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Abstract: The authors present a new method of recognizing different human facial gestures 

through their neural activities and muscle movements, which can be used in machine-interfacing 

applications. Human–machine interface (HMI) technology utilizes human neural activities as 

input controllers for the machine. Recently, much work has been done on the specific applica-

tion of facial electromyography (EMG)-based HMI, which have used limited and fixed numbers 

of facial gestures. In this work, a multipurpose interface is suggested that can support 2–11 

control commands that can be applied to various HMI systems. The significance of this work is 

finding the most accurate facial gestures for any application with a maximum of eleven control 

commands. Eleven facial gesture EMGs are recorded from ten volunteers. Detected EMGs 

are passed through a band-pass filter and root mean square features are extracted. Various 

combinations of gestures with a different number of gestures in each group are made from the 

existing facial gestures. Finally, all combinations are trained and classified by a Fuzzy c-means 

classifier. In conclusion, combinations with the highest recognition accuracy in each group are 

chosen. An average accuracy .90% of chosen combinations proved their ability to be used as 

command controllers.

Keywords: neural system, neural activity, electromyography, machine learning, muscle 

activity

Introduction
The interaction between human and computer or machine is of great importance 

for various fields such as biomedical science and computer, electrical, electronic, or 

mechanical engineering as well as neuroscience. The most significant reasons of the 

development of this technology are its efficiency and usability for handicapped and 

elderly people. The human–machine interface (HMI) is an approach for information 

transmittal where humans interact with the machine. Designing such interfaces is a 

challenge and requires a great deal of work to make the interface logical, func-

tional, accessible, and pleasant to use. The most popular HMI modes still rely on 

keyboard, mouse, and joystick. In recent years, there has been remarkable inter-

est in introducing intuitive interfaces that recognize the user’s body movements 

and translate them into machine commands. The two main methods of designing 

these interfaces are techniques based on nonbiomedical or biomedical signals. 

The “tonguepoint” as well as “headmouse” are examples of nonbiomedical signal 

devices.1 These approaches are restricted to users with cerebral palsy or spinal 

vertebrae fusion.2 Patients with severe multiple sclerosis and spinal cord injuries 

who have limitations in neck movement are unable to use these devices.3 An 
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eye-gaze tracking method has been proposed4 to provide an 

accurate cursor. With these systems, a video camera is usually 

used to record images or videos continuously and image-

processing methods are applied to analyze the data. In spite 

of their usability, there are some disadvantages such as 

limitation of camera field of view, complexity, computational 

cost, target size, peripheral conditions, lighting, and image 

 quality. Recently, automatic recognition of facial  expressions, 

which has a direct effect and a vital role in HMI, has been 

 considered. In 1999, image-based facial gesture recogni-

tion was  proposed5 for controlling a powered wheelchair. 

However, the gesture  recognition system required costly 

high-speed image-processing hardware.

As an alternative, biomedical signals have been employed 

as other kinds of interfaces in many fields of HMI. These 

signals can be utilized for neural connection with computers 

and they are obtained from tissues, organs, or the cell system. 

Electrooculography (EOG), which measures and determines 

the eye position electrically, was used as a powerful input 

device. EOG has been applied to control a cursor,6 but these 

systems were affected by head and muscle movement, signal 

drift, and channel crosstalk. Electroencephalography (EEG) 

