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Background: Solid lipid nanoparticles (SLNs) are colloidal carrier systems which provide 

controlled-release profiles for many substances. In this study, we prepared aqueous dispersions 

of lipid nanoparticles using a modified, pH-sensitive derivative of phosphatidylethanolamine.

Methods: SLNs were prepared using polysorbate 80 as the surfactant and tripalmitin glyceride 

and N-glutaryl phosphatidylethanolamine as the lipid components. Particle size, polydispersity 

index, and zeta potential were examined by photon correlation spectroscopy. Morphological 

evaluation was performed using scanning electron microscopy, atomic force microscopy, and 

differential scanning calorimetry.

Results: Photon correlation spectroscopy revealed a particle hydrodynamic diameter of 

165.8 nm and zeta potential of −41.6.0 mV for the drug-loaded nanoparticles. Atomic force 

microscopy investigation showed the nanoparticles to be 50–600 nm in length and 66.5 nm in 

height. Differential scanning calorimetry indicated that the majority of SLNs possessed less 

ordered arrangements of crystals compared with corresponding bulk lipids, which is favorable 

for improving drug-loading capacity. Drug-loading capacity and drug entrapment efficiency 

values for the SLNs were 25.32% and 94.32%, respectively.

Conclusion: The SLNs prepared in this study were able to control the release of triamcinolone 

acetonide under acidic conditions.

Keywords: solid lipid nanoparticles, high-shear homogenization, triamcinolone acetonide, 

tripalmitin, phosphatidylethanolamine

Introduction
Solid lipid nanoparticles (SLNs) were developed in the early 1990s as an alternative 

carrier system to traditional colloidal systems, including emulsions, liposomes, and 

polymeric microparticles and nanoparticles.1 Tremendous progress has been made 

in the treatment of disorders using new drug delivery systems, including SLNs, 

which are made from solid lipids (ie, lipids solid at room temperature as well as body 

 temperature) and stabilized by surfactant(s).2 They are generally composed of a solid 

hydrophobic core with a monolayer of phospholipids or phospholipid-derived coating. 

The solid core contains the active drug dissolved or dispersed in a solid fat matrix 

with the hydrophobic ends of the phospholipid chains embedded in the fat matrix. 

Thus, they have the potential to carry lipophilic or hydrophilic drug(s) for diagnostic 

purposes.3–5

A clear advantage of SLNs over polymeric nanoparticles is the fact that the lipid 

matrix is made from physiologically tolerated lipid components, which decreases the 

potential for acute and chronic toxicity.5,6 SLNs have fewer storage and drug leakage 
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problems compared with systems such as liposomes and also 

have good stability for 2–3 years.6–9

It is noteworthy that tumors and inflamed tissues are often 

associated with leaky vascular architecture as a result of the 

poorly regulated nature of tumor angiogenesis. Furthermore, 

the acidity of these regions differs from physiological pH. 

Therefore, the use of acid-sensitive drug carriers has been one 

of the most extensively studied active triggering strategies.10,11 

Dong and Hoffman prepared and reported pH-sensitive 

hydrogels for drug delivery.12 Oh and Lee created a novel 

vector for delivery of anticancer therapy to solid tumors using 

diafiltration to synthesize pH-sensitive polymeric micelles, 

and observed that release of doxorubicin as micelles was 

triggered at pH 6.8.13 Reddy and Low prepared a pH-sensitive 

lipid formulation from dioleylphosphatidylethanolamine and 

citraconic anhydride, and used this to prepare liposomes. 

They observed that the resulting liposomes were stable at 

neutral pH but fusogenic at pH 5.11

The nature of tumor angiogenesis enables submicron-

sized particulate matter, such as SLNs, to penetrate 

preferentially into tumor tissue and be retained there. 

