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Abstract: The circadian pacemaker or biological clock, located in the hypothalamic 

suprachiasmatic nucleus, is the generation site of circadian rhythms. The light/dark cycle 

is the circadian pacemaker’s dominant synchronizing agent, though it is also influenced by 

neurotransmitters and the phase-shifting effects of various chemical and pharmacological 

 components, of which melatonin (N-acetyl-5-methoxytryptamine) is the most well established. 

In recent years, melatonin and melatonin analogs have been commercialized in many countries, 

mainly with hypnotic purposes. A new compound, agomelatine, has been recently synthesized 

and studied. Among melatonin analogs, this drug possesses unique pharmacological and clinical 

features; it is an antagonist at 5-HT2B and 5-HT2C receptors and has well established antidepres-

sant and anxiolytic properties. Agomelatine opens new perspectives in the chronobiotic treatment 

of depression. The purpose of the present review was to elucidate the effects of the melatonergic 

system on sleep and the implications for the treatment of psychiatric disorders.
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Introduction: circadian and sleep–wake systems
Many biological functions are regulated by biological rhythms, among which circadian 

rhythms (Latin: circa, about; dies, day) are the most extensively studied and the best 

understood. They determine daily rhythmicity in behavior, core body temperature, 

sleep, feeding, drinking, and hormonal levels.1,2 These circadian rhythms prepare the 

organism to anticipate daily changes in the environment and are not simply driven by 

the 24-hour environmental cycle, since they persist in the absence of time cues.3

The circadian pacemaker, or biological clock, is the generation site of circadian 

rhythms. In mammals, the biological clock is located in the suprachiasmatic nucleus 

(SCN) of the anterior hypothalamus, above the optic chiasma. It is noteworthy that 

most SCN efferent projections remain within the limits of the hypothalamus, and the 

best studied projection of SCN outside the hypothalamus is a multisynaptic projection 

to the pineal gland (see later).4

SCN neurons isolated and kept in culture for several days still continue to show 

approximately 24-hour rhythms in action potential frequency. Metabolically, the SCNs 

show peak activity during the subjective day. This increased level of metabolism is 

paralleled by the increased electrophysiological activity evident from brain slice 

recordings.5

The mean circadian period generated by the human SCN is approximately 

18-24 hours. To remain perfectly entrained to the 24-hour cyclicity of the environment, 
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the circadian clock uses several internal and external 

 synchronizers that are able to modify the period and the phase 

of circadian rhythms. The light/dark cycle is the dominant 

synchronizing agent for circadian rhythmicity. In fact, the 

human circadian pacemaker is stimulated by light presented 

in the evening to phase-delay its rhythms and by light stimuli 

given in the morning to phase-advance.6,7

Circadian pacemaker regulation is also determined by 

neurotransmitter function and the phase shifting effects of 

various chemical or pharmacological components, including 

melatonin (N-acetyl-5-methoxytryptamine).8

Melatonin physiology
Melatonin is an indoleamine hormone, mainly synthesized in 

the pineal gland. The biosynthesis of melatonin involves  several 

steps that can be summarized as  follows: (1) pinealocytes 

take up L-tryptophan from cerebral  vessels and convert it 

to serotonin through 5-hydroxylation and decarboxylation, 

(2) serotonin is converted to N-acetyl-serotonin (AANAT) 