has also been considered as a neural linkage to communicate 

with the computer/machine and is typically called the brain–

computer interface (BCI). These systems have been recently 

developed by removing the requirement for involvement of 

peripheral nerves and muscles in disabled users7,8 by applying 

the modulation of mu and beta rhythms via motor imagery 

to make BCI control possible. Apart from its benefits, there 

are some issues with the use of EEGs such as long training 

time, poor signal-to-noise ratio, and numerous challenges in 

processing steps.9,10

More recently, electromyography (EMG) has become 

the new basis of biosignal information for designing HMI/

human–computer interfaces (HCI). EMG signals are cap-

tured from body muscles such as arm or facial muscles and 

are translated and converted into machine-input control 

commands. Much work has been done in the field of interface 

designing in EMG-based HMI systems, which have been 

applied to upper and lower limb gestures. Two- dimensional 

pointers are controlled through wrist movements11 and 

an EMG-controlled pointing tool was proposed and 

developed.12,13 An HMI based on EMG arm gestures within 

three-dimensional space design was proposed and the final 

recognition result of this was ∼96%.14 An approach with 

three hand gestures was investigated to control a mouse cur-

sor and the overall accuracy was 97%.15 Controlling a hand 

prosthesis using hand gestures and pattern recognition had 

around 90% accuracy.16,17 Control of virtual devices through 

hand-gesture EMGs18 and an online EMG mouse-controlling 

computer cursor with six wrist gestures were selected as 

control commands and the reported average recognition 

ratio was 97%.19 Hand and finger gesture  recognition has 

been explored with an accuracy of almost 93%.20 More 

accurate hand- gesture recognition with an accuracy of 99% 

has been attained.21 All these interfaces were designed based 

on hand, finger, wrist, and arm gestures. However, this 

would be unsuitable for people with both lower and upper 

extreme impairment, most of whom cannot even move their 

neck. These can be seen as the most difficult cases, as, for 

these patients, their only way of communication is by facial 

expression. For these cases, the interface design solution must 

therefore be based on facial gestures. Some effort has been 

made to utilize EMG-based facial gestures to develop proper 

interfaces. The first was an intelligent robotic wheelchair 

based on EMG gestures and voice control.22 The designed 

interface had three basic facial expressions: happy, angry, and 

sad.23 An EMG-based HMI in a mobile robot was tested by 

asking volunteers to perform ten eye blinks with each eye.24 

Moreover, useful control commands from facial gestures 

during speech have been provided and investigated for HCI 

application.25 In the same year, a hands-free wheelchair 

controlled through forehead myosignals was suggested.26 

Further, recently, a virtual crane training system controlled 

through five facial gestures was introduced27 and a facial 

EMG-based interface has been proposed and used in maxi-

mum medical improvement through three facial EMGs.28

The most important facts to be considered throughout the 

design process are analysis procedure and the flexibility and 

user-friendliness of these systems. Since real-time control 

includes processing issues, simplicity, low-cost computa-

tion, high speed, and accuracy of analysis are vital factors. 

Besides, flexibility of these systems mostly relies on the 

number of control commands; that is, flexibility increases 

when the number of control commands increases. In addition, 

the user-friendly systems are more pleasant for the operators 

since they can choose suitable gestures in each application 

with a different number of control commands. Therefore, to 

apply these interfaces in a real HMI system, all of the above 

issues must be considered to achieve best performance.

Firstly, EMG-recording protocols, preprocessing, 

and processing of acquired data must be considered the 

main focus for designing these interfaces. Amongst these, 

 feature extraction and data classification have been always 

under investigation to optimize the whole procedure and to 

obtain the best results. As reported previously, due to EMG 
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 characteristics,  processing methods are restricted, especially 

in low-level contraction like in facial muscles, where the fir-

ing rate and frequency bandwidth of muscles are almost the 

same. In the field of EMG feature extraction, time-domain 

features such as mean absolute value (MAV), root mean 

square (RMS), and variance (VAR) are chosen and applied 

in much research since they provide a better estimation 

of EMGs29,30 compared with frequency-domain and time 

frequency-domain techniques, which are mostly applied in 

muscle fatigue investigations.31,32 The proper classifier must 

be accurate and fast enough to attain the real-time prerequi-

sites. There are many tactics available for EMG classification 

such as neural network, fuzzy, and probabilistic. Suitable clas-

sifiers are chosen depending on the patterns that need to be 

trained, specific applications, and muscle types. The MAV of 

EMG was extracted and the gestures were discriminated via a 

threshold with 93% accuracy,22 and, by combining maximum 

scatter difference, RMS, as well as power spectrum density 

features with minimum distance method, 94.44% accuracy 

was achieved in classification.25 Facial gestures were clas-

sified into two classes via thresholding tactic and obtained 

95.71% recognition ratio.24 Moving RMS features and lin-

ear separation technique were used to identify three facial 

expressions25 and they achieved 100% recognition accuracy. 