Consequently, tumor-specific drug delivery is attracting 

considerable attention in cancer therapy.7,14–16 Moreover, 

with advances in surface engineering technology, the 

biodistribution of SLNs can be further manipulated by 

modifying the surface physicochemical properties of SLNs 

to target them to the tissue of interest, particularly to tumors 

and inflamed tissue.7,17 So far, researchers have prepared 

various derivatives of phospholipids and used them on the 

outer shells of SLNs.18

The aim of the present study was to investigate the 

feasibility of the inclusion of triamcinolone acetonide 

into surface-modified solid lipid nanoparticles. For this 

purpose, nanoparticles were covered with modif ied 

phosphatidylethanolamine as an outer shell. Triamcinolone 

acetonide is usually administered via the parenteral route to 

treat inflammatory disorders and cancer of the lymph nodes. 

It is a drug with poor water solubility and high lipophilicity, 

which makes it suitable for SLN encapsulation and in 

vitro characterization. SLN release has been studied using 

lyophilized nanoparticles in different media. Modified high 

shear homogenization and ultrasound techniques have been 

used to produce low particle sizes and high encapsulation 

eff iciency,19 while photon correlation spectroscopy, 

differential scanning calorimetry, atomic force microscopy, 

and scanning electron microscopy have been used for their 

characterization.

Materials and methods
The following materials were obtained from the indicated 

sources and used in our study without further purification. 

Tripalmitin glyceride was purchased from Alfa Aesar 

(Germany), and phosphatidylethanolamine and triamcinolone 

acetonide from Sigma-Aldrich (St Louis, MO). Glutaric 

anhydride, polysorbate 80, and sucrose were obtained 

from Merck (Darmstadt, Germany). High-pressure liquid 

chromatography (HPLC) grade methanol and analytical 

grade chloroform and ethanol were also purchased from 

Merck. Other reagents were of analytical or HPLC grade. 

Double-distilled water was prepared in our laboratory.

Preparation of modified 
phosphatidylethanolamine
For preparation of modified phosphatidylethanolamine, 

5 mg of lipid was dissolved in 10 mL of chloroform, and 

an approximately five-fold molar excess (3.85 mg) of 

 glutaric anhydride was then added in the presence of 7.5 µL 

pyridine, and the mixture was incubated at 20°C for 5 hours.20 

Modified phosphatidylethanolamine was identified by iodine 

staining.21 N-glutaryl phosphatidylethanolamine was  isolated 

using plate chromatography and chloroform-methanol 

(65:35 v/v) as the solvent, with a yield of 90%:
1H NMR (200 MHz, CDCl

3
) δ 0.88 (6H), 1.30 (32 H), 

1.59 (4H), 1.99 (2H), 2.16 (8H), 2.27 (6H), 2.61 (2H), 3.48 

(2H), 3.95 (2H), 4.13 and 4.38 (2H), 4.20 and 4.51 (2H), 

4.71 (1H), 5.33 (4H), and 7.38 (1H) that peaked in 7.38 ppm 

indicated amidic hydrogen.

Preparation of aqueous sLNs and 
lyophilization
Triamcinolone acetonide (0.75% w/v), tripalmitin glyceride 

(2% w/v), and N-glutaryl phosphatidylethanolamine 

(0.5% w/v) were dissolved in 10 mL of chloroform and 

methanol mixture (1:1). Organic solvents were completely 

removed using a rotoevaporator (Laborota 4003, Heidolph, 

Schwabach, Germany). The drug-embedded lipid layer 

was melted by heating at 70°C above the melting point of 

the lipid. An aqueous phase was prepared by dissolving 

polysorbate 80 (1% w/v) in double-distilled water and heated 

to the same temperature as the oil phase. The hot aqueous 

phase was added to the oil phase, and homogenization 

was achieved (at 10,000 rpm and 70°C) using a Diax 900 

homogenizer (Heidolph) for 2 minutes. The resulting coarse 

hot oil in water emulsion was ultrasonicated using a Sonoplus 

ultrahomogenizer (Bandelin, Germany) for 15 minutes. 
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Triamcinolone acetonide-SLNs were obtained by allowing 

the hot nanoemulsion to cool off at room temperature.

