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Abstract: A novel design of a multi-drug delivery network and diagnosis using a molecular 

network is proposed. By using a pair of tweezers to generate the intense optical vortices within 

the PANDA ring resonator, the required molecules (drug volumes) can be trapped and moved 

dynamically within the molecular bus networks, in which the required drug delivery targets can 

be achieved within the network. The advantage of the proposed system is that the diagnostic 

method can be used within a tiny system (thin film device or circuit), which is available as an 

embedded device for diagnostic use in patients. In practice, the large molecular networks such 

as ring, star, and bus networks can be integrated to form a large drug delivery system. The 

channel spacing of the trapped volumes (molecules) within the bus molecular networks can be 

provided by using the appropriate free spectrum range, which is analyzed and discussed in the 

terms of crosstalk effects. In this work, crosstalk effects of about 0.1% are noted, which can be 

neglected and does not affect the network stability.

Keywords: drug delivery network, molecular networks, molecular diagnosis, neural system 

and network

Introduction
Human organs contain blood and tissue fluid. The heart pumps blood through the 

arteries and capillaries and returns to the heart via veins. By providing oxygen and 

nutrients to every cell of the body, all the cells are refreshed when molecules such as 

oxygen and nutrients move into tissue fluid from the blood. The blood circulation car-

ries away waste products;1 each red blood cell 7–8.5 µm in diameter passes through the 

narrow capillaries smaller than 3 µm in diameter. Most capillaries range in diameter 

from 7 to 9 µm, and branch without changing in diameter. The circulation of blood 

through the human body is divided into two interlocking systems, venous and arterial. 

Together, they keep a dynamic interchange of blood moving to and from the heart and 

lungs.2 Several studies have been done to understand red blood cell transportation in 

the capillaries network,3 overall elasticity of the capillary system, apparent membrane 

viscosity, thickness of the double layer of electrical charges, adhesion of red blood 

cells in vascular to fabricate the same blood flow system,4 and pulmonary network 

via micro-fluidics system.5

Optical trapping was invented by Ashkin et al.6 It has emerged as a powerful tool 

with a wide range applications in biology, physics, engineering, and medicine.7 Optical 

trapping and manipulation of viruses, living cells, bacteria, and organelles without dam-

age by laser radiation have been demonstrated.8–10 In medicine and the application of 

nanotechnology, a single red blood cell (RBC)  deformability test has been performed by 
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optical trapping plastic in microfluidics chip3,11 and lab-

on-a-chip for RBC transportation in capillary network to 

circulate oxygen and carbon dioxide throughout the human 

body.12 Optical trapping for manipulation of molecules in 

liquid core capillaries and its application to drug delivery has 

been reported by  Suwanpayak et al,13 who used a PANDA 

ring resonator to form, transmit, and receive the micro-

scopic volume (of drug) by controlling the ring parameters. 

A microscopic volume can be trapped and moved dynami-

cally within the wavelength router or network.

An optical buffer is recognized as an essential component 

in a wavelength router and network, in which the data packets 

can be stored to resolve the packet contention problem and 

also delay the outgoing packets.14,15 In this case the packets 

of tweezers (trapped drug volumes) are transported through 

the network in a similar manner. In practice, the optical 

routers are useful for various applications, especially for 

molecular networks.16–18 Recently, promising techniques 

of microscopic volume trapping and transport within the 

add/drop multiplexer have been reported theoretically19 

and experimentally,20 in which the transporter is an optical 

tweezer. The static tweezers are now well recognized and 

used. The optical tweezer generation technique has become a 

powerful tool for manipulation of micrometer-sized particles. 

Dynamic tweezers are now also used in practical work.21–23 

Schulz et al have shown that the transfer of trapped atoms 

between two optical potentials could be performed.24 The 

optical tweezers use the forces exerted by intensity gradi-

ents in the strongly focused beams of light to trap and move 

microscopic volumes of matter. Other combinations of forces 

are induced by the interaction between photons, caused by 

the photon scattering effects. In practice, the field intensity 

can be adjusted and tuned to produce the desired gradient 

field and scattering force to produce the suitable trapping 

force. Hence, the appropriate force can be configured for the 

transmitter/receiver parts, which can perform long-distance 

microscopic transportation.

