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Abstract: Nanohydroxyapatite (n-HA)/nylon 6,6 composite scaffolds were produced by means 

of the salt-leaching/solvent casting technique. NaCl with a distinct range size was used with the 

aim of optimizing the pore network. Composite powders with different n-HA contents (40%, 

60%) for scaffold fabrication were synthesized and tested. The composite scaffolds thus obtained 

were characterized for their microstructure, mechanical stability and strength, and bioactivity. The 

microstructure of the composite scaffolds possessed a well-developed interconnected porosity 

with approximate optimal pore size ranging from 200 to 500 µm, ideal for bone regeneration 

and vascularization. The mechanical properties of the composite  scaffolds were evaluated by 

compressive strength and modulus tests, and the results confirmed their similarity to cortical 

bone. To characterize bioactivity, the composite scaffolds were immersed in simulated body 

fluid for different lengths of time and results monitored by scanning electron microscopy and 

energy dispersive X-ray microanalysis to determine formation of an apatite layer on the scaf-

fold surface.
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Introduction
Designing and fabricating composite scaffolds for bone regeneration from different 

synthetic biodegradable polymers and bioactive materials is an essential step in 

engineering bone tissue.1 Scaffolds play a critical role in tissue engineering by 

directing the growth of cells either seeded within the porous structure of the scaffold 

or migrating from surrounding tissue.2 Several methods have been applied to produce 

polymer–ceramic composite scaffolds for biomedical applications, including thermally 

induced phase separation (or freeze-drying),3–7 solvent casting,8 selective laser 

sintering,9 supercritical CO
2
 antisolvent process,10 in situ ceramic particle synthesis 

by sol–gel process,11 precision extrusion deposition,12 solid freeform fabrication,13,14 

electrospinning,15,16 ceramic scaffold impregnation by polymer,17,18 or, conversely, 

infiltration of polymer foams via slurry-dipping19,20 and even electrophoretic 

deposition.21 However, in the present paper porous scaffolds were produced via salt-

leaching/solvent casting, a process which is (theoretically) very simple, because it 

creates the cavities (ie, pores) with desired pore size by washing out the salt particles. 

With this aim, an ideal salt could be NaCl, since it can easily be removed thanks to 

its high solubility in aqueous media. Moreover, if trapped in the scaffold, it does not 

release dangerous ions to the human body, since Na+ and Cl− ions are also present in 

the plasma.22 Moreover the salt-leaching procedure proposed here does not require 

high-temperature heat treatment, which helps to preserve the polymer properties.23

In
te

rn
at

io
na

l J
ou

rn
al

 o
f N

an
om

ed
ic

in
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/IJN.S21203
mailto:m-nasresfahani@iaun.ac.ir


International Journal of Nanomedicine 2011:6submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1652

Mehrabanian and Nasr-Esfahani

Nowadays, in order to satisfy the great number of 

 challenging requirements for scaffold materials, such as 

including biocompatible and bioactive structures, biode-

gradable systems, interconnected porosities, and  mechanical 

properties similar to natural bone, polymer–ceramic 

composite scaffolds appear to be an inviting prospect because 

they combine the advantageous properties of both the 

 constituent phases in an adequately porous structure.24–28

Nanohydroxyapatite (n-HA) is an ideal bioactive material 

whose composition and crystal structure is very close to 

that of natural bone, and can directly bond to bone tissue 

in vivo. It has been developed in a variety of forms such as 

substitute and regeneration material because of its excellent 

osteoconductivity, osteoinductivity, abrasion resistance, 

corrosion resistance, and stable chemical properties. But 

this is exactly what limits its application, because ideal 

scaffolds should support cell migration and bone growth, in 

accordance with the rate of material degradation.29,30 On the 

other hand, its brittleness and poor mechanical stability limit 

its use for the regeneration of load-bearing bone defects. 