Sucrose was used in the freeze-drying process as a 

cryoprotector at a concentration of 3 wt%.22 The SLN sus-

pension was frozen in an aqueous sucrose solution at −70°C 

overnight, and the sample was subsequently transferred to 

the freeze-drier (ZiRBuS Technology VaCo 5, D-37539) at 

−50°C for 72 hours, and finally the SLN powder was col-

lected for further experiments.

Determination of entrapment efficiency 
and drug-loading capacity
The percentage of incorporated triamcinolone acetonide 

(entrapment efficiency) was determined by spectropho-

tometric determination at 234 nm using an Agilent 8453-

spectrophotometer, after ultracentrifugation of the aqueous 

dispersion (40,000 rpm for 45 minutes). The amount of free 

drug was detected in the supernatant and the amount of incor-

porated drug was calculated as the initial drug minus the free 

drug. The drug entrapment efficiency and drug-loading in the 

SLNs were calculated using equations (1) and (2):

 EE (%) =
W W

W
100a s

a

−
×







 (1)

 DL (%) =
W W

W -W +W
100a s

a s L

−
×







 (2)

where EE is entrapment efficiency, DL is drug-loading, and 

W
a
, W

s
, and W

L
 are the weight of drug added into the system, 

analyzed weight of drug in the supernatant, and weight of 

lipid added into the system, respectively.23

Particle diameter, polydispersity index, 
and zeta potential
Measurement of hydrodynamic diameter, polydispersity 

index, and zeta potential of the nanoparticles was accom-

plished using photon correlation spectroscopy (Nano 

ZS4700, Malvern Instruments, Worcestershire, UK). For 

size measurement, all formulations were diluted by deion-

ized water to eliminate the effect of viscosity caused by the 

ingredients. Zeta potential measurements were conducted 

for samples prepared for size measurement. Hydrodynamic 

diameter and zeta potential were reported as the mean of three 

measurements at 25°C. The refractive index of the SLNs and 

water was set at 1.35 and 1.33, respectively.

scanning electron microscopy
In order to verify the result, the morphology of the triam-

cinolone acetonide-SLNs was studied by scanning electron 

microscopy using a Philips XL30 microscope at an acceler-

ating voltage of 10 kV. One droplet of SLN nanosuspension 

was placed on an aluminum specimen stub. After oven-drying 

for 12 hours, the sample was coated with a platinum layer 

using an SCDOOS sputter coater (BAL-TEC, Sweden) in 

an argon atmosphere. Subsequently, the sample was scanned 

and photomicrographs were obtained.

Atomic force microscopy
The surface properties of the drug-loaded SLNs were 

visualized using an atomic force microscope (Mobile 

S, Nanosurf, Switzerland). Explorer atomic force microscopy 

was in noncontact mode, using high resonant frequency (F0 

170 kHz) pyramidal cantilevers with silicon probes having 

dynamic force. The sample was diluted with distilled water 

and then dropped onto a freshly cleaved mica plate, followed 

by vacuum drying for 24 hours at 25°C.

Differential scanning calorimetry
The thermal characteristics of the SLNs and pure drug 

were determined using a differential scanning calorimeter 

(Shimadzu DSC-60, single heating ramp 0°C–300°C, heated 

at 5°C/minute) under a dry nitrogen atmosphere. Samples 

(7–8 mg) were placed in an aluminum pan and heated at 

a rate of 5°C/minute. Empty aluminum pans were used as 

references, and the entire thermal behavior was studied under 

a nitrogen purge.

Assay for triamcinolone acetonide
A simple and sensitive HPLC method with ultraviolet detection 

was used for analysis of triamcinolone acetonide.20 The 

triamcinolone acetonide concentration was determined using 

an HPLC system (LC-10AS Liquid Chromatograph,  SCL-10A 

System Controller, SIL-10AV UV-Vis Detector, C-R6A 

 Chromatopac, Shimadzu, Japan). The analytical conditions 

were as follows: column C18, HPLC Pack column, Inertsil 

ODS, 5 µm, 4.6 × 250 mm (GL Sciences Inc, Japan); ultraviolet 

detection, 240 nm; mobile phase, methanol; water 50:50 (v/v); 

flow rate 1 mL/minute; and injection volume 25 µL.

