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Abstract: The myriad pain pathophysiology has intrigued and challenged humanity for 

centuries. In this regard, the traditional pain therapies such as opioids and nonsteroidal anti-

inflammatory drugs have been highly successful in treating acute and chronic pain. However, 

their drawback includes adverse events such as psychotropic effects, addiction potential, and 

gastrointestinal toxicities, to mention a few. These factors combined with the likelihood of an 

increase in chronic pain conditions due to an aging population calls for the development of 

novel mechanism-based or “site-specific” agents to target novel pain pathways. In this regard, 

rapid progress has been made in understanding the molecular mechanisms of novel pain tar-

gets such as cannabinoid receptors, fatty acid hydrolase, voltage-gated and ligand-gated ion 

channels such as P2 receptors, transient receptor potential channels and glial cell modulators. 

Accordingly, preclinical studies indicate that the site-specific/selective agents exhibit sufficient 

efficacy and reduced side effects such as lack of psychotropic effects indicating their clinical 

potential. This review provides a brief summary of some “at-site” pain targets and their role 

in the pain pathophysiology, and describes the efforts in developing some small molecules as 

novel pain therapeutics.

Keywords: opioids, nonsteroidal anti-inflammatory drugs, cannabinoid receptors, P2X receptors, 

transient receptor potential channels, glial cells

Introduction
The word “pain” is simple, yet complex. The quest of humans to conquer pain by 

investigating the underlying cause is a challenging and ongoing process. According 

to the International Association for the Study of Pain, the definition of pain as “an 

unpleasant sensory and emotional experience associated with actual or potential  tissue 

damage, or described in terms of such damage” indicates the subjective nature of pain.1 

It is the most common complaint for which patients seek medical attention, lose pro-

ductivity, and incur health care costs.2 The epidemic status of pain across the globe is 

highlighted by a recent study which showed that nearly 37.3% and 41.1% of the adult 

population in the developed and developing countries, respectively, experience chronic 

pain due to diseases or disorders or injuries.3 Pain is characterized by both physical 

and psychological symptoms. Based on clinical characteristics, pain can be classified 

as nociceptive, neuropathic, or psychogenic/idiopathic.2,4–6 The mechanical, chemical, 

or thermal stimulation of peripheral sensory nerves due to surgery or trauma in a well 

localized area is described as nociceptive pain, whereas neuropathic pain is defined as 

an abnormal signaling resulting from injury or dysfunction of the peripheral or central 

nervous system (CNS) leading to pain. In addition, the latter is less localized and can 
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persist in the absence of visible injury or inflammation.7–11 

Pain perception/assessment in patients with personality 

disorders, mood disorders, or substance abuse indicates the 

influence of psychiatric disorders on pain etiology.12,13 Tradi-

tional pain-management therapies involve analgesics such as 

acetaminophen and aspirin, nonsteroidal anti-inflammatory 

drugs (NSAIDs) such as ibuprofen and indomethacin, and 

narcotics such as morphine.14,15 However, there is a growing 

concern on the risks of overdose, abuse, and addiction poten-

tial of these agents. For example, in the United States alone, 

about 30,000 hospitalizations are  attributed to acetamino-

phen overdose, whereas NSAID therapy is associated with 

fatal gastrointestinal bleeding and potential cardiovascular 

risks.16–18 In addition, narcotic analgesic abuse and addiction 

is a serious concern.19 These facts mandate the need to look 

beyond traditional pain targets such as cyclooxygenases and 

opioid receptors. The complexity in understanding the pain 

mechanisms listed in  Figure 1 will go a long way in devel-

oping new therapies.  Current research efforts are ongoing 

to discover agents with superior efficacy and safety profiles 

that target novel  pathological routes as pain therapeutics 

(Figure 1). Emerging pain targets include cannabinoid (CB) 

receptors, fatty acid amide  hydrolase (FAAH), voltage- and 

ligand-gated ion channels (sodium  channels, T-type calcium 

channels, N-type calcium channels, P2 receptors, transient 

receptor potential [TRP] channels), peptide receptor antago-

nists, nerve growth factor (NGF), and glial cell modulators. 

This review describes recent developments in the discovery of 

CB
2
 agonists, TRP vanilloid-1 (TRPV1) channel antagonists, 

P2 receptor  antagonists, and agents that target activated glia.

The CB receptors
The CB receptors are part of the endocannabinoid system 

and are G-protein coupled receptors. Their role in the 

 modulation of pain and inflammation is well documented.20–22 

Ion-channels

P2 receptors

CB receptors

Neurokinin
receptors

NMDA
receptors

COX-1/COX-2

Inflammatory
cytokines

Glial cell activation

Nociceptive
Inflammatory
Neuropathic

Pain

Figure 1 Summary of pain pathophysiology and some pain targets.
Abbreviations: CB, cannabinoid; COX, cyclooxygenase; NMDA, N-Methyl- 
D-aspartate.
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Figure 2 Chemical structures of some nonselective CB receptor modulators.
Abbreviations: CB, cannabinoid; Ki, inhibition constant.
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Figure 3 Chemical structures of some selective CB2 receptor modulators.
Abbreviations: CB, cannabinoid; Ki, inhibition constant.