This 100% accuracy was achieved by employing MAV and 

support vector machine (SVM) as features and classifier 

methods, respectively.26 A control accuracy of 93.2% was 

reported when RMS features and subtractive fuzzy C-mean 

classifier were exerted to distinguish five facial gestures as 

control commands.27 In the same year, moderate results with 

accuracies of 61%, 60.71%, and 56.19% were achieved by 

employing mean, absolute deviation, standard deviation 

(SD), and VAR features and K-nearest neighbors, SVM, 

and multilayer perception classifiers.28 In recent research, 

RMS features were extracted from eight facial gestures, and 

the accuracy of two popular classification methods, support 

vector machine (SVM) and FCM in the field of facial EMG 

classifications, were compared. Results reported the greater 

strength of FCM over SVM and confirmed the usefulness of 

the RMS method in EMG-signal feature extraction.33,34

All previously mentioned work was restricted by two 

issues. Firstly, they used a fixed number of facial gestures 

for their purpose, which means that their interface was not 

flexible enough to be employed by other applications. Sec-

ondly, the recognition ratio results relied strictly on included 

facial gestures and there was a possibility of an increase in 

performance accuracy by applying other gestures. In this 

paper, the design of a multipurpose interface is proposed 

based on eleven voluntary facial gestures. This makes the 

interface much more flexible since each of the included facial 

gestures can be used as an accurate input control in various 

HMI applications where 2–11 control commands are needed. 

Furthermore, this interface became more reliable through cre-

ating different combinations with a different number of facial 

gestures to find the most accurate combinations. Finally, this 

interface finds the maximum recognition accuracy for each 

facial combination consisting of 2–11 facial gestures. The 

design of the proposed interface is described step by step in 

the following sections.

Materials and methods
The procedure of designing the proposed interface is 

shown in Figure 1. Figure 1 is divided into six main parts. 

Figure 1A shows subject preparation, site selection, and 

electrode  placement. System setup, data acquisition, and 

signal-recording protocol from all participants and signal-

filtering processes are demonstrated (Figure 1B). Data 

segmentation, windowing, and feature extraction are carried 

out (Figure 1C). The use of threshold lines and achieved 

features from the previous step are sorted (Figure 1D) to 

find active features that are more suitable for training and 

classification. The multipurpose interface is created by 

including all possible combinations from all existing facial 

gestures (Figure 1E). All obtained combinations were trained 

and classified ( Figure 1F) to find the most accurate group of 

facial gestures and a better distribution of them.

subject preparation, site selection, and 
electrode placement
Ten healthy volunteers participated as the main data sources 

for this work. Figure 2 shows all facial gestures, which are 

performed by each participant. There are some points that 

must be considered prior to signal recording for all partici-

pants. Since the surface EMG method is used in this work, 

skin preparation is a significant task for getting a clear signal. 

An alcohol pad is used to clean any dust and sweat from the 

selected areas for signal recording to avoid any unwanted 

artifacts and noise. Conductive and adhesive paste or cream 

is used on the center of the electrodes before placing them on 

the skin. Since three recording channels are used, three pairs 

of electrodes are placed on the desired regions in a bipolar 

configuration. They are placed on the affective muscles 

involved in chosen facial gestures/expressions.

Table 1 indicates all facial gestures as well as their 

effective muscle(s)35 and recording channel(s) applied in the 

current work. According to Table 1, three pairs of electrodes 
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Figure 2 All considered facial gestures in this work: (A) natural, (B) smiling, (C) smiling with right side, (D) smiling with left side, (E) open the mouth like saying “a” in “apple,” 
(F) clenching molar teeth, (G) pulling up the eyebrows, (H) closing both eyes, (I) closing right eye, (J) closing left eye, (K) frowning.