by the rate-limiting enzyme arylalkylamine N-acetyl 

transferase, (3) AANAT is finally converted into melatonin 

by hydroxyindole-O-methyl transferase.9

Once synthesized, melatonin is not stored within the pineal 

gland but diffuses out into the bloodstream, rapidly reaching 

all body tissues.10 Circulating melatonin is metabolized by 

cytochrome P-450 which catalyzes its hydroxylation at the 

C-6 indole position to yield 6-hydroxymelatonin. This reaction 

is followed by conjugation with sulfuric acid (or to a lesser 

extent with glucuronic acid) to produce the principal urinary 

metabolite, 6-sulfatoxymelatonin. In the brain, melatonin 

can be metabolized to the kynurenine derivative N1-acetyl-

5-methoxykynurenine by oxidative pyrrole-ring cleavage, or 

to a cyclic 3-hydroxymelatonin derivative (1-{3a-hydroxy-5-

methoxy-3,3a,8,8a tetrahydropyrrolo[2,3-b]indol-1(2H)-yl}

ethanone).4

Melatonin is primarily synthesized in the pineal gland, 

but synthesis also occurs in the retina, gastrointestinal tract 

(GIT), skin, bone marrow, and lymphocytes, thus likely 

influencing other physiological functions.11,12

In lower vertebrates, the pineal gland is photosensitive and 

is the site of a self-sustaining circadian clock. In humans, the 

gland has lost direct photosensitivity, but responds to light 

via a multisynaptic pathway.13,14 Pineal melatonin exhibits 

a circadian rhythm with very low levels occurring during 

daytime and high levels during nighttime, irrespective of 

whether the species are diurnal, nocturnal, or crepuscular in 

their activity patterns.15,16

The circadian rhythm of melatonin production is regulated 

by the SCN of the anterior hypothalamus.17 Nerve fibers 

from the SCN project through multisynaptic  descending 

pathways that pass through the sub-paraventricular zone, 

median forebrain bundle, and the reticular formation to the 

intermediolateral horn cells of the spinal cord.18 From here, 

preganglionic fibers reach the superior cervical ganglion, 

which gives rise to postganglionic fibers that innervate the 

pineal gland: these postganglionic fibers regulate pineal 

melatonin synthesis via norepinephrine (NE) release.19 The 

light/dark cycle entrains SCN activity by photoperiodic 

information transmitted through the retinohypothalamic 

pathway/tract.20

The nocturnal increase of melatonin production is due to 

an increase in AANAT activity via activation of β-adrenergic 

receptors by NE, which in turn is associated with increases 

in intracellular cyclic-AMP levels.21 Cyclic-AMP  stimulates 

AANAT expression and phosphorylation via protein 

kinase A, which also allows AANAT to be stabilized by 

binding of 14-3-3 proteins.22 These processes are inversely 

affected by the presence and amount of environmental 

illumination, with immediate degradation of pineal AANAT 

production following exposure to bright light at night.23 The 

expression of specific clock genes in the SCN is also affected 

by the nocturnal exposure to light.24 Moreover, the circadian 

rhythm of AANAT activity in the pineal gland is abolished 

by lesions of SCN, further demonstrating its dependence on 

this hypothalamic area.25

Circulating melatonin is derived mainly from the pineal 

gland. Melatonin diffuses easily through all biological 

membranes and is then metabolized mainly in the liver, where 

it is first hydroxylated in C6 position and then conjugated 

and excreted as 6-sulfatoxymelatonin.26

Within neurons, melatonin and its metabolites play 

neuroprotective, metabolic and coordinating roles: they 

exhibit antioxidant properties, enhance cell viability, inhibit 

mitochondrial neurodegenerative events and apoptosis, 

and benefit numerous diseases via their multiple metabolic 

actions.27 Its physiological effects are likely to be mediated 

through activation of distinct melatonin receptors in 

target tissues.28,29 The discovery of different melatonin 

receptors was facilitated by the introduction of the agonist 

radioligand 2-[125I]-iodomelatonin.30 Melatonin receptors 

were originally divided into the MT1 and MT2 classes, 

based on different affinity and binding kinetics for 2-[125I]-

iodomelatonin and on different pharmacological profiles for 

a conventional series of ligands.31,32 Both receptor classes 
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belong to the family of G-protein-coupled receptors linked 

to the inhibition of adenylyl cyclase. Melatonin binds to 

these sites with low picomolar (MT1) and low nanomolar 

(MT2) affinities, respectively.33 The MT1 receptor-subtype 

was shown to inhibit neuronal firing in mice SCN slices34 

and to be responsible for cardiac vessel constriction.35,36 

The MT2 subtype regulates the phase-shift of circadian 

rhythms37 and inhibits cardiac vessel constriction.38 A clear 

functional distinction between these two subtypes needs 

further investigation.

