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Abstract: This preliminary study investigated the use of poly (2-hydroxyethyl methacrylate) 

(pHEMA) nanoparticles for the delivery of the deoxyribonucleic acid (DNA) vaccine pCAG-

HAk, which expresses the full length hemagglutinin (HA) gene of the avian influenza A/Eurasian 

coot/Western Australian/2727/1979 (H6N2) virus with a Kozak sequence which is in the form 

of a pCAGGS vector. The loaded and unloaded nanoparticles were characterized using field-

emission scanning electron microscopy. Further characterizations of the nanoparticles were 

made using atomic force microscopy and dynamic light scattering, which was used to investi-

gate particle size distributions. This preliminary study suggests that using 100 µg of pHEMA 

nanoparticles as a nanocarrier/adjuvant produced a reduction in virus shedding and improved 

the immune response to the DNA vaccine pCAG-HAk.
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Introduction
Nanotechnology has been able to deliver a wide range of new and novel materials. 

These new nanomaterials are increasingly becoming the subject of many investiga-

tions in several fields, particularly those of engineering, biotechnology, and biomedi-

cal sciences.1,2 Nanomaterials can be made from a wide range of solid materials such 

as metals, ceramics, polymers, organic materials, and composites. They can come in 

a wide range of morphologies; namely, spheres, rods, tubes, and plates. The use of 

nanoparticles of biodegradable polymers is being extensively studied since they pro-

vide an attractive alternative for a number of nanomedical applications by providing 

a delivery platform for the sustained, controlled, and targeted release of drugs and 

immunogens. These immunogens, therapeutic drug agents, or in some cases imaging 

agents can be loaded into a biodegradable polymer matrix. Once the polymer is admin-

istered, the nanoparticles of the matrix slowly begin to degrade and release the drug or 

immunogen agents. In addition, the biodegradable nanoparticles can be administered 

through several different delivery routes, such as oral, nasal, ocular, transdermal, and 

intravenous routes.3 Ideally these nanoparticles should be inert, biocompatible, and 

biodegradable. They also need to be stable in vivo, easily attached to immunogens, 

effectively delivered, and have little or no side effects.4–6

The 1918 Spanish flu is considered to be the deadliest disaster in human history. 

The flu killed more than 50 million people worldwide and was related to an avian flu 

Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
2167

O riginal        R esearch     

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/IJN.S24272

In
te

rn
at

io
na

l J
ou

rn
al

 o
f N

an
om

ed
ic

in
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

mailto:g.poinern@murdoch.edu.au
www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2011:6

virus H1N1.7 In the late 1990s, the re-emergence of avian 

influenza demonstrated that this type of virus is persistent and 

can reach endemic levels in many south-east Asian countries 

if not effectively managed. Influenza still remains an impor-

tant and threatening disease to both humans and animals. In 

contrast to measles, smallpox, and poliomyelitis, influenza 

is caused by viruses that undergo a continuous antigenic 

modification within their natural host. The natural reservoir 

for these viruses is aquatic, migratory birds, which usually 

flock in large numbers and travel great distances between 

countries. When these birds associate with the local terrestrial 

poultry they can occasionally transmit transitory infections. 

The diversity of diseases that can be transmitted range from 

mild respiratory illnesses to fatal systematic diseases. The 

development of new antiviral drugs and vaccines based on 

nanoparticles has the potential to provide an effective method 

in dealing with any possible future outbreaks of the influenza 

virus strains.

Polymer based nanoparticles have been found to improve 

the therapeutic efficacy and reduce the potential side effects 

of many therapeutic drug agents. The major challenge fac-

ing nanomedicine today in using these polymeric delivery 

systems is to engineer and manufacture a biodegradable 

nanoparticle matrix with the desired physiochemical and 

pharmaceutical properties. If these optimum properties 

are achieved, then delivering the payload should permit 

the controlled release of medication concentration within 

the effective therapeutic window and dosage.3 The poly-

meric nanoparticle matrix used in any particular application 

is an important factor because it can influence parameters 

such as protein loading, stability, biodegradability, and 

bioavailability.8 Thus there are a number of commercially 

available biodegradable polymers currently used in poly-

meric nanoparticle matrix formulations. For example, the 

most widely researched Food and Drug Administration 

(FDA)-approved biodegradable polymers in the literature 

are poly (lactide) (PLA), poly (D,L-lactide-co-glycolide) 

(PLGA) (a copolymer of PLA and poly (glycolide) [PGA]), 

and poly (ε-caprolactone) (PCL).9

The polymers PLA, PLGA, PGA, and PCL were all 

originally synthesized in the 1950s for nondrug delivery 

functions such as surgical sutures, textile grafts, and implants. 