must be placed where all  considered gestures could be 

covered. Two pairs of electrodes (channel 1, channel 3) are 

located on the left and right temporalis muscle, the other pair 

is placed on the frontalis muscle, and one ground electrode is 

sited on the bony part of the left wrist. Each of these pairs is 

attached within a 2 cm interelectrode distance.26,27,33,34 After 

electrode placement and wire attachment, all wires are taped 

to the face to decrease any unwelcome wire movement and 
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Figure 1 Procedure of designing the proposed interface. A shows subject preparation, site selection, and electrode placement. system setup and data acquisition, signal 
recording protocol from all participants, and signal filtering process are demonstrated in B. Data segmentation, windowing, and feature extraction are carried out in C. The 
use of threshold lines to find the active features, which are more suitable for training and classification, is shown in D. The multipurpose interface is materialized by making 
all possible combinations from all existing facial gestures (E). All obtained combinations are trained and classified as illustrated in F to find the most accurate group of facial 
gestures and a better distribution of them. 
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Table 1 Facial gestures used in this work

Gesture Gesture name Effective channel(s) Effective muscle(s)

Major Minor

 1 smiling 1, 3 Zygomaticus major Levator anguli oris
 2 smiling with right side (pulling  

up the right corner of lip)
3 Zygomaticus major Levator anguli oris

 3 smiling with left side (pulling  
up the left corner of lip)

2 Zygomaticus major Levator anguli oris

 4 rage (clenching molar teeth) 1, 3 Masseter Zygomaticus major
 5 gesturing “NO” (pull up the  

eyebrows)
2 Frontalis, pars lateralis Pars medialis, Levator  

palpebrae superioris
 6 Opening the mouth like saying  

“a” in “apple”
1, 3 Pterygoids, digastric Masseter

 7 closing both eyes 1, 2, 3 Orbicularis oculi, pars palpebralis,  
orbitalis

Frontalis, temporalis

 8 closing left eye 1, 2 Orbicularis oculi, pars palpebralis,  
orbitalis

Frontalis, temporalis

 9 closing right eye 2, 3 Orbicularis oculi, pars palpebralis,  
orbitalis

Frontalis, temporalis

10 Frowning 2 corrugator supercilii, Depressor  
supercilii

Frontalis

11 Natural 1, 2, 3 – –

reduce the number of artifacts. Electrode placement and wire 

positions are  indicated in Figure 3.

system setup and signal-recording 
protocol
Surface EMG signals are recorded by the BioRadio 150 

(CleveMed, Cleveland, OH). The sampling frequency is 

adjusted at 1000 Hz. To avoid motion artifacts and power-

line interference, the low cut-off frequency of the filter is 

set at 0.1 Hz and a notch filter is applied to remove the 

50 Hz component of the signal. Before signal recording, 

all volunteers rest for 1 minute. Then, they are asked to 

perform the facial gestures (see Table 1) for 30 seconds 

(five trial performances over 2 seconds with a 5-second 

rest between them to eliminate the effect of exhaustion). 

This procedure is repeated for all participants to record 

each facial gesture. Acquired signals are saved to a 

personal computer and are prepared for the next stage. An 

example of the acquired signal of gesturing “a” in “apple” 

is depicted in Figure 4.

Each recording channel has a different shape based on 

the activity of the muscles involved in the related gesture 

(Figure 4). Here, this gesture just affects the recording 

channels 1 and 3. Channel 2 is inactive and its shape looks 

like a normal signal. Please note that 20,000 ms parts of all 

signals that belong to resting stages have been removed and 

just 2000 ms of active parts are placed next to each other 

to make continuous signals without rest for a total length 

of 10,000 ms. All recorded signals are passed through a 

 band-pass filter with a 30-to-450 Hz bandwidth to include 

the most essential spectrum of EMG signals.27

Data segmentation and feature extraction
Filtered signals are segmented into nonoverlapped 256 ms 

time sections and RMS value is computed by Equation 1 

for each section. RMS is a well-known feature to identify 

the strength of muscle contraction and it offers the extreme 

probability approximation of amplitude when the signal is 

modeled as a Gaussian random procedure.

 RMS
N

X n
n

N

=
=

∑1 2

1

 (1)

X
n
 is the achieved raw signal and N is the length of X

n
. 