Subsequently, a third, nonmammalian melatonin receptor 

subtype, MT3 (formerly known as Me1c)39,40 was cloned, and 

its binding site was characterized as the hamster homolog of 

the human enzyme quinone reductase.41 In addition to mem-

brane melatonin receptors, the nuclear melatonin receptor 

RZR/ROR is also known.42

Tissues endowed with fully characterized functional MT1 

and/or MT2 melatonin receptors include: retina, suprachias-

matic nucleus, pars tuberalis, cerebral and peripheral arteries, 

kidney, pancreas, adrenal cortex, testes, and immune cells.43 

Melatonin acutely inhibits SCN neuronal firing, an effect that 

is most pronounced at times of high SCN neuronal activity 

(ie, during daytime, although the effect is also observed at 

night).44 Suppression of SCN neuronal activity by melatonin 

represents a likely mechanism by which the methoxyindole 

contributes to the regulation of sleep in diurnal species.45 This 

effect is presumably linked to the activation of GABAergic 

mechanisms in the SCN.46 The acute inhibitory effects of 

melatonin on SCN multiunit activity are completely absent 

in MT1 melatonin receptor knockout mice, while the phase-

shifting effects of melatonin are preserved. The expression of 

melatonin receptors in the SCN varies during the circadian 

cycle, with increased levels at night and lower levels during 

the day.47,48 Light-sensitive neurons found in the “core” area of 

the SCN do not exhibit demonstrable endogenous rhythmicity 

in melatonin receptor expression, while oscillating neurons 

are present in the surrounding “shell” group.49,50

An important conceptual difficulty in melatonin research 

concerns its different functional consequences depending on 

the species’ time of peak activity, though it signals darkness 

in all species.49 In nocturnal species, melatonin is associated 

with arousal and physical activity, whereas it is associated 

with sleep and rest in diurnal species.51

Given that the SCN has a similar function in both 

nocturnally and diurnally active animals, melatonin signal’s 

differential “interpretation” must be downstream of the SCN 

and possibly involves a counterbalance between melatonin’s 

effects on brain regions involved in certain activities 

(eg, arousal) and those involved in the suppression of these 

activities.51 These “chronobiotic” properties of melatonin 

may have a significant regulatory influence over many of 

the body’s physiological functions.52

Biological rhythms and human 
pathology
Since antiquity, scientists and philosophers have linked 

mental disorders to physical and functional changes in the 

pineal gland, due to its attributed role in humans as the 

connection between soul and body.53 Nowadays, ever since 

an amphibian skin-lightening molecule was isolated and 

identified as N-acetyl-5-methoxytryptamine in 1958,54 there 

has been renewed interest for the involvement of the pineal 

gland and melatonin in human pathology.55

It is well known that there is a physiological chronobio-

logical variability between individuals. In qualitative terms, 

one may distinguish morning people (or morning larks), 

characterized by tendency to awaken early and experience 

minimum core body temperature at an early clock time, 

and night people (or night owls), with opposite features.56 

Advanced sleep phase syndrome is a pathological extreme 

of the morning lark phenotype, whereas delayed sleep phase 

syndrome is a pathological counterpart of the night owl 

phenotype. For both these syndromes, there are familial, 

genetically determined forms.57

Besides these relatively rare syndromes, strictly linked 

to chronophysiology, many attempts have been made 

to  correlate medical pathologies to circadian-clock and 

circadian rhythm alterations. For example, it has been 

suggested that desynchrony between the SCN and the various 

oscillators in peripheral tissues is involved in cardiovascular 

diseases.58 Travel across multiple time zones and shift work 

are the most common causes of circadian desynchrony. 

Cardiovascular disease risk factors such as obesity, low high-

density lipoprotein cholesterol levels, and high triglycerides 

are more prevalent among shift workers than day workers.59 

Furthermore, many of these associations increase in aged 

shift workers. In addition, epidemiological studies have 

shown that women working night shifts have a significantly 

higher risk of breast cancer.60 These reports require more 

thorough preclinical and clinical studies for confirmation.

Circadian rhythms are altered in many neuropsychiatric 

states (eg, psychotic disorders, post-infectious illnesses, 

chronic fatigue states, and chronic pain), but the disease with 

most prominent clinical circadian disturbances is depression, 
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with delayed sleep onset, nonrestful sleep, early-morning 