Since this time, these polymers have been also investigated 

for a variety of drug agent delivery platforms in a number 

of therapeutic applications. Unfortunately, there are a num-

ber of disadvantages in using these polymers; for example, 

their strong mechanical strength and slow degradation rates, 

which can lead to a slow drug release that does not provide 

the desired concentration. In addition, the bioactivity of 

proteins and peptides encapsulated in the polymer matrix 

can deteriorate since the polymers’ hydrophobic nature can 

produce an acidic microenvironment. This microenviron-

ment results from water being unable to enter the matrix 

and the accumulation of acidic breakdown products (lactic 

and glycolic acid end groups). There are also issues with the 

hydrophobic nature of the polymeric nanoparticles interact-

ing with hydrophilic molecular probes used for targeting, 

which can lead to complications in the drug preparation 

technology.8 It is due to these disadvantages that many 

researchers look for other novel biodegradable polymers 

and copolymer delivery platform systems for immunogens 

and therapeutic drugs.

Many synthetic methods have been used to manufacture 

a variety of nanopolymeric particles with various sizes and 

morphologies. The latter parameters having a dominant bear-

ing on the final properties of the nanomaterial synthesized. 

Some of the attractive features of using a synthetic sono-

chemical approach are: less complications, reduced process-

ing time, generally more efficient, and economical.10–13 The 

sonochemical technique is based on the acoustic cavitation 

phenomenon, which produces the continuous formation, 

growth, and final implosive collapse of bubbles in the solu-

tion being sonicated. This creates numerous hot-spots in the 

solution, which provide sufficient energy for the formation 

and growth of nanoparticles. This synthetic process can be 

extended to polymers and composite materials.14,15

In this article, the development of biocompatible and 

biodegradable nanosized poly (2-hydroxyethyl methacrylate) 

(pHEMA) particles that are used as deoxyribonucleic acid 

(DNA) vaccine carriers is described. DNA vaccination is 

an effective procedure for inducing protective immunity 

against a number of infectious and noninfectious diseases in 

a variety of animals.16 However, several factors can influence 

their performance; for example, the delivery technique will 

dictate the DNA dosage level that is required to solicit an 

effective immune response. In addition, the rapid degrada-

tion and low cellular uptake of plasmid DNA can also have a 

dramatic effect on the efficiency of the exposed plasmid DNA 

vaccines.17 To remediate these problems, plasmid DNA vac-

cines have been combined with particles, via adsorption, or 

encapsulation, or by co-formulation to stabilize the plasmid 

DNA delivery. Combining plasmid DNA with particles sig-

nificantly reduces the degradation process and also stabilizes 

the vaccine. It also has the advantage of providing particular 

materials that are effectively taken up by the antigen present-

ing cells, thus providing an adjuvant (synergistic) effect. 
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Historically, adjuvants have been successfully used in the 

development of vaccines.18 Conventional chemical adju-

vants such as bupivacaine19 or Marcaine® (Hospira, Inc, 

Lake Forest, IL), ubenimex,20 monophosphoryl lipid A,21 

QS-21  saponin,22 and levamisole23 have been investigated 

successfully. These adjuvants were able to facilitate a positive 

immune response to the DNA vaccines being tested.

The discovery in 1995 of injecting solid inert beads with 

DNA-encoded antigens resulted in the priming of CD8T cells 

for a direct immune response.24 Since then, inert nanopar-

ticles have also been able to induce strong immune responses 

to protein and peptide antigens in mice,25,26 sheep,18 pigs,27 

and cattle.27 In addition, both metals and inorganic nanoma-

terials have been used in similar biomedical applications. 