Therefore, there are 39 features in each channel for each 

gesture.Figure 3 electrode and wire positions.
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Active feature selection
After feature extraction (RMS), these features are sieved 

to collect the active ones. Thus, three threshold lines are 

designed through equation 2 from three normal signal chan-

nels (T
1
, T

2
, T

3
).

 T MEAN RMS X std Xx normal normal= ( )( ) + × ( )( )3  (2)

Therefore, RMS from each gesture in channel 1, 

channel 2, and channel 3 are compared with T
1
, T

2
, and 

T
3
, respectively. The features greater than the threshold are 

identified as active. As an example, RMS, threshold line, and 

active features from gesturing “a” in “apple” in channel 1 

are shown in Figure 5.

Multipurpose interface design
The main goal of the present work is to design a multipur-

pose interface for various HMI systems such as control-

ling assistive devices and artificial limbs. As mentioned 

earlier, facial gestures are considered an interface in this 

work. The number of input control commands can be dif-

ferent for controlling various devices, machines, robots, 

and prostheses. For instance, five input commands can be 

enough (forward, backward, left, right, and stop) to control 

a wheelchair. In other devices, the input control commands 

can be more or less. In this work, eleven facial gestures 

were chosen and each plays an input command role.  Various 

devices that need 2–11 input control commands are sup-

ported by this interface. In another words, the proposed 

interface is designed for several applications. This interface 

becomes practical by including all combinations of facial 

gestures and assigning them to different groups that include 

2–11  gestures. The groups are trained and classified to find 

the best combination with the highest recognition accuracy 

in each group. For instance, if the supposed machine needs 

two movements, the best two facial gestures with the high-

est recognition accuracy are chosen. All combinations of 

all facial gestures with different number of gestures are 

made as shown in equation 3:

 k

n n

k n k




 =

−( )
!

! !  (3)

where, n is the number of all facial gestures and k is the 

number of gestures in each group. Based on this equation, the 

number of all existing combinations in each group for each 

participant is indicated in Table 2. There are 1013 combina-

tions available to each person.

Normal signal is not counted as a facial gesture and is 

excluded from the combinations. In each application, normal 

signal needs to be considered as a command input and there 

is no need to classify it apart from other facial gestures. 

The normal signal or rest condition does not produce any 

signals compared with other signals and it is defined as a 
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Figure 4 raw signal of gesturing “a” in apple.
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neutral-input command, which is usually used to disable the 

devices. For an interface with nine control commands, there 

are 10 combinations of facial gestures available, and one 

of them has the highest classification accuracy (Table 2). 

Suppose that each facial gesture is represented by a number 

(Table 1). Table 3 shows all combinations of nine facial 

gestures.

Classification
In this step, all combinations must be trained and classi-

fied for each person (Table 2). The best combination with 

the highest recognition accuracy in each group is selected. 

Each combination contains a different number of facial 

gestures’ active RMS. These features must be classified and 

separated from each other as much as possible. There are 

some concerns with EMG classification such as electrode-

dislocation responsiveness and noticeable interruption in 

real-time control and the classifier must cope with them all. 

In this work, Fuzzy c-means clustering (FCM) is employed 

for its capability, simplicity, importance, and its wide use in  

EMG processing and classification.27,33,34 The most significant 

characteristic of FCM clustering is that it permits data to 

belong to two or more clusters and that makes it more flexible 

than other methods. Class labels always deliver a convenient 

direction throughout the training procedure, as they do in 

all supervised training methods. This idea led to the devel-

opment of a new mode of FCM called “supervised Fuzzy 

c-means.” In this method, the numbers of cluster centers are 

given before training as well. By utilizing the obtained active 

features as input data and adjusting other initial parameters, 

FCM can compute the location of each cluster center (V
i
) 

and the membership value of each data toward each cluster 

(U
ik
). This procedure is repeated until the optimized value of 

V
i
 and U

ik
 are found. This technique has already proven its 

ability to recognize eight facial gestures33 and it is applied 

here to design the proposed interface.