In this proposal, dynamic optical tweezers/vortices are 

generated using the dark soliton, bright soliton, and  Gaussian 

pulse propagating within an add/drop optical multiplexer 

incorporated with two nanoring resonators (PANDA ring 

resonator). The dynamic behavior of soliton and Gaussian 

pulse is well described by Kachynski et al.23 The PANDA 

ring resonator is a specific device name which is given by 

the submitted paper authors. The design of original structure 

of a PANDA ring and its application for drug delivery was 

reported by Oguchi and Terada.19 The parameters of the 

fabricated device are as close as possible to those of the 

original design. The references of the practical devices are 

also given.

In the system proposed in this paper, the blood circula-

tion system and pulmonary network can trap and transport 

(filter) drug from heart to capillaries. The required trapping 

tool sizes can be generated and formed for the specific 

blood circulation with oxygen and finally the clean blood 

can be sent to the destination via the through port. However, 

in practice, several sensors are required for environmental 

and blood quality control, which need to be explored. RBC 

transport in the capillary network is an indispensible element 

for this comprehensive model as well as lab-on-a-chip for 

RBC transport in capillary networks to circulate oxygen and 

carbon dioxide throughout the human body.3,12 This study 

investigated the use of two different-wavelength tweezers, 

molecular buffers, and bus networks to form the transported 

drug volume, especially for delivering and transporting large 

volumes of drug, suitable for a multi-drug delivery network 

such as molecular diagnostic networks, blood circulation net-

works, Alzheimer’s and Parkinson’s diagnosis, and molecular 

electronics. In addition, two different-wavelength tweezers 

were fed into the network to investigate molecular network 

stability. In practice, the multi-drug delivery networks could 

be used for large-scale drug delivery.

Principle and method
In theory, the trapping forces are exerted by the intensity 

gradients of highly focused light beams to trap and trans-

port the microscopic volumes of matter. The optical forces 

are customarily defined by the relationship between optical 

scattering force and gradient force (F
grad

).25 Furthermore, in 

the Rayleigh regime, the trapping forces decompose naturally 

into two components, since the electromagnetic field is uni-

form across the dielectric. Thus, the particles can be treated 

as induced point dipoles. Increasing the numerical aperture 

(NA) increases the gradient strength due to a decrease in 

focal spot size26 which can be formed within the tiny system, 

for instance, a nanoscale device (nanoring resonator). In this 

proposed system, the trapping force is produced by a dark 

soliton, in which the valley of the dark soliton is generated 

and controlled within the PANDA ring resonator by the con-

trol port signals. Figure 1 shows the output field (E
t1
) at the 

through port.2 In the add/drop device, the nonlinear refractive 

index is ignored because it does not affect the system. The 

electric fields E
0
 and E

0L
 are the fields circulating within the 

nanoring at the right and left side of the add/drop optical 

filter. To form the broad spectrum output, two nonlinear ring 

resonators are introduced to form a proposed structure called 
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a PANDA ring. A panda is a well known Chinese bear, which 

was used to describe the polarization maintaining fiber core 

structure. In this work, the proposed ring resonator, called 

a PANDA ring, is a modified add/drop filter. By using the 

broad-spectrum output, the multitweezers can be generated 

and molecules can be trapped and transported.

The power output (P
t1
) at the through port is written as

 P Et t1 1

2= .  (1)

The power output (P
t2
) at the drop port is

 P Et t2 2

2= .  (2)

Multi-access drug delivery network
A molecular buffer needs to be included in the system. 