For example, a metal such as gold which is nontoxic, inert, 

and stable within the body environment has been used as a 

contrast agent in cancer diagnosis and photodermal cancer 

therapy. It has also been effectively used as a delivery 

platform for oligonucleotide, insulin, and genes.28 Metal 

oxide NPs such as magnetite (Fe
3
O

4
) have been used as 

magnetically targeted drug delivery platforms due to their 

biodegradability and biocompatibility. Once these NPs 

are introduced into the blood stream, the particles flow to 

the specific location of interest in the body where a strong 

magnetic field can be used to pull them out of suspension 

and deliver the pharmaceutical payload.29 Furthermore, an 

inorganic material such as mesoporous silica, with its con-

trollable structural properties and biocompatibility, has been 

effectively used to deliver calcein.30

In the case of DNA vaccines, cationic nanoparticles 

have been formulated with plasmid DNA encoding of a 

reporter gene. This vaccine was able to enhance the in-vitro 

cell transfection efficiency and achieve a substantial cellular 

immune response (16–200 times greater than the normal 

plasmid DNA by itself) in mice cells via a number of delivery 

routes.4,31–33 Furthermore, it has also been shown that when 

both the cholera toxin and lipid A were administered with a 

nanoparticle-based plasmid DNA, there was an overall syner-

gistic effect which enhanced the immune response of the cel-

lular tissues.5,33 Thus, nanoparticles can also be seen as a novel 

class of adjuvants, with the potential to be effective delivery 

platforms for proteins and plasmid DNA immunogens, 

which can successfully induce a positive immune response. 

In addition, the nanoparticle delivery platform distributes its 

payload without the usual side effects associated with local 

tissue damage caused by conventional chemical adjuvants.

In the past, polymeric particles, both synthetic and natural, 

have been investigated as potential carriers for the delivery of 

plasmid DNA to provide cellular immunity. These particles 

have been found to provide suitable accommodation to plas-

mids of varying sizes and to provide protection to the plasmid 

DNA payload from the in-vivo effects of extracellular degrada-

tion. In addition, these particles have also provided an enhanced 

response from the immune system. The first polymeric particle 

delivery system used for delivering DNA used microsized 

particles of poly (lactideco-glycolide).34 Recently, polymeric 

nanoparticles have been investigated for possible plasmid 

DNA vaccine carriers. The most attractive features of using 

nanosized polymeric delivery systems are: the nanostructure 

provides an effective scaffold which is capable of providing 

a controlled release of DNA, polymeric nanoparticles can 

easily be manufactured, and they are biocompatible and 

biodegradable.35,36 Recently, a polymeric microparticle study 

of formulated plasmid DNA encoding of the nucleoprotein 

gene A/PR/8/34 of the (H1N1) virus revealed an enhanced 

immune response in mice37 and a biodegradable pHEMA has 

also been used in a similar drug delivery system.38,39 However, 

to date there has been no reports of a nanoparticle pHEMA-

based avian influenza DNA vaccine for the H6N2 virus. The 

present study investigated the immunologic effect of a novel 

polymeric nanomaterial, pHEMA, as a potential plasmid DNA 

nanocarrier for a vaccine against the wild bird (H6N2) avian 

influenza virus. A major advantage of using pHEMA as the 

vaccine carrier is that this particular nontoxic copolymer has 

FDA approval for use in contact lenses, implant coatings, and 

prostheses.

Material and methods
Chemicals
All chemicals were purchased from Sigma-Aldrich (Castle 

Hill, NSW, Australia) and used without further purification. 

Milli-Q® water (18.3 MΩ cm−1) was used throughout all 

synthesis procedures involving aqueous solutions. The sur-

factant used in the preparation of the pHEMA nanoparticles 

was poly (vinyl alcohol) (PVA) and was prepared by dis-

solving 1 g of PVA in a 100 mL solution of Milli-Q® water. 

Throughout the preparation of the nanoparticles, a 1% w/v 

of PVA was used.