In vitro release of triamcinolone 
acetonide from sLNs
This experiment was conducted using a static horizontal 

Franz diffusion cell to evaluate the amount of triamcinolone 
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 acetonide released from each formulation.24 A  cellulose 

 acetate membrane with a molecular weight cutoff of 

12,000 Da and a surface area of 2.0 cm2 was used and 

mounted on the Franz diffusion cell. The receptor medium 

was precisely 50 mL in volume and composed of an aque-

ous solution of physiological saline, phosphate-buffered 

saline, and 20% ethanol at four pH values of 4.0, 5.0, 6.0, 

and 7.4, stirred by a magnetic bar at 500 rpm to homogenize 

the medium. Each formulation, 10 mg in 1 mL volume, was 

loaded onto the membrane in the donor compartment. The 

temperature of the assay was controlled at precisely 37°C. 

At predetermined time intervals, 1 mL aliquots of the release 

medium were withdrawn using a syringe needle, and the same 

volumes of freshly prepared receptor medium were added. 

The samples were analyzed using an HPLC method described 

previously.20 The experiments were repeated three times and 

the results were expressed as means ± standard deviation.

Results and discussion
Preparation of nanoparticles, drug 
entrapment efficiency, and loading 
capacity
In this study, homogenization was performed at above 

the melting point of the lipid followed by ultrasonica-

tion for preparation of modified SLN.25,26 To disperse the 

triamcinolone acetonide homogeneously in the lipid, a 

chloroform/methanol solvent system was used and homog-

enized for 2 minutes.27 Subsequently, the prepared SLNs 

were subjected to further lyophilization. Our preliminary 

studies showed that reconstitution of freeze-dried SLNs was 

impossible when they were freeze-dried without addition of 

cryoprotectants. Therefore, a 1:1 dilution with 3% w/w of 

sucrose as a cryoprotectant was performed.28

Many different drugs have been incorporated in the 

SLNs.17 The prerequisite for obtaining a sufficient loading 

capacity is a sufficiently high solubility of the drug in the lipid 

melt. Relatively higher encapsulation efficiency constitutes 

one of the major advantages of SLNs.

For calculations of entrapment efficiency and loading 

capacity, calibration curves for the ultraviolet assays of 

triamcinolone acetonide were conducted on eight solutions 

in the concentration ranges of 1.5 × 10–3 to 1.25 × 10–4 mol/L; 

encapsulation efficiency and drug-loading were 94.32% and 

25.32%, respectively. The high entrapment efficiency of the 

drug is thought to be the result of the lipophilic characteristics 

and high compatibility between the drug and the lipid. 

Furthermore, the high encapsulation efficiency and drug-

loading in comparison with previous work24 is a result of 

the method of preparation and mixing of the drug and lipid 

matrix in the organic solvents.

Nanoparticle characterization
The mean particle size, polydispersity index and zeta 

