model. These source waveforms 

were then analyzed using mean amplitude measures (nA) 

within each Brodmann’s area, averaged over the timeframe 

of each temporal factor. A one-way ANOVA analyzed 

whether the estimated source activations differed signifi-

cantly between conditions.

The source activation maps for each condition were 

compared for each voxel to determine if differential neural 

networks were engaged and generated the VERPs. Source 

estimation results for factor 6 (158–228 milliseconds) identi-

fied brain sources distributed primarily in the anterior superior 

temporal gyrus for both conditions. However, despite similar 

regional activation, sources were statistically less active 

during the no prisms condition (peak intensity = 1.60 nA) 

than the with prisms condition (peak intensity = 3.29 nA). 

Factor 9 (208–256 milliseconds) identified brain sources that 

were distributed in the parahippocampal gyrus and inferior 

temporal gyrus for both conditions. Additional activation 

for the with prisms condition was identified in the limbic 

lobe. Although both conditions show maximum activation in 

the left hemisphere (no prisms peak = 1.75 nA; with prisms 

peak = 1.76 nA), the pattern of activation only occurred bilater-

ally in both hemispheres during the with prisms condition.

A one-way ANOVA identified significant differences 

between conditions for certain Brodmann’s area sources. 

These results are reported for the no prisms and with prisms 

conditions in Tables 2 and 3, respectively. Activation during 

the no prisms condition was more distributed across the brain 

than the with prisms condition. In other words, more brain 

volumes were activated during the no prisms condition.28 

Altogether, 29 Brodmann’s areas had a greater magnitude 

of activation during the no prisms condition. Importantly, 

these activated areas included somatosensory, language, 

and executive regions, which are not typically activated 

during primary encoding of visual information. Primary 

visual areas (eg, V1, V2, and V3) are more engaged during 

the with prisms condition relative to the no prisms condi-

tion, suggesting that the prism intervention optimized the 

visual processing system. Figure 5 highlights the different 

activation patterns of the conditions superimposed on the 

Montreal Neurological Institute template brain. Specifi-

cally, a widely distributed network across frontal, temporal, 

and parietal regions were engaged during the no prisms 

condition, whereas a more focused neural network centered 
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Table 2 Activation areas identified using GeoSource® software program (v2.0; Electrical geodesics inc, Eugene, OR) for no prisms condition

Region BA Hemi Factor 6 Factor 9

F value P F value P

Vision and somatosensory
Primary somatosensory cortex 1 L 5.157 0.025 5.295 0.023

1 R 34.770 0.000 34.470 0.000
2 L 5.392 0.022 5.528 0.020
3 L 20.832 0.000 18.409 0.000

Primary motor cortex 3 R 8.310 0.005 7.011 0.009
4 L 15.693 0.000 13.610 0.000
4 R 8.303 0.005 7.673 0.006

Premotor cortex 6 L 15.287 0.000 10.637 0.001
6 R 9.543 0.002 7.546 0.007

Frontal eye fields 8 L 13.779 0.000 11.741 0.001
8 R 35.699 0.000 35.108 0.000
42 L 8.202 0.005 9.495 0.002

Primary gustatory cortex 42 R 18.513 0.000 18.017 0.000
43 L 11.987 0.001 12.829 0.000
43 R 26.658 0.000 27.368 0.000

Language
Angular gyrus (Wernicke’s area) 39 L 5.773 0.018 5.948 0.016
Superior temporal gyrus (Wernicke’s area) 22 L – – 4.520 0.035
Pars opercularis (Broca’s area)

44 L 4.515 0.035 5.604 0.019
Pars triangularis (Broca’s area) 44 R 34.883 0.000 33.315 0.000

45 R 41.465 0.000 40.343 0.000
Executive and memory
Anterior prefrontal cortex 10 R 24.390 0.000 23.079 0.000
Middle temporal gyrus 21 R 24.876 0.000 22.943 0.000
Dorsolateral prefrontal cortex 9 L 6.759 0.010 5.658 0.019