Formulation and optimization of solvent
The optimization of the solvent used for mixing pHEMA 

and DNA, and the calculation of DNA binding, was deter-

mined from a comparative study. The study looked at 

dissolving 1 g of pHEMA in various solutions where the 

percentage w/v of an alcohol (ethanol) in a Milli-Q water 

solution was adjusted. In the first case, a 100 mL solution 
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of pure Milli-Q water was used; the second solution con-

sisted of a mixture composed of 50 mL of Milli-Q water 

and 50  mL of ethanol; the third solution consisted of a 

mixture composed of 25 mL of Milli-Q water and 75 mL 

of ethanol; and the final solution consisted of 100 mL of 

ethanol. All polymer solvent solutions prepared contained 

1% w/v of pHEMA. During the preparation of all loaded 

and unloaded nanoparticle preparations, 2 mL of pHEMA 

(1% w/v) was used.

Preparation of pHEMA nanoparticles
The preparation of the unloaded pHEMA nanoparticles 

started by adding a 2 mL solution of pHEMA (1% w/v) to 

a 10 mL glass tube supported in an ice bath. The pHEMA 

was then exposed to ultrasonic irradiation for 30 seconds 

before 1 mL of PVA (1% w/v) was added to the glass tube 

dropwise and then sonicated for a further 10 minutes. The 

ultrasonic processor used throughout these procedures was 

a UP50H (50 W, 30 kHz, MS7 Sonotrode (7 mm diameter, 

80  mm length)) supplied by Hielscher Ultrasound 

Technology (see Figure 1A).

Preparation of plasmid DNA vaccine  
with pHEMA
The formulation of the pHEMA nanoparticles and the DNA 

composite begins with a 4 mL solution of pHEMA (1% w/v 

in 100% ethanol blend) being added to a 10 mL glass tube 

supported in an ice bath. The solution was then sonicated for 

30 seconds before a 2 mL solution (1% w/v) of PVA was 

added dropwise to the glass tube, which was then sonicated 

for a further 2 minutes. This was followed by the dropwise 

addition of 400 µL of plasmid DNA (9.3 µg/µL) to the glass 

tube and then sonicated for a further 10 minutes. At the end 

of this time, the solution was filtered three times through 

a 0.2 µm membrane to remove the surfactant. The filtered 

solution was then centrifuged at 15,000× g for 20 minutes at 

room temperature. The resultant pellet was then dissolved in 

phosphate buffered saline (PBS), and the amount of plasmid 

DNA coated nanoparticles was calculated by subtracting the 

amount of DNA in the supernatant from the total DNA added. 

The DNA concentration in the supernatant was measured by 

a nanodrop ND-1000 Spectrophotometer (Thermo Scientific, 

Waltham, MA).
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Figure 1 (A) Ultrasonic processor used in the synthesis of nanoparticles. (B–D) Dynamic light scattering data of unloaded and DNA-loaded pHEMA nanoparticles in three 
solvent mixtures.
Abbreviations: DNA, deoxyribonucleic acid; pHEMA, poly (2-hydroxyethyl methacrylate).
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Characterization of pHEMA 
nanoparticles
The structural and morphological features of the dispersed 

pHEMA nanoparticles were investigated using field-emission 

scanning electron microscopy (FESEM). Samples were 

dropped onto a conventional SEM stub and the latter coated 

with Au. All FESEM scans were taken using a high resolution 

Zeiss 1555 Variable Pressure Field Emission at 3 kV with a 

30 µm aperture under 1 × 10−10 Torr pressure. Atomic force 

microscopy (AFM) imaging of the pHEMA nanoparticles 

was carried out by first dropping a few drops of an ethanol 

solution containing the nanoparticles onto a freshly cleaved 

mica substrate and then allowing the solution to evaporate 

before imaging the dry substrate using a Pico-Plus AFM 

operating in Tapping Mode (molecular imaging). The probes 

used during the scanning mode were silicon tips with a spring 

constant of 42 N/m and a resonant frequency of 300 kHz. 

The dynamic light scattering (DLS) technique was used to 

investigate the pHEMA nanoparticle sizes. The loaded and 

unloaded pHEMA nanoparticles were dispersed in ethanol 

prior to being investigated by the DLS. The detector used was 

a Malvern Zetasizer 3000 HAS (Malvern Instruments, Ltd, 

Worcestershire, UK) (633 nm) operated at 25°C.