potential of the SLNs with and without drug were measured 

by photon correlation spectroscopy, as summarized in 

Table 1. The mean particle sizes of 165.8 nm and 97.44 nm 

were obtained for drug-loaded and free SLNs, respectively 

(Table 1). The increase in size after drug loading must be 

due to incorporation of the drug in the nanoparticle matrix.23 

The polydispersity index is a ratio providing information 

about the homogeneity of particle size distribution in a 

given  system, and ideally, this should be ,0.3.29 Triamcinolone 

acetonide-loaded and free SLN had polydispersity index 

values of 0.254 and 0.337, respectively, indicating that the 

nanoparticles had a narrow size distribution, and suggesting 

nanoparticle monodispersity.30,31 The zeta potential is a key 

factor for evaluation of the stability of a colloidal dispersion.23 

When the absolute value of the zeta potential is higher than 

30 mV for a colloidal formulation, the particles are likely to 

be electrochemically stable under the investigated condition.25 

Zeta potential values of −41.6 mV and −43.0 mV were obtained 

for the drug-loaded and free SLNs, respectively (Figure 1). As 

Table 1 demonstrates, as time passes, increases are observed in 

size, polydispersity index, and zeta potential as a result of light 

and other factors that cause gelation.32 However, it is obvious 

from these values that the prepared nanosuspension has an 

acceptable electrochemical and physical stability potential for 

3 and 6 months of storage.

Similarly, in order to evaluate the stability of SLNs 

lyophilized powder after 6 months, 10 mg of sample was 

Table 1 Particle size polydispersity index and zeta potential for drug-loaded and free solid lipid nanoparticles in colloidal suspension

Free nanoparticles Drug-loaded nanoparticles

Size (nm) pDI ZP (mV) Size (nm) PDI ZP (mV)
Freshly prepared 97.44 0.347 −43.0 165.8 0.254 −41.6
After 3 months 117.4 0.337 −25.8 173.0 0.329 −40.0
After 6 months 167.6 0.346 −20.7 193.5 0.334 −23.3

Abbreviations: PDI, polydispersity index; ZP, zeta potential.
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dispersed in distilled water and characterized. The values 

for particle diameter, polydispersity index, and zeta potential 

were 223.3 nm, 0.321, and −30.1, respectively. These results 

indicate that, using sucrose as a cryoprotectant, the particle 

size remains in the nanometric range.

In order to obtain a scanning electron microscopic image, 

we used freshly prepared SLN loaded with triamcinolone 

acetonide, and micrographs of the samples containing 

drug-loaded SLNs are shown in Figure 2. The micrographs 

demonstrated a spherical shape and a smooth surface, with 

a particle size in the nanometric range.25

The atomic force microscopy technique has been widely 

used to obtain size, shape, and surface morphological infor-

mation about nanoparticles. It is capable of resolving surface 

details down to 0.01 nm and producing a contrasted and 

three-dimensional image of the sample.23 A drop of diluted 

aqueous suspension (without preliminary ultrafiltration) was 

placed on a mica slide and dried out at room temperature 

for 24 hours. Figure 3 gives the tapping mode atomic force 

microscopic images of freshly prepared SLN containing 

triamcinolone acetonide after 24 hours (A and B), 48 hours 

(C and D), and 1 week (E and F). The nanoparticle images 

demonstrated spherical particles of 50–600 nm in diameter, 

but only 66.5 nm in height. After 48 hours, the nanoparticles 

were uniformly grown on mica slides, as illustrated in 

 Figure 3 (C and D). One week after spreading SLNs onto the 

mica plates, no particles could be distinguished in the atomic 

force microscopic images, which showed homogeneous 

and flat shapes, as illustrated in Figure 3 (E and F).33 This 

result is not surprising, considering the well known ability 

of particles to fuse during evaporation of water consequent 

to the molecular diffusion on the surface of the particles. 

Moreover, the presence of free surfactant in the suspension 

may increase the characteristic size.33
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Figure 1 Zeta potential of (A) drug-loaded solid lipid nanoparticles and (B) free 
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Figure 2 scanning electron micrographs of freshly prepared solid lipid nano-
particles loaded with triamcinolone acetonide; (A) 3.00 K× resolution, (B and C) 
20.00 K× resolution.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2011:6submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2398

Kashanian et al

A C E

34.2 n

−32.4 n

Xx 4.42 µm

0 µm 4.42 µmXx

0 
µm

4.
42

 µ
m

Y
x

T
op

og
ra

ph
y 

ra
ng

e
P

ol
yn

om
ia

l f
it 

66
.5

 n
m

0 µm 4.42 µmXx

0 
µm

4.
42

 µ
m

Y
x

T
op

og
ra

ph
y 

ra
ng

e
lin

e 
fit

 1
32

 n
m

0 µm 1.1 µmXx

0 
µm

1.
1 

µm
Y

x

T
op

og
ra

ph
y 

ra
ng

e
M

ea
n 

fit
 6

7.
4 

nm

Topography – scan forward Topography – scan forward Topography – scan forward

Yx 4.42 µm

67.9 n

−63.8 n

P
ol

yn
om

ia
l f

it 
66

.5
 n

m

Li
ne

 fi
t 1

32
 n

m

M
ea

n 
fit

 6
7.