 Mammalian tissues express two types of CB receptors: 

CB
1
 and CB

2
 respectively. CB

1
 receptors are primarily 

expressed in the CNS, whereas CB
2
 receptors are primarily 

located in the periphery such as immune cells, spleen, and 

tonsils.23 In this regard, a number of CB receptor agonists 

were reported. The classic CBs, tetrahydrocannabinol 

(∆9-THC, Marinol®, Solvay Pharmaceuticals, Ixelles, Brus-

sels, Belgium)  (Figure 2, compound (1)) and dimethylheptyl 

tetrahydrocannabinol (HU-210) (Figure 2, compound (2)) 

based on a tricyclic terpenoid template are nonselective CB 

agonists with HU-210 exhibiting a greater degree of  binding 

affinity toward CB receptors (Figure 2). The major drawback 

of classical CB therapy in pain management is the impair-

ment of cognitive/motor function and altered psychological 

state.24,25 Compound CP-55,940 (Figure 2, compound (3)), 

a nonclassical CB was developed based on the chemical 

structure of ∆9-THC and played a major role in the discovery 

of the CB
1
 receptor.26 Consequently, the development of an 

aminoalkyl indole-based small molecule such as WIN55212 

(Figure 2, compound (4)) provided some degree of CB
2
 

selectivity.27 Eicosanoids such as anandamide22,28 represent 

endogenous CBs that exhibit greater affinity toward CB
1
 than 

CB
2
. Since centrally acting CB

1
 receptor agonists are known 

to produce CNS side effects such as dizziness and cognitive 

impairment, current focus is to develop CB
2
 receptor agonists 

that could produce minimal CNS side effects and to target 

CB
1
 receptors at the periphery.22,29,30

A number of small-molecule CB
2
 receptor agonists 

have been developed in the past decade as potential agents 

to treat nociceptive, inflammatory, and neuropathic pain. 

The mechanism of CB
2
-mediated analgesia is not clearly 

understood. Some studies suggest that CB
2
 agonists could 

act on immune cells and prevent the associated inflammatory 

response. A recent investigation by Hsieh and coworkers 

shows that the dorsal root ganglia and spinal cord regions are 

the potential sites of CB
2
-receptor-mediated analgesia.31 In 

this regard, one of the early CB
2
-receptor agonists HU-308 

(Figure 3, compound (5), a bicyclic derivative) exhibited 

high CB
2
 selectivity (CB

2
 inhibition constant [K

i
] = 23 nM) 

and significant pain relief in the formalin model.32

A wide range of small molecules with diverse ring 

templates have been developed as CB
2
-selective agonists 

(Figures 3, 4, and 5). In this regard, several aminoalkyl indole-

based derivatives exhibit superior CB
2
 receptor binding and 

selectivity.33–36 For example, AM1241  (Figure 3, compound 

(6)) is a highly selective CB
2
-agonist (CB

2
 K

i
 = 3.4 nM; CB

1
 

K
i
 = 280 nM) that exhibits in vivo peripheral  analgesia in 

inflammatory and neuropathic pain models  without  exhibiting 

CNS side effects. Furthermore, the  aminoalkyl indole 

 (Figure 3, compound (7)) was a highly selective CB
2
 receptor 

agonist (CB
2
 K

i
 = 1.9 nM; CB

1
 K

i
 . 10,000 nM; CB

1
/CB

2
 

selectivity . 5263). In another study, Cheng and coworkers 

developed a novel series of N-arylamide oxadiazoles where 

they identified an amide-linked quinolone derivative  (Figure 4, 

compound (8)) as a potent and selective CB
2
 agonist (CB

2
 

half-maximal effective concentration [EC
50

] = 2.2 nM) with 

excellent oral bioavailability profile in rats.37 In an  elegant 

study, a research team from  GlaxoSmithKline  discovered 

compound GW842166X (Figure 4, compound (9)) based on 

a  pyrimidinecarboxamide template as a clinical  candidate 

to treat  inflammatory pain. Compound GW842166X 

was a selective CB
2
 receptor agonist (CB

2
 EC

50
 = 63 nM; 

CB
1
EC

50
 . 30 µM) and exhibited potent oral activity (ED

50
 

[half-maximal effective dose] = 0.1 mg/kg) in animal models 
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Figure 4 Chemical structures of some selective CB2 receptor modulators.
Abbreviations: CB, cannabinoid; EC50, half-maximal effective concentration; Ki, inhibition constant.