awakening, daytime fatigue, and blunting or reversal of 

the normal morning peaks in subjective energy, mood, and 

alertness.61,62 Depression is also the most studied among these 

conditions, and it seems to be related to disruption of the 

central circadian clock function and not to an alteration in a 

specific rhythm.63 Some of the most characteristic circadian 

alterations in depression include: reductions in the amplitude 

of diurnal variations in core-body temperature and plasma 

cortisol concentrations,64 phase shift of several circadian 

rhythms (eg, core body-temperature, plasma  melatonin, and 

cortisol concentrations, and sleep–wake timing),65 increased 

stage 1 and stage 2 sleep total time, reduced latency to the 

first rapid eye movement (REM) episode, and decreased 

time spent in slow-wave sleep.66 However, the type of 

rhythm abnormality varies notably in depressed patients, 

including rhythms’ phase advance or delay and increase 

or decrease in rhythms’ amplitude.64 The complex rela-

tion between the endogenous circadian pacemaker and the 

appearance of depressive symptoms is, therefore, far from 

being elucidated.67

An interesting prototype of rhythmicity and seasonality is 

seasonal affective disorder (SAD). SAD or winter depression 

has been defined as a seasonal pattern of recurrent major 

depressive episodes that occur during winter/fall in the 

absence of seasonal psychosocial stressors, and with full 

clinical remission in spring/summer.68 Epidemiological 

studies show that the incidence of SAD in the general 

population is 15%–25%.69 Patients with SAD manifest 

atypical depressive symptoms such as carbohydrate craving, 

hypersomnia, hyperphagia, or weight gain.70

Melatonin and depression
Literature on melatonin levels in depression is controversial. 

Wetterberg and co-workers proposed that major  depressive 

disorder (MDD) may be considered a “low melatonin 

 syndrome,” thus conceptualizing low melatonin secretion 

as a biological marker for depression.71 A number of studies 

have reported low nocturnal melatonin secretion in depressed 

patients.72 However, increases in melatonin secretion have 

also been observed.73 These contrasting findings could 

be accounted for by differences in patterns of depressive 

symptomatology or of melatonin secretion, inasmuch as there 

are studies showing increased daytime melatonin secretion 

in depressed individuals.73

The reduced blood melatonin concentrations and the 

trend towards melatonin rhythms’ phase delay reported 

in affective disorders74 point to a possible relation, via 

monoaminergic mechanisms, between antidepressant drugs’ 

efficacy and melatonin secretion.75 However, the lack of 

melatonin disturbances noted in other studies suggests that 

the increase in melatonin could be related to antidepressants’ 

pharmacological effects rather than improvement of depres-

sive symptoms.76

Phase delay of the circadian pacemaker relative to timing 

of the habitual sleep–wake cycle has been postulated to be a 

major contributing factor in the pathophysiology of SAD.77

Melatonin receptor agonists
Melatonin’s successful clinical use is limited by its short 

half-life, which ranges from 20 to 40 minutes.78 To overcome 

this drawback, prolonged-release formulations of the natural 

hormone (eg, Circadin®, Neurim Pharmaceuticals, Tel-Aviv, 

Israel) and melatoninergic agonists with a longer half-life 

(eg, ramelteon and tasimelton) have been developed.4

Exogenous melatonin has some antidepressant-like 

actions in animal models.79 Daily treatment with melatonin 

reverses the adverse effects of chronic stress in mice.80 

In depressed patients, melatonin administration improves 

sleep, with only a modest effect on depressive symptoms 

and without substantially enhancing the effect of existing 

antidepressant therapies in treatment-resistant depressed 

patients.81 It thus appears that melatonin on its own is not 

sufficient to achieve a robust clinical antidepressant efficacy. 

Addition of melatonin to present antidepressant therapies 

can, however, improve overall outcome.82,83 Indeed, some 

antidepressants (eg, tricyclic antidepressants, serotonin-

specific reuptake inhibitors (SSRIs), and noradrenalin-

specific reuptake inhibitors) have negative effects on sleep 

architecture, reducing the duration of REM sleep and 

increasing REM latency.84,85 Because REM sleep is under 

circadian control, one expects that it could be positively 

affected by compounds binding to melatonergic receptors.

Pharmacological features  
of agomelatine
Agomelatine (Valdoxan®/Thymanax®) (S20098, N-[2-(7-

methoxynaphth-1-yl)ethyl]acetamide), developed by Servier 

(Neuilly-sur-Seine, France) and Novartis (New York, NY), 

was first reported in the literature in 1992.86 Investigations 

on agomelatine’s action on over 80 receptors and enzymes 

revealed a high affinity for MT1 (Ki = 0.1 nM) and MT2 

(Ki = 0.12 nM) receptors, where it acts as an agonist, and 

a moderate affinity for 5HT2C (pKi = 6.2 µM) receptors, 

where it acts as an antagonist.87,88 Compared with melatonin, 

agomelatine’s binding affinity for MT1 and MT2 is similar. 
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Instead, with respect to 5-HT2C receptors, melatonin has 

negligible affinity when compared with agomelatine.87 

Though agomelatine receptor binding affinity is at least 

100-fold greater for melatonin receptors than for 5-HT2C 

receptors, it is the 5-HT2C receptor blockade that best 

explains agomelatine’s different efficacy profile from that 

of melatonin.88 For instance, when administered in the eve-

ning to rats with chronic mild stress, both agomelatine and 

melatonin show antidepressant-like activity, but only ago-

melatine exhibits antidepressant-like activity when admin-

istered in the morning.89 The major hypothesis to explain 

agomelatine’s clinical action is that this compound could act 

synergistically on both melatonergic and 5-HT2C receptors. 