Results
To design a multipurpose interface, flexible sets of control 

commands are required for various applications. The best 

combinations of facial gestures are assigned to different 

usages where 2–10 control commands are needed. All 1013 

combinations obtained from each participant are trained 

and classified by FCM in the last stage, and the best com-

binations containing 2–10 facial gestures with the highest 

recognition accuracy are chosen. Two criteria are considered 

to find the best combinations: the first is the classification 

and recognition performances and the other is the way they 

are distributed and discriminated in feature space. Each 

combination of facial gesture can be recognized by its 

gesture’s labels (Table 1). For instance, combination code 

7652 includes the four gestures: closing eyes, gesturing “a” 

in “apple”; “No,” pulling up eyebrows; and smiling with right 

side. All classification results, average, and SDs of all ten 

participants with different numbers of facial gestures were 

collected (Table 4).

0
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Figure 5 The bottom plot determines the root mean squares (rMs) of gesturing “a” in apple word and the threshold line and above plot indicates the active rMs.

Table 2 Number of combinations in each group of facial gestures per participant

Number of facial gestures in each combination 2 3 4 5 6 7 8 9 10 Total
Number of combination(s) 45 120 210 252 210 120 45 10 1 1013
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Table 4 Final classification results of all participants with different number of facial gestures

Number of facial gestures: 2
Participants 1 2 3 4 5 6 7 8 9 10 Average sD
results (%) 100 100 100 100 100 100 100 100 100 100 100 0

Number of facial gestures: 3
Participants 1 2 3 4 5 6 7 8 9 10 Average sD
results (%) 100 100 100 100 100 100 100 100 100 100 100 0

Number of facial gestures: 4
Participants 1 2 3 4 5 6 7 8 9 10 Average sD
results (%) 100 100 100 100 100 100 100 100 100 100 100 0

Number of facial gestures: 5 5
Participants 1 2 3 4 5 6 7 8 9 10 Average sD
results (%) 100 100 100 100 100 100 100 100 100 100 100 0

Number of facial gestures: 6
Participants 1 2 3 4 5 6 7 8 9 10 Average sD
results (%) 98.21 97.68 97.2 98.1 97.7 99.1 98.45 97.9 97.34 98.03 98.03 0.5515

Number of facial gestures: 7
Participants 1 2 3 4 5 6 7 8 9 10 Average sD
results (%) 97.24 96.39 96.85 97.24 96.98 98.43 97.62 96.81 96.92 97.14 97.16 0.5517

Number of facial gestures: 8
Participants 1 2 3 4 5 6 7 8 9 10 Average sD
results (%) 95.5 95.21 94.45 95.78 94.65 96.13 95.89 94.82 94.37 95.08 95.18 0.6217

Number of facial gestures: 9
Participants 1 2 3 4 5 6 7 8 9 10 Average sD
results (%) 93.1 93.74 91.95 92.23 92.7 94.76 93.15 92.37 92.87 93.07 93.02 0.8084

Number of facial gestures: 10
Participants 1 2 3 4 5 6 7 8 9 10 Average sD
results (%) 90.63 88.45 89.52 90.11 86.71 91.02 89.15 88.97 87.83 91.27 90.41 3.1270

Abbreviation: sD, standard deviation.

Table 3 All combinations of nine facial gestures

combination 1 2 3 4 5
Facial gestures 1, 2, 3, 4, 5, 6, 7, 8, 9 1, 2, 3, 4, 5, 6, 7, 8, 10 1, 2, 3, 4, 5, 6, 7, 9, 10 1, 2, 3, 4, 5, 6, 8, 9, 10 1, 2, 3, 4, 5, 7, 8, 9, 10
combination 6 7 8 9 10
Facial gestures 1, 2, 3, 4, 6, 7, 8, 9, 10 1, 2, 3, 5, 6, 7, 8, 9, 10 1, 2, 4, 5, 6, 7, 8, 9, 10 1, 3, 4, 5, 6, 7, 8, 9, 10 2, 3, 4, 5, 6, 7, 8, 9, 10

combinations of two facial gestures
According to Table 2, 45 combinations can be made by 

just two facial gestures for each participant. After training, 

all of these combinations are distinguished perfectly with 

100% recognition accuracy in classification. In other words, 

results show that the robustness as well as accuracy of all 

combinations for all participants is identical and the SD 

is 0. Therefore, based on the application, each of these 45 

combinations can be considered as input commands. Table 4 

provides the results of the best combinations for all partici-

pants. Most of these combinations are well distributed in 

feature space as well. Figure 6A illustrates the distribution 

of the combination code 56 of the first participant.