Antibody response in animal  
(chicken) model
For Australian biosecurity reasons, a low pathogenic avian 

influenza virus, A/Eurasian coot/Western Australia/2727/1979 

(H6N2), isolated from a healthy Eurasian coot (Fulica atra) in 

Australia, was selected to perform this DNA vaccine adjuvant 

study. The procedure of combining the pCAG-HAk plasmid 

DNA that expresses the complete hemagglutinin (HA) gene 

of the avian influenza virus (H6N2), together with a Kozak 

sequence, in a pCAGGS vector used in the DNA vaccine has 

been previously described by Shan et al.40

Vaccination regime
All bird experiments were carried out with the approval 

of Murdoch University’s animal ethics committee, and 

all experiments were conducted in accordance with the 

Australian National Health and Medical Research Council’s 

(NHMRC) code of practice for the care and use of animals 

for scientific purposes. The birds selected for this study were 

3-week-old Hy-Line chickens that were free from the avian 

influenza. The chickens were accommodated in free-range 

pens with access to feed and water, and were maintained at 

the Animal Resource Centre, Murdoch University, Perth, 

Western Australia.

The experimental immunization protocol used in the 

bird vaccine study is presented in Table  1 and contains 

information regarding bird numbers and vaccine dosage. 

During the protocol, each bird received two intramuscular 

injections of 0.2 mL at 3-week intervals. The injection pro-

cedure involved a 0.1 mL dose being injected in each leg. 

Over this period, the six control birds received a 200  µL 

dose of PBS without adjuvant, five birds received a 100 µL 

dose of pCAG-HAk without adjuvant, and the remaining 

sets of birds received doses of 10 µL, 100 µL, and 200 µL 

of pCAG-HAk with pHEMA. Sera samples were collected 

weekly to detect and monitor the H6 specific antibody of 

hemagglutination-inhibition (HI).40,41 Three weeks after the 

booster vaccination, each bird received a 0.5 mL dose of the 

wild bird H6N2 avian influenza virus (106.5 EID50/0.1 mL) 

via three delivery routes. In the first route, the bird received 

0.1 mL of the H6N2 virus by nasal instillation, the second 

0.1 mL was introduced via eye drops, and the final 0.3 mL 

dose was delivered through an oral route. Following the virus 

challenge, a daily observation of all birds was undertaken and 

either oropharyngeal or cloacal swabs were collected every 

second day over a 7-day period. The virus isolation procedure 

was performed in accordance with the manual of diagnostic 

tests and vaccines for terrestrial animals.41

Results and discussion
Optimization of the solvent revealed that the pHEMA nano-

particles prepared with 100% ethanol produced the highest 

DNA binding rate. The total plasmid DNA used in each 

solvent experiment was 581.3  ng/µL, and the maximum 

DNA binding rate was found in 100% ethanol solution, with 

only 28.3 ng/µL of DNA remaining in the supernatant (see 

Table 2). Thereafter, 100% ethanol was used for the prepara-

tion of the pHEMA adjuvant vaccine for the rest of the study. 

In the 100% water case, the unloaded particles of pHEMA 

ranged in size from 168 to 314 nm, with the unloaded particles 

being larger in most cases. In the 50% ethanol and 50% water 

case, the pHEMA particles ranged in size from 185 to 311 nm, 

Table 1 Immunization protocol in chicken vaccine study

Group Vaccine Dose, μg Adjuvant Number  
of chickens

1 PBS 100 None 6
2 pCAG-HAk 100 None 5
3 pCAG-HAk 10 pHEMA 5
4 pCAG-HAk 100 pHEMA 3
5 pCAG-HAk 200 pHEMA 4

Abbreviations: PBS, phosphate buffered saline; pHEMA, poly (2-hydroxyethyl 
methacrylate).
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Table 2 The effect of solvent composition on plasmid DNA 
binding to pHEMA

Solvent 100% Milli-Q®  
water

50% Milli-Q®  
water  
50% ethanol

100%  
ethanol

DNA concentration  
in supernatant, ng/μL

505.9 208.8 28.30

Bonded DNA, ng/μL 75.40 372.5 553.0
Bonded DNA, % 13.00 64.10 95.10

Abbreviations: DNA, deoxyribonucleic acid; pHEMA, poly (2-hydroxyethyl 
methacrylate).