In-vivo data indicate that agomelatine enhances dopamine 

and noradrenaline levels in the frontal cortex, but not in the 

nucleus accumbens or striatum, probably due to blockade of 

5-HT2C receptors’ inhibitory input to cortical dopaminergic 

and adrenergic pathways.90 In addition, 5-HT outflow in the 

frontal cortex remains unchanged and chronic treatment 

with agomelatine does not cause any adaptive changes in 

pre- and post-synaptic 5-HT1A receptors’ activity.91 This is 

noteworthy, as the lack of effect on 5-HT outflow together 

with the absence of functional changes in 5-HT1A receptors 

allow to infer that agomelatine’s antidepressant action is not 

mediated by the same mechanisms as for tricyclics, SSRIs, 

and monoamine oxidase inhibitors.92

Agomelatine is well absorbed following oral administra-

tion (intestinal absorption is at least 80%), but due to high 

first-pass metabolism, mean bioavailability is estimated to be 

about 3%–4%.90 Within the therapeutic dose range, systemic 

exposure to agomelatine increases roughly proportionally 

to the dose administered; at higher doses, saturation of 

first-pass metabolism occurs.91 The bioavailability estimate 

is twofold higher in women than men.93 Agomelatine’s 

pharmacokinetics is characterized by a biphasic decrease 

with mean half-lives (t
1/2

) of 0.2 and 1.4 hours, respectively. 

Its elimination depends mainly on metabolic clearance, and 

it is only modestly excreted unchanged in urine.91 In-vitro 

studies reveal that agomelatine’s major metabolic pathway 

is the liver’s principal CYP1A isoform, CYP1A2, though 

CYP2C9 and CYP2C19 are also involved. It is generally 

accepted that agomelatine’s metabolites barely contribute 

to its pharmacological activity.85

Agomelatine: clinical features
In addition to its renowned chronobiotic effects, agomelatine 

also has clinically significant antidepressant and anxiolytic 

properties.85

Agomelatine’s antidepressant effects have been inves-

tigated in different animal models, including chronic 

mild stress, forced swimming, learned helplessness, and 

psychosocial stress models. All studies reported that the drug 

exerts an antidepressant-like effect.94 Validated paradigms in 

rodents have shown that this compound accelerates resyn-

chronization of circadian rhythms of locomotor activity and 

relevant biological parameters (ie, body temperature and 

hormone secretions), and its antidepressant effect may also 

depend on some other noncircadian mechanism, such as 

increased production of brain-derived neurotrophic factor.95 

Agomelatine’s effects in anxiety disorders are less studied in 

preclinical settings. Nonetheless, some data point to efficacy 

in these disorders as well.96 Agomelatine’s effects on sleep 

architecture were evaluated in healthy young individuals 

using polysomnogram (PSG), and at 5 or 100 mg/day, ago-

melatine was found to significantly increase REM sleep.97 

In depressed patients, a 6-week administration increased 

non-REM (NREM) sleep duration as well as sleep quality 

and continuity, without modifying REM sleep duration.98 

Agomelatine’s effects on the cyclic alternating pattern (CAP) 

in NREM and REM sleep was evaluated on 15 depressed 

patients using PSG. When compared with baseline data, 

a significant decrease in CAP time and CAP cycles after 

7 and 42 days of treatment was observed.99 Changes in NREM 

sleep variables preceded improvements in clinical depression 

scores. The disappearance of NREM sleep disruption has 

been suggested as one of the possible mechanisms by which 

agomelatine exerts its therapeutic effect.