9 R 39.628 0.000 36.657 0.000
46 L 8.520 0.004 6.541 0.012
46 R 45.929 0.000 43.989 0.000

inferior prefrontal gyrus 47 R 24.570 0.000 25.746 0.000
Posterior entorhinal cortex 28 L – – 4.412 0.038
Temporopolar area 38 L – – 5.617 0.019

Notes: Brain regions are organized by functional implication into three sets of neural networks: (1) largely bilateral vision and somatosensory regions, (2) left-lateralized 
language regions, and (3) executive and memory regions. Brodmann’s area, hemisphere, F-test, and significance test results from a one-way analysis of variance for each 
factor are provided.
Abbreviations: BA, Brodmann’s area; hemi, hemisphere; L, left; R, right.

on the primary visual areas was engaged in the with prisms 

condition (yellow).

Discussion
VERPs were recorded from a patient with PTVS during two 

successive presentations of a pattern reversal task, the first 

when the patient did not wear corrective prisms and the second 

test when she wore corrective prisms. Using single-trial analy-

sis of the VERP data, both conditions activated a P148 com-

ponent that occurred between 120–256 milliseconds following 

each onset of the checkerboard pattern. A temporal principal 

components analysis identified differences in the VERPs that 

occurred between prism conditions at the end portion of the 

P148 component that occurred between 168–256 milliseconds 

following the onset of the checkerboard. Scalp topographies 

indicated latency differences between conditions with peak 

negativity and positivity occurring 30–45 milliseconds later 

in the no prisms condition. Thus, without corrective prisms, 

processing speed was slower, suggesting a less efficient visual 

system. Significantly different VERPs occurred during the 

two prism conditions as evidenced by their respective high 

classification accuracy scores obtained from the dynamic 

channel selection analysis. These differences occurred across 

all electrode sites and engaged different neural sources. 

During the no prisms condition, more neural sources were 

activated within the vision processing regions including the 
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Table 3 Activation areas identified using GeoSource® software program (v2.0; Electrical geodesics inc, Eugene, OR) for with prisms 
condition

Region BA Hemi Factor 6 Factor 9

F value P F value P

Vision
Primary visual cortex (V1) 17 R 5.298 0.023 – –
Secondary visual cortex (V2) 18 R 4.114 0.044 – –
Associative visual cortex (V3) 19 R 4.089 0.045 – –
Hippocampus n/a R 6.291 0.013 5.083 0.026
Piriform cortex (AMY/HiPP) 27 R 8.201 0.005 5.507 0.020
Parahippocampal cortex 35 R 5.321 0.023 – –

36 R 4.874 0.029 4.218 0.042
Memory and semantic
Cingulate cortex 29 R 4.500 0.036 – –

30 R 4.128 0.044 – –

Notes: Brain regions are organized by functional implication into two sets of neural networks: (1) right-lateralized vision regions, and (2) right-lateralized memory and 
semantic regions. Brodmann’s area, hemisphere, F-test, and significance test results from a one-way analysis of variance for each factor are provided.
Abbreviations: AMY, amygdale; BA, Brodmann’s area; hemi, hemisphere; HiPP, hippocampus; R, right.

primary somatosensory cortex and frontal eye fields. However, 

additional activations occurred in brain regions routinely 

implicated in language, memory, and executive functioning 

processing. Neurons fire approximately 10 milliseconds for 

every synapse (see Buonomano and Merzenich29 for evi-

dence), so it is plausible that the recruitment of these additional 

brain regions required more time, thereby reducing processing 

speed as indicated by the delayed latency during the no prisms 

condition. In contrast, the with prisms condition engaged a 

more restricted neural network that included the primary visual 

regions, V1, V2, and V3, in addition to brain regions believed 

to encode memories and semantic content, regions commonly 

implicated during typical vision processing.20

The behavioral changes associated with the use of prisms 

in this patient are vital to understanding the vast improvements 

in neural processing and general level of function. The sources 

estimated for the with prisms neural system implicated regions 

expected to be engaged during normal processing, notably the 

primary visual cortex.20 Considering that prisms are known to 

positively correct balance and posture in patients with head 

injuries,13 these results suggest that the prisms enabled the 

patient to activate the same neural mechanisms as a neurologi-

cally normal individual. Without prisms, the patient exhibited 

the symptoms of PTVS and VMSS, including poor balance and 

gross visual perceptual deficits. Problems with reading were 

likely also extensions of these deficits. A mismatch between 

the visual midline and proprioceptive input could result in an 

inability to focus on stationary objects such as print.