combinations of three facial gestures
One hundred and twenty existing combinations for each 

participant were trained and classified. More than 95% of these 

combinations for each participant reached 100% classification 

accuracy. The average result and SD were 100% and 0, respec-

tively. Nevertheless, the work was accomplished with the best 

combinations where the three classes were well discriminated. 

For the first participant, combination code 532 is chosen as the 

best among all and it is illustrated in Figure 6B. Table 4 reports 

the results of the best combinations for all participants.

combinations of four facial gestures
Two hundred and ten combinations of facial gestures were 

classified for all participants and once again 95% achieved 

100% recognition accuracy. Average results and SD of all 

were 100% and 0, respectively. Combination code 53210 

was chosen as the best one. Table 4 and Figure 6C represent 

the results of the best combination for all participants and 

the distribution of the best four facial gestures of the first 

volunteer, respectively.
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Combinations of five facial gestures
Two hundred and fifty-two combinations made by five 

facial gestures were classified and combination code 45732 

was picked as the best with 100% recognition accuracy. 

Table 4 indicates the results of the best combination for all 

participants, average result, and SD. Figure 6D shows the dis-

tribution of the best five facial gestures of the first volunteer.

combinations of six facial gestures
Among all 210 existing combinations made by six facial 

gestures for each participant, the combination code 4578910 

was chosen as the best with 98.03% average recognition 

accuracy. An SD of 0.5515 was achieved for all volunteers 

(Table 4). Figure 6E demonstrates best distribution of the first 

participant with the combination code 4578910.

combinations of seven facial gestures
One hundred and twenty different combinations were con-

structed with seven facial gestures for each volunteer. The 

average result reported that the combination code 64578910 

provided 97.16% recognition accuracy with an SD of 0.5517 

(Table 4). Figure 6F shows this combination code for the 

first participant.

combinations of eight facial gestures
Forty-five combinations were trained and classified. The aver-

age result of the best combination reached 95.18% recognition 

accuracy with an SD of 0.6217 (Table 4) with code 234578910. 

Figure 6G shows the results for the first volunteer.

combinations of nine facial gestures
Ten combinations were made by nine facial gestures for each 

volunteer. Table 5 shows the results of all combinations for 

the first participant. Combination code 1235678910 is the 

best combination with 93.1% recognition accuracy. Table 4 

reports the final results for all participants with an average 

result of 93.02% recognition accuracy and an SD of 0.8084. 

Figure 6H shows the distribution of this combination for the 

first participant.

combinations of ten facial gestures
There is just one combination of all facial gestures (without 

normal signal) for each person. This group set achieved 

90.41% recognition accuracy with an SD of 3.1270 for all 

participants. Table 4 describes all results attained from all 

volunteers and Figure 6I depicts the distribution of the first 

participant’s data distribution. To distribute the concen-

trated features better while condensing the highly scattered 

points, a nonlinear transformation logarithm is applied to 

the features. By increasing the number of facial gestures, 

the variation between participants’ recognition results 

increases, which causes an increase in SD. Table 6 shows 

the  average of the best results from all facial gesture 

groups of all  participants. When the number of facial ges-

tures increases, the classification accuracy becomes lower 

because when the number of facial gestures is increased, the 

amount of data as well as the number of clusters becomes 

higher. The probability of data overlapping in each cluster 

increases.

Discussion
The main goal of this work is to design a multipurpose 

interface based on facial EMG gestures for HMI systems. It 

is accomplished and developed by employing eleven facial 

gestures and expressions. The obtained results show that this 

method produces an accurate interface in HMI systems. The 

main factors that differentiate this interface from others are: 

it contains more facial gestures, offers variety in choosing 

suitable facial gestures, is accurate, and can be used in vari-

ous applications.