of inflammatory pain. Further lead  optimization provided 

the 5-azaindole (Figure 4, compound (10)) with superior 

CB
2
 binding affinity (CB

2
EC

50
 = 5 nM) and efficacy in both 

acute and chronic pain models.38,39 Another study showed that 

4-oxo-1,4-dihydropyridines could serve as useful templates 

to develop selective CB
2
 receptor ligands. The phenyl-sub-

stituted dihydropyridine (Figure 4, compound (11)) exhibited 

excellent CB
2
-binding affinity and was an inverse agonist 

(CB
2
 K

i
 = 4.0 nM; CB

1
 K

i
 = 592 nM).40 Rapid progress has 

been made in the development of CB
2
-selective ligands based 

on a wide variety of ring templates, and a detailed discussion 

is beyond the scope of this review.30 The evidence acquired 

to date, clearly supports targeting CB
2
, CB

1
/CB

2
, or CB

1
 

receptors and to develop “peripherally restricted” CB (CB
2
 

selective, dual CB
1
/CB

2
) agonists that exhibit reduced CNS 

side effects as novel agents in the pharmacotherapy of pain 

disorders.

The  TRP channels
The TRP channel family belongs to ligand-gated and voltage-

dependent ion channels/nociceptors that respond to chemical, 

mechanical, or thermal noxious stimuli at the periphery. They 

are divided into subfamilies. Many are located in the central 

and peripheral sensory neurons and are potential targets to 

treat neuropathic pain.41–43 The TRPV1 channels have been 

studied extensively and are known to play a critical role 

in peripheral sensitization of nociceptors and reduce pain 

threshold when activated by noxious stimuli. Its expression 

level is high in sensory neurons. The active ingredient of chili 

peppers, capsaicin (Figure 5, compound (12)) is a known 

activator of TRPV1 and is effective as a topical agent to treat 

pain states. Although opioids are used to treat chronic pain, 

they exhibit serious side effects such as dizziness, sedation, 

loss of cognitive function, dependency, respiratory depres-

sion, development of tolerance, and constipation. These 

shortcomings support the need to target novel pathways of 

pain. In this regard, the role of TRPV1 in peripheral sensi-

tization contributing to acute and chronic pain dictates the 

need to develop TRPV1 antagonists as potential agents to 

treat inflammatory and neuropathic pain.44–47 One of the early 

TRPV1 antagonists to enter the clinical trial was SB-705498 

(Figure 5, compound (13)) based on a pyrrolidine urea 

that exhibited excellent oral activity in animal models.48 

Furthermore, Amgen reported the discovery of a clinical 

candidate AMG517 (Figure 5, compound (14)) based on a 

oxopyrimidine ring template. Compound AMG517 exhib-

ited excellent TRPV1 inhibition (half-maximal inhibitory 

concentration [IC
50

] = 0.9 nM); however, it had a long half-

life and low aqueous solubility. Further lead optimization 

provided compound AMG628 (Figure, compound (15)), 

the piperazinylpyrimidine derivative that exhibited good 

TRPV1 inhibition, in vivo half-life, and aqueous solubility 

and was considered as a clinical candidate.49,50 Recently, 

Abbott Laboratories reported the discovery of an orally 

active clinical candidate (R)-1-(5-tert-butyl-2,3-dihydro-1-

H-inden-1-yl)-3-(1H-indazol-4-yl) urea (ABT102, Figure 5, 

compound (16)) to treat chronic pain. This small molecule 

exhibited potent TRPV1 binding (TRPV1 IC
50

 = 4 nM) and 
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Figure 5 Chemical structures of some TRPV1 receptor antagonists.
Abbreviations: EC50, half-maximal effective concentration; IC50, half-maximal 
inhibitory concentration; TRPV1, transient receptor potential vanilloid-1.