Agomelatine, administered once daily at a dose of 

between 25 and 50 mg/day, is an effective antidepressant 

despite its short half-life which, in any case, is longer than 

that of melatonin.90 Of the three published placebo-controlled 

trials supporting drug registration, the absolute difference in 

response rates (ie, 50% reduction of the 17-item Hamilton 

Rating Scale for Depression score) between agomelatine and 

placebo were 14.8% (95% CI 1.5%–27.4%), 15.2% (95% 

CI 3.3%–26.4%),98 and 19.0% (95% CI 6.5%–31.5%).99–102 

 Further studies versus placebo and comparators have 

confirmed agomelatine’s efficacy in adults of all ages, 

including the severely depressed and the elderly.103–109 Whether 

agomelatine is more effective in patients with specific 

abnormalities in circadian functions or with more severe 

sleep disturbances is yet to be established. Improvements on 

a range of sleep variables, including improved sleep quality 

(mean difference 5.63, 95% CI 0.85–10.41, P = 0.021), 

reduced wake after sleep onset (mean difference 4.86, 95% 

CI 0.23–9.49, P = 0.040) and fewer insomnia reports (mean 
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difference 0.37, 95% CI 0.01–0.72, P = 0.044), were greater 

with agomelatine than with venlafaxine.105 In a long-term 

prevention of depression relapse trial, agomelatine’s relapse 

rate at 10 months was 23.9% versus 50.0% for placebo 

(approximate difference of relapse estimates 26.4%, 95% CI 

12.7%–39.0%), and the final relapse rate with agomelatine 

at 24 weeks was 20.6% compared with 41.4% for placebo 

(a difference of 20.8%, 95% CI 11.0%–30.0%).110,111 Finally, 

as opposed to paroxetine, agomelatine does not seem to be 

associated with discontinuation symptoms.112

Because agomelatine does not increase serotonin level, it 

does not yield side-effects commonly seen with other novel 

antidepressants (notably, gastrointestinal upset, headaches, 

sexual difficulties, psychomotor agitation, and weight 

gain), and there is no risk of other major adverse events 

(such as serotonin syndrome or serotonin discontinuation 

symptoms).110

In February 2009, agomelatine was approved by the 

European Medicines Agency for the treatment of MDD and 

is available in several European countries.91 Phase III clinical 

trials of agomelatine for depression (three short-term efficacy 

and safety trials and one longer-term relapse prevention 

trial) have also been conducted in the United States, but 

the results from these studies have not been released, and 

agomelatine is not yet approved by the United States Food 

and Drug Administration.101 There is mounting evidence on 

its clinical efficacy in anxiety disorders. Besides its effective 

antidepressant action, agomelatine in fact, also decreases the 

severity of anxiety associated with depression.49 Agomelatine’s 

(25–50 mg/d) efficacy in generalized anxiety disorder was 

assessed in a 12-week double-blind, placebo-controlled study 

on 121 patients with no comorbid disorders.113 Agomelatine 

was more effective than placebo in reducing anxiety (mean 

change in Hamilton rating scale for anxiety from baseline was 

16.6 with agomelatine versus 13.2 with placebo; difference 

−3.3; P = 0.04). Moreover, in the literature there is a case report 

of social anxiety disorder effectively treated with agomelatine 

monotherapy114 and some reports of agomelatine efficacy in 

obsessive compulsive disorder both in monotherapy115,116 and 

in augmentation.117 However, well performed studies on these 

disorders are still lacking.

Conclusion
Melatonin is fundamental to the body’s homeostatic 

mechanisms. Melatonin analogs, mainly studied for 

sleep disorders, may be of potential use as primary or 

adjunctive drugs for a wide range of neuropsychiatric 

disorders characterized by persistent circadian disturbance. 

Agomelatine in particular, combining melatonergic agonism 

with 5-HT2C antagonism, appears to be promising in the 

treatment of depression. Because of its specific mechanism 

of action and potential to help restore circadian function 

during depressive episodes, this drug might play a unique role 

in the management of some depressed patients. Moreover, 

compared with SSRI/serotonin norepinephrine reuptake 

inhibitors, agomelatine has a favorable adverse effect and 

safety profile, with lack of clinically relevant weight gain, low 

risk of sexual dysfunction, low incidence of gastrointestinal 

reactions, absence of discontinuation symptoms, and overall 

incidence rates of adverse events that do not differ from 

placebo. Further studies are needed to examine agomelatine’s 

efficacy in other mood and anxiety disorders, to better 

understand its role within the neuropsychiatric treatment 

armamentarium. Agomelatine’s effectiveness in elderly 

patients and those of less than 18 years of age should also 

be investigated.
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