Table 7 compares the research on applied facial EMG 

gestures as the interface. The comparison of the results 

shows that the current work has achieved the best perfor-

mance. In Ang et al, recognition of three facial gestures23 

obtained just 94.44% recognition accuracy while this work 

achieved 100%. Rezazadeh et al recognized five facial 

gestures,27 but attained 93.2% while 100% classification 

accuracy was achieved in this work. Furthermore, its 

easy implementation, simplicity, high speed and user-

Table 5 All combination results for first participant

Combination Results Combination Results

123456789 88.42% 1234678910 81.56%
1234567810 90.04% 1235678910 93.10%
1234567910 76.30% 1245678910 78.07%
1234568910 83.32% 1345678910 76.98%
1234578910 78.19% 2345678910 84.60%

Table 6 The average of all results of all participants

Number of facial gestures in each combination 2 3 4 5 6 7 8 9 10
Average of the best combinations 100% 100% 100% 100% 98.03% 97.16% 95.18% 93.02% 90.41%
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Figure 6 Data distribution of the best combinations with different numbers of facial gestures for the first participant.
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Table 7 Comparison of research in this field of study

Reference Participants Classes Feature Classifier Results Application

Present work 10 11 rMs FcM 90.41% Interface design
Moon et al22 1 5 MAV Thresholding 93% Intelligent robotic wheelchair
Ang et al23 2 3 MsD, rMs, PDs Minimum Distance 94.44% Interface design via three expressions
Ferreira et al24 8 2 – Thresholding 95.71% Mobile robot
Arjunan et al25 – 3 MrMs Linear separation 100% Unvoiced speech interface
Firoozabadi et al26 3 5 MAV sVM 100% control a virtual wheelchair
guillaume et al36 1 6 Absolute value gaussian models 92% enhancement of HcI via facial eMgs
rezazadeh et al27 10 5 rMs sFcM 93.2% Virtual brain control
egon et al28 21 4 Mean AD, sD, VAr K-NN, sVM, MLP 61%, 60.71%,  

56.19%
Facial eMg-based interface  
used in MMI

Abbreviations: AD, absolute deviation; eMgs, electromyograms; FcM, fuzzy c-mean; HcI, human–computer interface; K-NN, K-nearest neighbors; MAV, mean absolute 
value; MLP, multilayer perception; MMI, man–machine interface; MrMs, moving root mean square; MsD, maximum scatter difference; PDs, power spectrum density; rMs, 
root mean squares; sD, standard deviation; sFcM, subtractive fuzzy c-mean; sVM, support vector machine; VAr, variance.

friendliness are the advantages of this work compared to 

other methods. Apart from the above- mentioned points, the 

best combinations of facial gestures were found for each 

person in this work. Except for their general utility, vari-

ous combinations of facial gestures are available to each 

person and can be applied depending on the user’s condi-

tion. In this approach, normal signal is not considered as 

a gesture and it is not involved in declared combinations. 

However, it can still be used as a control command in this 

interface where the system needs to be disabled or put into 

a standby mode.

While this interface can be used by everyone, it 

is specifically targeted to people with both lower and 

higher  impairments. It is one of the last opportunities for 

 communication for these people, but, fortunately, it can help 

to improve their quality of life.

Conclusion
A multipurpose interface based on facial expression and 

gesture recognition was designed and applied in differ-

ent HMI systems. Eleven facial gestures were chosen and 

their EMG signals recorded in three bipolar configuration 

channels. This interface can be used to control any pros-

thesis, rehabilitation device, or robots where 2–11 control 

commands are needed. This work developed the earlier 

approaches by making all combinations of facial gestures 

for all participants and identifying the one with the highest 

recognition accuracy and the best data distribution. Facial 

EMG analysis methods applied in this work provide enough 

accuracy, speed, and simplicity for utility; therefore, suffi-

cient conditions for device control are prepared. In real-time 

and online control, especially in HMI systems where there 

is a user on one side of this system (a majority are elderly 

or handicapped people), the given interface can cope with 

all existing limitations.
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