4 
nm

Xx 4.42 µm

Yx 4.42 µm

45.1 n

−22.3 n

Xx 1.1 µm
Yx 1.1 µm

B D FTopography – scan forward Topography – scan forward Topography – scan forward

Figure 3 Atomic force microscopy of solid lipid nanoparticles loaded with triamcinolone acetonide. (A) and (B) are solid lipid nanoparticles loaded with triamcinolone 
acetonide after 24 hours. (C) and (D) are solid lipid nanoparticles loaded with triamcinolone acetonide after 48 hours remaining on a mica slide. (E) and (F) are solid lipid 
nanoparticles loaded with triamcinolone acetonide after 1 week remaining on a mica slide. A, C, and D are three-dimensional images of the multiparticles and B, D, and F 
are the two-dimensional pictures of the multiparticles.

Differential scanning calorimetry thermograms for triam-

cinolone acetonide, tripalmitin glyceride, a physical mixture 

of triamcinolone acetonide, tripalmitin glyceride, modified 

phosphatidylethanolamine, and lyophilized SLNs are shown 

in Figure 4. A sucrose thermogram is also shown in this figure 

to demonstrate peaks of lyophilized SLNs. The triamcinolone 

acetonide powder showed a sharp melting process with an 

onset temperature of 284.72°C and a peak of 286.04°C, with 

a melting enthalpy of 64.73 J/g. This was confirmed by the 

presence of a melting peak for triamcinolone acetonide in the 

physical mixture. However, no melting process was observed 

for the lyophilized SLN suspension. This suggested that 

there was no crystalline triamcinolone acetonide in the SLN 

suspension, and triamcinolone acetonide might be present 

in an amorphous state. Similar results have been reported 

by previous researchers, stating that rapid quenching of the 

nanoemulsion does not allow the drug to crystallize.26,27 An 

endothermic peak of the sucrose used as a cryoprotectant 

was observed at 170.21°C in the triamcinolone acetonide-

SLN curve. Meanwhile, the melting peak temperature of 

tripalmitin glyceride in lyophilized SLN (57.73°C) was 

diminished when compared with the temperature of the 

bulk lipid (64.38°C). The decrease in melting point can be 

attributed to the small size (nanometer range), high specific 

surface area, and presence of a surfactant.15,30 This can also 

be attributed to the Kelvin effect and is described by the 

Thomson equation.3 Moreover, the lower melting enthalpy 

value of 35.72 J/g indicates a less ordered lattice arrange-

ment of lipids within the nanoparticles compared with the 

bulk materials.9

In vitro drug release
In this study, the in vitro release of triamcinolone acetonide 

from SLNs was investigated for 60 hours at 37°C using a 

Franz diffusion cell (Figure 5). Due to the low water solubility 

of triamcinolone acetonide, 20% ethanol was added to the 

phosphate-buffered solution at four pH values of 4.0, 5.0, 6.0, 

and 7.4.24 Our results showed that up to 50% was released 

over the test period. The prolonged and lower release of 

SLNs after 12 hours can be explained by slower diffusion of 

triamcinolone acetonide from the inner solid core matrix of the 

formulations. However, the initial fast release was detected at 

a lower pH. In this experiment, we studied the release profile 

of pure drug compared with nanoparticles in acidic pH, and the 

release half-life of drug release was significantly diminished 

compared with nanoparticles (about 25 minutes).