Figure 2 Field-emission scanning electron microscopy images of the unloaded 
and DNA-loaded pHEMA nanoparticles with the spherical particle morphology. 
(A) Unloaded pHEMA nanoparticles at low magnification (scale bar 1 µm) and (B) at 
high magnification (scale bar 200 nm); and (C) DNA-loaded pHEMA nanoparticles at 
low magnification (scale bar 1 µm) and (D) at high magnification (scale bar 200 nm).
Abbreviations: DNA, deoxyribonucleic acid; pHEMA, poly (2-hydroxyethyl 
methacrylate).

Figure 3 Atomic force microscopy profile images of the unloaded and DNA-loaded 
pHEMA nanoparticles with spherical particle morphology. (A) Unloaded pHEMA 
nanoparticles at low magnification and (B) at high magnification; and (C) DNA-loaded 
nanoparticles of pHEMA at low magnification and (D) at a higher magnification.
Abbreviations: DNA, deoxyribonucleic acid; pHEMA, poly (2-hydroxyethyl 
methacrylate).

Table 3 Antibody response prior to and post virus challenge

Time Naive  
control

pCAG-HAk

No pHEMA  
(adjuvant)

pHEMA, μg

Prior 0 0 10 100 200
Posta 6.0 ± 2.0 5.6 ± 1.7 6.6 ± 2.1 5.3 ± 1.5 5.3 ± 1.5

Note: aValues represent geometric mean titer (log2) ± standard deviation of each 
bird group.
Abbreviation: pHEMA, poly (2-hydroxyethyl methacrylate).

with the unloaded particles being larger in half of the trials. 

While in the 100% ethanol case, the pHEMA particles 

ranged from 136 to 328 nm, with the unloaded particles being 

smaller in more than half of the trials (see Figure 1). Figure 2 

presents FESEM images of the unloaded and DNA-loaded 

pHEMA nanoparticles; the images reveal that the nanopar-

ticles range in size from 120 to 330 nm and have spherical 

morphology. This is confirmed by the AFM profile images of 

the unloaded and loaded pHEMA nanoparticles presented in 

Figure 3. The DLS, FESEM, and AFM analysis all confirm 

that the nanoparticles range in size from 120 to 330 nm; the 

morphology is spherical in the unloaded system and appears 

to be unchanged by the incorporation of the DNA.

Following DNA loading procedures, the efficiency of the 

nanovaccine was tested in a bird (Hy-Line chicken) model. 

Three weeks post second vaccination, no H6 HI antibody titer 

was detected in any of the Hy-Line chickens. At the end of 

10 days post virus challenge, all birds sero-converted with a 

range of HI titers, which are presented in Table 3. There was a 

significant difference (P , 0.05) in the geometric mean titer 

of the HI antibody prior to and post virus challenge using 

the paired-sample t-test.

Table 4 presents the level of virus shedding in both the 

oropharyngeal and cloacal swabs in vaccinated birds follow-

ing the H6N2 avian influenza virus challenge. Comparing the 

pCAG-HAk vaccinated group with the naive control group, 

we can see that the virus excretion rate in the oropharyngeal 

swabs of 70.8% in the naive group was reduced to 45% 

in the pCAG-HAk group following the virus challenge. 

While cloacal swabs for the naive control group recorded a 

12.5% value, the pCAG-HAk vaccinated group was reduced 

to 0% value for the post virus challenge.

Table  4  reveals that there is a significant difference 

between the pCAG-HAk vaccinated group and the naive 

control group for both oropharyngeal and cloacal swabs. 