The source analyses indicated that the no prisms con-

dition engaged brain areas normally thought to control 

language processes, including portions of Wernicke’s 

and Broca’s area. Consequently, in attempting to perform 

the visual reversal task, her brain engaged less optimal 

areas (auditory and language areas) to compensate for the 

reduced involvement of visual processing areas, thereby 

overloading the temporal and frontal lobes and interfering 

with their ability to support language functions. Stuttering, 

word recollection, and communication problems resulted. 

Such results provide new insights into how visual pathway 

mechanisms can impact higher order cognitive systems. To 

date, language and speech dysfunction related to PTVS and 

VMSS have not been addressed. Although prior work has 

implicated magnocellular deficits as contributing to language 

disorders such as dyslexia,30 other investigators suggest that 

unaffected populations have equal levels of deficits.31

These results support the view that neurooptom-

etric rehabilitation using prisms significantly alters the 

Right medial view Left lateral view

No prisms
With prisms

Figure 5 Source estimation difference maps for no prisms and with prisms 
conditions. Different patterns of activation were identified for both conditions 
using one-way analysis of variance between Brodmann’s area sources. These 
patterns were superimposed on sagittal slices of the Montreal Neurological institute 
template brain. Areas engaged during the no prisms condition are illustrated in green 
(notably, frontal, temporal, and parietal regions). Areas engaged during the with 
prisms condition are illustrated in yellow (notably, the right primary visual areas). 
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engagement of neural mechanisms during a visual task. 

The process of recovery from TBI is not limited to 

compensatory  mechanisms.32 Neurogenesis is possible late 

in development,33 and continued experiences drive cortical 

changes.29 Specific to visual processing, this study suggests 

that adjusting visual processing with corrective prisms 

impacts neural processing in measurable and meaning-

ful ways. This intervention appears to better engage the 

visual system, facilitating the appropriate integration of 

 information between the ambient and focal pathways and 

improving processing across proprioceptive, kinesthetic, 

vestibular, cognitive, and language domains.

Treatment for visual deficits is not a cure for widespread 

neurological dysfunction resulting from TBI. Symptom 

severity and other factors, including age at injury, bilateral 

damage, or substance abuse, may still lead to poor clinical 

prognosis. However, evidence here suggests that neuroop-

tometric rehabilitation heavily influences the engagement 

of other sensory and cognitive systems. In addition, it is 

clear that electrophysiological recordings are useful in 

monitoring the progress of rehabilitation.16 This study also 

implicates VERP as a possible tool to specify prescription 

adjustments for corrective lenses and prisms, ensuring 

that optimal neural networks are engaged and supporting 

rehabilitation.

Despite these significant and exciting findings, there are 

several limitations to this study. First, without baseline infor-

mation prior to the head injury, the VERP results can only 

address the subsequent neural processing that resulted from 

the injury. Second, while it is possible to quantify the effects 

of the prism, it is unknown whether any preexisting neuro-

logical conditions could have adversely affected the VERPs. 

Third, the condition order was not counterbalanced. It would 

be important to note if improvement in VERP organization 

and focused sources were due specifically to the order of pre-

sentation or to an increase in familiarity over the test period. 

Future work should counterbalance task order to determine 

whether equivalent patterns of brain activity occur.