The molecular buffer plays an important role for storing or 

delaying atoms/molecules over a period of time, which gives 

enough time for operation.27,28 A molecular buffer is a new 

device, which is operated in the same way as a gas buffer.29 

The polarizability of the particle is calculated by Equation 

(5). In this case, we assume that the spherical particle is 

polystyrene (n = 1.5894) and the liquid medium is water 

(n = 1.33). The optical power which is required to trap par-

ticles of a certain size/polarizability is 9.1 W (Figure 2). In 

simulation, the bright soliton with center wavelength 400 nm, 

peak power 1 W, and pulse width of 35 fs is fed into the 

system via the input port, where the coupling coefficients 

are κ
0
 = 0.5, κ

1
 = 0.35, κ

2
 = 0.1, and κ

3
 = 0.35. The ring radii 

are R
add

 = 20 µm, R
R
 = R

L
 = 5 µm. The evidence for the 

practical device with a radius of 2–3 µm has been reported 

by Zhu et al.30 In this case, the dynamic tweezers (gradient 

fields) are in the form of bright solitons, Gaussian pulses, 

and dark solitons, which can be used to trap the required 

microscopic volume. In this investigation four tweezers with 

different center wavelengths are generated, whose dynamic 

movements can be seen in Figure 4, where Figure 4A rep-

resents tweezers with different sizes and wavelengths and 

Figure 4B represents tunable tweezers by coupling constant 

variation. The required drug volumes can be obtained by the 

drop port outputs.

In practice, the fabrication parameters can be easily 

controlled by the ring resonator radii instead of coupling 

constants. The important aspect of this system is that the 

tunable tweezers can be obtained by tuning (controlling) 

the add (control) port input signal, in which the required 

number of microscopic volumes (atom/photon/molecule) 

can be obtained at the drop/through ports, otherwise, they 

propagate within a PANDA ring without collapsing/decaying 

into the waveguide. In practice, the trapped drug molecules 

can be transported into the wavelength router via the through 

port, while the retrieved drug volumes are received via the 

drop port (connecting target). The advantage of the proposed 

system is that the transmitter and receiver can fabricate on-

chip and alternatively can be operated by a single device. The 

magnitude of optical trapping force is in the pico Newton 

Ein1 Et1

Ein2
Et2

Ein1 Et1

Ein2Et2

A

Storage

LASER

Control

Control

Blood capillaries

Blood
vessels

B

Control

Connecting
router

Arteriole

Venule

Figure 1 schematic diagram of a buffer and bus networks. (A) is a PANDA ring resonator, (B) is a wavelength router and bus capillaries network. radd is the add/drop filter 
radius, rr and rL are the right and left ring resonator radii, respectively.
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(pN) range, depending on the relative refractive index of 

particle.31 The particle radius located in the cavity decreases 

with the decrease in refractive indices compared with the 

host medium.32,33 The waveguide of the drug delivery system 

can be an optical waveguide with a liquid core which can 

trap the drug molecules smoothly within the network. By 

using the drug bus network, the trapped drug molecules can 

be transported to the required drug targets and the specific 

drug molecules can be obtained by using the molecular 

transceiver. To form the trapping tools, the PANDA ring 

resonator with four ports was used, as shown in Figure 1. 

First, the dark soliton is fed into the system via the input 

port. Second, the output trapping tools are transmitted into 

the throughput port and bus networks. Third, the required 

drug molecules are filtered and obtained via the drop ports. 

Finally, molecules are transported within the bus (ring) net-

works and drug routers, in which the control port is available 

for additional applications. The molecular trapping probe 

can be adjusted to select the drug molecule size of 80 nm or 

0.2681 × 10–3 µm3 per potential well (Figure 3A and B), but 

the fluidics microscopic volume can be transported faster, 

which depends on the viscosity of media and particle.33 This 

molecular trapping probe can be used for drug molecule 

transport at the through port and networks, the parameters 

for which are given in the figure captions (Figure 3). The 

advantage of the proposed system is that it provides mul-

tiple access to the drug volumes and targets. Moreover, the 

use of mesh networks (combined networks) can also be 

realized, which can offer a large diagnosis area.