was effective in various in vivo pain models such as carra-

geenan induced postoperative and cancer pain. In addition, 

this agent did not exhibit side effects such as sedation and 

constipation commonly seen with opiate therapy, highlight-

ing the fact that selective targeting of  TRPV1 should provide 

agents that lack the adverse side effects of opiates.51–53 

Accordingly, several small-molecule candidates are being 

developed by the pharmaceutical companies.41,47,54 The rep-

resentative examples discussed here indicate the enormous 

potential of targeting TRPV1 receptors to treat both acute 

and chronic pain. Compared with peripherally restricted CB 

agonists, TRPV1 receptor modulators reduce pain by acting 

on both central and peripheral pain pathways, suggesting 

their potential to cause CNS side effects. The challenges 

include recognizing TRPV1 gene polymorphism in patients 

to predict desired therapeutic responses and identify potential 

side effects such as hyperthermia.46

P2X receptors
The neurotransmitter ATP (adenosine-5′-triphosphate) is 

known to produce pain through activating the purinergic 

receptors P1 and P2. The P1 receptors are known as adenosine 

receptors, whereas P2 receptors are further divided into P2Y 

(G-protein coupled receptors) and P2X (ligand-gated chan-

nels). The P2X receptors are subdivided into seven receptor 

subtypes (P2X1, P2X2, P2X3, P2X4, P2X5, P2X6, and 

P2X7 respectively) and have attracted widespread attention 

as potential targets to develop novel pain therapeutics.55–58 

Among the P2X family, P2X7 is known to be present in 

immune cells such as monocytes, macrophages, mast cells, 

lymphocytes, and microglia, indicating their role in disor-

ders such as pain, neurodegeneration, and inflammatory 

conditions.59,60 In this regard, novel P2X7 receptor antagonists 

are being developed as clinical candidates to treat acute and 

chronic pain.61 Scientists at Abbott Laboratories reported the 

development of some distinct small molecules as P2X7 recep-

tor antagonists. In this regard, the 1-benzyl-5-phenyltetrazoles 

(Figure 6, compound (17)) exhibited potent P2X7 inhibition 

and were effective in a neuropathic pain model. In another 

study, a series of N´-acyl hydrazides was reported as a novel 

series of P2X7 receptor antagonists with in vivo activity. 

Compound (18) shown in Figure 6 was identified as a potent 

P2X7 receptor antagonist. Further studies led to the devel-

opment of a novel series of cyanoguanidines with potent 

P2X7 inhibition, and compound (19) (Figure 6) was effective 

in a neuropathic pain model.62–64 In addition, researchers from 

AstraZeneca reported the development of adamantine-based 

small molecules (eg, compound (20) shown in Figure 6) as 

P2X7 receptor antagonists with ability to prevent the forma-

tion of the pro-inflammatory cytokine interleukin-1β.65 A 

detailed description of several small-molecule P2X  receptor 

modulators has been reviewed elsewhere.61,66

Targeting glia cells
Recent studies have focused on the role of non-neuronal 

cells such as astrocytes and glia or glial cells in pain 

 pathophysiology. Under pathological conditions, glial cells 
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get activated and are known to release pro-inflammatory 

cytokines, chemokines, and other signaling molecules that 

contribute to neuropathic pain.67–69 Some strategies include 

blocking glial cell activation, prevent the biosynthesis of pro-

inflammatory cytokines, block the action of pro-inflammatory 

cytokines, and disrupt their signaling. In this regard, the tetra-

cycline antibiotic minocycline (Figure 7, compound (21)) is 

known to selectively target microglia and could suppress the 

release of pro-inflammatory cytokines, whereas the xanthine 

 derivative pentoxyfylline (Trental®, Aventis, Strasbourg, 

France)  (Figure 7, compound (22)) currently used to treat 

chronic occlusive arterial disease and AV411 (KetasTM, Senju 

Pharmaceutical Co, Osaka, Japan)  are known to inhibit pro-

 inflammatory cytokine biosynthesis. These small molecules are 

able to cross the blood–brain barrier, indicating their potential 

to target neuropathic pain. In contrast, biological molecules 

such as etanercept (Enbrel®, Amgen, Thousand Oaks, CA) 

and the interleukin-1β antagonist anakinra (Kineret®, Amgen) 

are known to exhibit efficacy in neuropathic animal models, 

suggesting their ability to block glial cell mediated cytokine 

signaling.68 However, these agents are injectables that exhibit 

poor CNS penetration. In the last decade, glial cells have 

emerged as attractive targets to prevent chronic pain.70,71 In this 

regard, the neuroprotective nature of glial cells during tissue 

injury suggests a careful approach toward developing novel 

glial cell modulators. The molecular mechanisms of glial cell 

activation and its consequences is still a work in progress.

Conclusion
The last decade has seen an unprecedented surge in under-

standing the complexity of pain pathology. The identifica-

tion of novel pain targets such as CB receptors, FAAH, 

voltage- and ligand-gated ion channels (sodium channels, 

T-type calcium channels, P2X receptors, TRP channels), 

peptide receptor antagonists, NGF and glial cell modulators 

to treat nociceptive, inflammatory, and neuropathic pain is 

highly promising. Preclinical data shows that one can develop 
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peripherally restricted agents such as CB receptor  modulators 

and FAAH inhibitors that do not exhibit psychotropic effects 

indicating their superior side-effect profile compared with 

traditional pain therapies. The challenge is to prove the effi-

cacy seen in preclinical data of novel agents with clinical 

evidence. The benefit-to-risk ratios of novel pain therapies 

will come under careful scrutiny of regulatory agencies. 

Despite the challenges ahead, it is clear that understanding 

the molecular mechanisms of novel pain targets will go a 

long way in developing selective or “site specific” agents 

that exhibit efficacy and superior side-effect profile as pain 

therapeutics.
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