Given the increase in identified cases of TBI, research 

involving the diagnosis, prognosis, and rehabilitation of brain 

injury is crucial. Research to date has primarily focused on 

specific symptoms of TBI, rather than elucidating the inter-

actions between diverse neural mechanisms. As evident in 

this paper, symptoms specific to visual dysfunction can have 

a significant impact on the level of function across multiple 

domains. Once impairments are corrected, magnocellular 

ambient deficits appear to be reduced thereby eliminating 

inefficient compensatory mechanisms that may detract from 

other processes. Altogether, with the intervention imposed 

in this study, neural circuitry appears to become less atypi-

cal. Unfortunately, rehabilitation is not generally discussed 

until well after stabilization. More subtle symptoms such as 

PTVS or VMSS may not be identified until much later. VERP 

technology may provide an alternate and perhaps more effec-

tive guide for rehabilitation and treatment decisions, tracking 

ongoing progress, and predicting outcomes.
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Supplementary data
Stimuli design and procedure
Stimuli consisted of alternating pattern reversals of an 

8 × 8 grid of 3.2 cm2 black-and-white checkerboards at a 

visual angle of 17.1 degrees horizontal × 17.1 degrees vertical 

on a gray background. A total of 100 trials were presented 

on a gray background for 1000 milliseconds each. Stimuli 

were displayed using E-Prime® software (v2.0; Psychological 

Software Tools Inc, Pittsburgh, PA) on a separate computer 

that integrated with Net Station 4.4.2 software (Electric 

Geodesics Inc, Eugene, OR) to mark events on the ongoing 

electroencephalographic data collection stream. The subject 

was seated 1 m away from a Dell 20.5″ liquid crystal display 

monitor (Dell Inc, Austin, TX) that displayed the checker-

board patterns.

Event-related potential data 
preprocessing procedure
Electrode impedances recorded before and after the task 

were below 60 k ohm to maximize signal-to-noise ratio, 

producing high-quality signals for subsequent analyses. The 

ongoing electroencephalographic signals were digitized at 

4 milliseconds intervals for each of the 256 electrode sites. 

High-pass filters were set to 0.1 Hz and low-pass filters to 

30 Hz with a gain of 10 k ohm. Single-trial epochs were 

segmented from continuous electroencephalography to cre-

ate epochs from the exact onset of the checkerboard pattern 

(0 milliseconds) to 800 milliseconds following onset. Voltage 

shifts greater than 100 μV during the epoch (for instance, due 

to eye movements or blinks) were classified as artifacts. For 

trials and electrode channels on which artifacts were detected, 

the event-related potential signal was deleted and replaced 

with an average signal interpolated from immediately 

 adjacent electrode locations following standard procedures. 

 Remaining epochs were then baseline corrected, referenced 

again to the average of all electrodes, and then clustered 

into 18 scalp regions (orbital, inferior frontal, prefrontal, 

inferior temporal, temporal, temporoparietal, parietal, inferior 

occipital, and occipital for both the left and right hemisphere). 

The purpose of this approach was to reduce the number of 

variables in order to increase statistical power for the planned 

single trail analyses.34 Epochs were paired across runs (with 

and without prisms) to ensure that the same trial numbers 

were considered. For example, trial 88 contained an artifact 

for the no prisms condition, so trial 88 was removed from 

analyses for both conditions.

Event-related potential brain  
source analysis methods
A finite difference model (FDM) was applied using a for-

ward modeling approach to accurately compute the electrode 

locations in relation to brain tissues. Finite difference model 

estimates were constrained by the Montreal Neurological 

Institute average adult magnetic resonance imaging database. 

Tissue volumes were parceled using 7-mm voxels, each 

serving as a dipole source location with three orthogonal 

orientations (in x, y, and z orientations). The finite difference 

model applied estimations across a total of 2447 source dipole 

 triplets. Conductivity values used in the finite difference model 

included 0.25 S/m for brain, 1.8 S/m for cerebral spinal fluid, 

0.018 S/m for skull, and 0.44 S/m for scalp.35 Weighting was 

placed equally across locations with regularization carried 

out via Tikhonov (1 × 10−2) using standardized low resolution 

brain electromagnetic tomography as a constraint.
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