Network stability calculation
Several reports have shown that fluidics particles (drug 

 volumes) can perform the realistic applications.34,35 The sys-

tem proposed here shows that a tiny device in the form of thin 

film can be fabricated and used36 to integrate drug delivery net-

work into the application area, as shown in Figure 3. Moreover, 

the use of the proposed system for the blood circulation 

network of artificial bone is also suitable for in situ surgery 

and neural and brain diagnosis. By using the design networks, 

the required trapped volumes can be transported within the 

network via the molecular buffer (storage) to the required 

destinations, for instance, the trapped tangle protein can be 

filtered via the add/drop filter before reaching the desired 

destinations. The throughput port (E
t1
) output of add/drop filter 

is connected to the axon (axon terminal), then to neural cell 

and dendrite. The effective area of the waveguide is 2.01 µm2 

(r = 800 nm) and the outside diameter of the microtubule is 

25 nm.37 Axon diameter at birth is 1 µm, increasing through 
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childhood (7 years) to 12 µm and to 24 µm at adulthood.38 In 

Alzheimer’s diagnosis39 the optical tool is connected between 

the axon and the nerve cells and can be used to trap the tangle 

protein into the removal storage by add/drop filter (control 

port). The bus network design can also be used to trap the 

molecular motor to activate the information of neuronal cell 

at the same time. For better access, the coupling material is 

required to use as waveguide–axon coupling.

In operation, as “networks” are made up of add/drop 

filters (Figure 4), their performance depends on the add/drop 

filters. Micro- and nanowaveguides are gaining prominence 

in this field. Filters offer good stability and isolation between 

channels at moderate cost. The add/drop filters’ capability 

affects the network size. The maximum nodes of a network 

depend on the maximum amount of channels of add/drop 

filter. The popular dense wavelength division multiplexing 

(DWDM) component with many channels has been achieved 

in both laboratory and theoretical works.40,41 This means that 

multi-variable routers or networks with many ports can be 

built in future.

In this work, we propose the use of an optical network 

principle to estimate network stability. In general, the 

problems of a large network having the stability of a small 

network are insertion loss (IL) and crosstalk effect (FC). The 

IL reduces the efficient transmission distance. In popular 

communication networks, in which the signals pass through 

the router, insertion loss is usually 5 dB. According to the 

performance of present point-to-point transmission systems, 

we can build a required network over at least 50 km. Along 

with the development of DWDM technology, the insertion 

0
300 350 400

Wavelength (nm)

T
ra

p
p

in
g

 p
o

te
n

ti
al

 w
el

l

450 500

0.2

0.4

0.6

0.8

1
320 340 360 380 400 420 440 460 480

0
300 350 400

Wavelength (nm)

T
ra

p
p

in
g

 p
o

te
n

ti
al

 w
el

l

450 550500

0.2

0.4

0.6

0.8

1
370 390 410 430 450 470 490 510 530

0
300 400 500 600

Wavelength (nm)

P
o

te
n

ti
al

 w
el

l (
W

)

700 1000800 900

0.2
0.1

0.4
0.3

0.6
0.5

0.8
0.9

0.7

1
380340 460420 500 580540 660620 740700 780 900860820 940

0
350 400 450

Wavelength (nm)

T
ra

p
p

in
g

 p
o

te
n

ti
al

 w
el

l

500 550

0.2

0.4

0.6

0.8

1

0
300 350 400

40 nm

Wavelength (nm)
N

o
rm

al
iz

e
450 550500

0.2

0.4

0.6

0.8
370 390 410 430 450 470 490 510 530

370 390 410 430 450 470 490 510 530

0
300 400 500 600

Wavelength (nm)

N
o

rm
al

iz
e

700 1000800 900

0.2

0.1

0.4

0.3

0.6

0.5

0.8

0.7

380340 460420 500 580540 660620 740700 780 900860820 940

40 nm

60 nm 60 nm

A B

C D

E F
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loss can be reduced to less than 1 dB in future.42 Then the 

multivariable network will cover more than 100 km with 

high capacity. The crosstalk effect is mainly due to a signal 

of co-channel interference and adjacent-channel interference. 