In comparison with the naive control group, the 100  µg 

pHEMA adjuvanted plasmid pCAG-HAk group has shown a 

significant decrease in virus shedding in both oropharyngeal 

and cloacal swabs. This result suggests that using pHEMA as 
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the efficiency of the particular delivery system.44 Recently, 

a variety of inert nanoparticles was investigated and found 

to be effective delivery vehicles for protein and peptide 

antigens.4,28–30,39,45,46 However, the application of nanoparticles 

as delivery platforms with DNA vaccines as payloads is only 

at the exploratory stage.33,43 In this present preliminary study, 

the potential application of using a biodegradable, nontoxic 

copolymer (pHEMA nanoparticles) as a delivery platform 

to carry pCAG-HAk plasmid DNA has been investigated. In 

the past, pHEMA has been used in drug delivery systems;26,31 

however, to date, it appears that this study is the first to use 

pHEMA nanoparticles as an adjuvant in DNA vaccination.

Conclusion
This preliminary study suggests that using pHEMA nanopar-

ticles as a nanocarrier/adjuvant have improved the immune 

response to the DNA vaccine pCAG-HAk. A reduction in 

virus shedding was detected in both oropharyngeal and 

cloacal swabs for the 100 µg pHEMA adjuvant DNA vaccine. 

Three pHEMA adjuvant doses (10, 100, and 200 µg) were 

investigated. The study revealed that there was a dose response 

effect, with the 100 µg producing the most significant amount 

of virus shedding. The mechanism behind this adjuvant effect 

has not been resolved, but the reduction of virus shedding in 

the oropharynx of chickens challenged with the wild bird 

H6N2 influenza virus warrants further investigation.
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Table 4 Virus shedding level in chickens vaccinated with plasmid 
pCAG-HAk and pHEMA adjuvants following the virus challenge

Swabs Naive  
control

pCAG-HAk

No pHEMA  
(adjuvant)

pHEMA, μg

10 100 200

OS 17/24 (70.8) 9/20 (45) 9/20 (45) 3/12 (25) 8/16 (50)
CS 3/24 (12.5) 0/20 (0) 1/20 (5) 0/12 (0) 1/16 (6.3)

Notes: Values are number of positive swabs for virus isolation per total number of 
swabs tested. Percentage rate is shown in parentheses.
Abbreviations: CS, cloacal; OS, oropharyngeal; pHEMA, poly (2-hydroxyethyl 
methacrylate).

an adjuvant has improved the immune response to the DNA 

vaccine pCAG-HAk. It is suspected that a major factor that 

contributed to the improved immune response produced by 

the pHEMA lies in its hydrophilic nature and its positive sur-

face charge that was conveyed from the ethanol solvent. This 

positive surface charge significantly improves the absorption 

of plasmid DNA than the water solvent, see Table 2. The 

plasmid DNA is believed to be absorbed onto the surface of 

pHEMA nanoparticles through an electrostatic interaction or 

by covalent binding. Importantly, this bonding mechanism 

did not appear to damage the plasmid DNA’s immunization 

performance. In addition, the bonding mechanism appears to 

be complex because the optimum effect occurred in the bird 

group that received the 100 µg dose. Both the 10 and 200 µg 

dose groups were less effective. The mechanisms behind 

the observed adjuvant effect have not yet been resolved. 

Some possible mechanisms that could have affected the 

performance of the pHEMA nanoparticle delivery platform 

include: the surface distribution of the plasmid DNA on the 

nanoparticles, the delivery platform prevented effective DNA 

degradation, which in turn affected the targeting of the DNA 

to antigen presenting cells.34,42 Another factor that needs to 

be investigated further is the effect of the nanoparticle size 

used in the delivery platform. In this study, the pHEMA 

nanoparticle size ranged from 120 to 330 nm, and this size 

range could have influenced the delivery mechanism. Recent 

studies have shown that the size of the nanoparticles being 

used as the DNA delivery platforms can have a significant 

effect on the DNA vaccine efficacy.5,18,25,43

The use of particular delivery platforms as a novel method 

of delivering a payload of proteins and/or plasmid DNA immu-

nogens to induce a positive immune response is a research 

area that is currently receiving a great deal of interest. The 

characteristics of both micro- and nanosized particles can have 

a significant impact on the overall performance of the delivery 

system. For example, the size, shape, and surface properties 

such as hydrophobicity and surface charge directly affect 
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