The release data were analyzed using the following 

Higuchi kinetic equation:25 Q
t
 = k·t0.5, where Q

t
 is the 
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 percentage of drug released at time t, and k is the release rate 

constant. Regarding the release model of all formulations, it 

was found that the prolonged release characteristic of triam-

cinolone acetonide was well fitted to Higuchi’s square root 

model, as has been reported for drug-loaded SLN systems.25,34,35 

Linear fits were obtained, indicating that the release profile 

of triamcinolone acetonide from homogenous and granular 

matrix systems is diffusion-controlled. The R2 values from 

in vitro release kinetics and the K values or release rate 

constant obtained from the Higuchi model plot are presented 

in Table 2. Furthermore, as shown in Figure 6 and the in vitro 

release data, we found that the burst release was increased 

with a decline in pH that demonstrates a change in structure 

of the phospholipids and release of the terminal anhydride. 

Several previous studies have been conducted to identify a 

pH-sensitive carrier preparation, and often the amount of 

drug release from SLNs was small compared with our results, 

and the values for common SLNs without modification were 
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Figure 4 Differential scanning calorimetry thermograms of (A) tripalmitin glyceride, (B) a physical mixture of tripalmitin glyceride, triamcinolone acetonide, and modified 
phosphatidylethanolamine, (C) lyophilized solid lipid nanoparticle suspension, (D) sucrose, and (E) triamcinolone acetonide.
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below 25%.8,25,27 Subedi et al investigated pH-sensitive SLNs 

and used them for doxorubicin delivery; in their work, 30% 

of the drug was released after 24 hours.8

Venkateswarlo and Manjunath investigated SLNs of 

tripalmitin and used them as clozapine carriers, and in their 

work, up to 20% of drug was released after 48 hours.25 Liu 

et al investigated SLNs containing triamcinolone acetonide in 

mixtures of monoglycerides, diglycerides, and triglycerides 

of palmitic acid and stearic acid, and found that the drug was 

released more slowly compared with our prepared carrier.24 

The simple mechanism for terminal release of anhydride from 

modified polyethylene is shown in Figure 6. This pathway 

was faster at an acidic pH of 4. Nevertheless, it is certain that 

this carrier requires further in vitro and in vivo studies.

Conclusion
As mentioned above, SLNs offer an attractive means of drug 

delivery, particularly for poorly water-soluble drugs. They 

combine the advantages of polymeric nanoparticles, fat emul-

sions, and liposomes. In this study, modified N- glutaryl-phos-

phatidylethanolamine was prepared, used for SLN preparation, 

and characterized. The results indicate that the carrier has 

suitable stability in colloidal form and may increase drug 

release under acidic conditions. Homogenization  followed 

by ultrasonication is suitable for producing small SLNs with 

an average diameter of 165.8 nm. Using a  Zetasizer, atomic 

force microscopy, and SEM, the diameter and morphology 

of the particles was investigated. Zeta potential data indicate 

the stability of the nanosuspension. After 6 months, Zeta-

sizer data did not indicate any obvious changes in diameter, 

polydispersity index, and zeta potential. An in vitro study 

indicated an increase in burst release and a pH decrement 

as well. In vitro release kinetics coincide with the Higuchi 

equation. These observations suggest that the present system 

offers an exciting mode of target delivery for potent lipophilic 

anticancer drugs and anti-inflammatory agents.
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Table 2 r2 and K for drug-release experiment in four types of receptor medium

Receptor pH 4 5 6 7.4

r2 0.989 ± 0.0034 0.981 ± 0.0046 0.985 ± 0.007 0.980 ± 0.0025
K 0.119 ± 0.013 0.102 ± 0.018 0.092 ± 0.011 0.086 ± 0.018

Notes: r2 determination coefficient and k dissolution rate constant (µg/mL/h−1/2). each value represents the mean of three experiments ± standard deviation.
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Figure 6 Terminal release of anhydride from modified phosphatidylethanolamine.
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