The crosstalk can be considered in terms of channel separabil-

ity. For a network, crosstalk brings bit errors, so it must be 

reduced as low as possible. IL and FC can be estimated as:

 IL
P

P
in

out

= ×






10 log  (3)

 FC
P

Pj i
j i

i i

( ) log
( )

( )
λ

λ
λ

= ×








10  (4)

Here P
in
 and P

out
 are input and output of soliton, P

j
(λ

i
) is 

output of soliton with wavelength λ
i
 which exports from port j, 

P
i
(λ

i
) is output of soliton with wavelength λ

i
 which exports from 

port i. P
i
(λ

i
) in Equation (4) is equal to P

out
 in Equation (3).

 
P

P

P

P

P

P
i i

in

i i

out

out

in

FC j i IL
( ) ( )

[ ( ) ]λ λ λ

= × =
−

10 10  (5)

  P Pout in
IL/ = −10 10/  (6)

We first assume that all input photons from any user are 

the same when they enter the router. Since one soliton can 

pass through two add/drop filters when it passes a router, 

the crosstalk versus efficient signals is given as:

 
P

P

P

P
i i

in

in

out

FC ij( )
( )λ λ







 ×









 =

×2 2 2

1010  (7)
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Now we consider the situation in which the input soliton 

is not the same. A bad situation is that input photons which 

produce efficient signals pass through a device that has X 

dB insertion loss before passing through the router but those 

solitons which produce crosstalk do not. The ratio in Equa-

tion (7) will become 10[X+2×FCj(λi)]/10. If there are many inputs 

that produce crosstalk, the ratio must be

 10
2

10

1

1 1X FCj

j

N + × ( ) 

=

−

∑
λ

  (8)

Here j ≠ i, where N is the number of channels (receiver 

nodes).

In present study, the system dimensions have been 

reduced to be micro-/nanoscale. From Figure 4, the coupling 

ratio of each coupling point is 50:50, ie, 3 dB coupling power. 

The molecular bus network has N = 4, FC
j
(λ

i
) , −4.26 dB 

(when j = i ± 1), X = −0.97dB. The normalized input is 0.8; 

λ
i
 and λ

j
 equal 400 and 450 nm, respectively. Their ratio 

is less than 0.113%. Therefore the errors resulting from 

crosstalk are less than 1 (10%) and can be ignored. Along 

with the development of DWDM technology, crosstalk will 

be smaller and the performance of the molecular router or 

network will improve. Thus, we can easily build a feasible 

multi-variable network for multi-drug delivery applications, 

ie, for large networks.

Conclusions
We have proposed an interesting system that can be used for 

multi-drug delivery networks. The trapped drug molecules can 

move into the liquid core waveguide and networks by using 

optical tweezers, in which drug can be trapped, stored, and 

delivered via the molecular network. Such a system can also 

be used for large-scale molecular drug delivery network and 

diagnosis. The mesoscopic particle can be trapped and trans-

ported within the waveguide and network such as nanocarrier 

(polymeric nanoparticles, dendrimers) and lipid-based drug 

carriers.43,44 By using practical device parameters, such a pro-

posed system can be fabricated and integrated into a practical 

thin film device. The trapping and movement of molecules in 

the system can be used for certain diagnostic purposes and 

to deliver small molecules to their target organ in the human 

body. Network stability was also calculated and it was found 

that the crosstalk effects due to the two wavelength-trapping 

drug molecules can be ignored. The proposed system can be 

used for long-distance transport of drug molecules in multi-

drug delivery networks, in which drug delivery or molecular 

communication can be performed via the wavelength router 

and bus network, which will be available for large network 

systems (neural systems) in the near future. The proposed 

technique can be used in the new era of electronics and com-

munications, where the use of molecules, DNA, genes, and 

atoms can have various applications within a tiny system.
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