Bone is a biomineralization material made up of collagen, 

apatite, and water, one-third of which is inorganic and two-

thirds of which is organic. Nylon has good biocompatibility 

with human tissue, probably due to its similarity to collagen 

protein in chemical structure. It has been widely used in the 

biomaterials application of surgical sutures for nearly half a 

century. Especially important, nylon also exhibits excellent 

mechanical properties.31 But its degradation is difficult to 

control. To overcome these shortcomings, the novel porous 

nanohydroxyapatite/nylon 6,6 (n-HA/nylon 6,6) composite 

scaffold, which is synthesized from hydroxyapatite and nylon, 

is fabricated by a salt-leaching/solvent casting technique. 

High porosity and proper pore size may facilitate cell 

seeding, survival, growth, differentiation, and proliferation. 

Investigations have shown that porous n-HA/nylon 6,6 scaffold 

material could be a good candidate as a bone substitute due 

to its excellent histocompatibility, osteoconductivity, and 

osteoinductivity.32 The present contribution provides a much 

deeper insight, adding substantial new information about 

the n-HA/nylon 6,6 scaffolds obtained via the salt-leaching/

solvent casting technique, focusing on the mechanical 

and biological behavior as a function of the composite’s 

composition and processing parameters.

Materials and methods
Materials
The polymerization system consists of a cyclohexane phase 

containing the dichloric acid adipoyl chloride (C
6
H

8
Cl

2
O

2
, 

Acros Organics, Geel, Belgium) and a dimethyl formamide 

(DMF) phase containing the diamine 1,6-hexamethylene-

diamine (C
6
H

16
 N

2
, Merck, Darmstadt, Germany) and sodium 

hydroxide (NaOH, Merck). The slurry of n-HA used for 

composites was prepared by our laboratory according to Deng 

et al.33 All solvents were purchased from Merck Group.

Preparation of n-hA/nylon 66 composites
The n-HA/nylon 6,6 composite powder was produced in 

DMF using the in situ polymerization method. Briefly, n-HA 

slurry was prepared by a chemical coprecipitation method 

through aqueous solutions of the reactants according to 

Deng et al.33 The reactants used were of analytical grade. 

Then, with DMF replacing deionized water at around 153°C 

(boiling point of DMF), a nano-apatite slurry in DMF was 

obtained. For the in situ polymerization of the neat nylon 

6,6, equimolar monomer, solutions of 0.0244 mol were 

made with 1 mL adipoyl chloride in 30 mL cyclohexane 

and 0.71 mL 1,6-hexamethylene-diamine in 30 mL DMF, 

which also contained 0.50 g sodium hydroxide and 40 or 

60 wt% n-HA. After complete mixing, this resultant solu-

tion was added slowly into the n-HA slurry in DMF. After 

the mixing process, the obtained n-HA/nylon 6,6 composite 

powders were filtered through a Büchner fritted disk funnel 

and washed repeatedly with distilled water and acetone. Then, 

powders were dried in a vacuum oven at 80°C for 48 hours. 

Composites with different n-HA percentage were obtained 

by controlling the weight ratio (w/w) of n-HA to nylon 6,6 

during preparation. The measured molecular weight of neat 

nylon 6,6 synthesized by the in situ polymerization method in 

the presence of the n-HA with the reagent ratios, as described 

above, was 14 kDa.

Preparation of n-hA/nylon 6,6 composite 
scaffolds
The n-HA/nylon 6,6 composite scaffolds with porous 

structure were prepared by a salt-leaching/solvent casting 

technique. Composites with different n-HA percentage of 

40 and 60 wt% were utilized to produce porous scaffolds in 

a similar process. n-HA/nylon 6,6 composite powder was 

dissolved in acetic acid ($99.5%, Merck) with vigorous 

stirring for 4 hours at 70°C to gain a homogeneous slurry 

system. The composite powder to acetic acid ratio (w/v) was 

fixed at 1:3. The salt with optimal pore size ranging from 

200 to 500 µm was added in the fixed amount (70 wt% of 

composite powder) and the system was stirred constantly for 

about 10–15 minutes. The dispersion was then cast into a 

cylindrical Teflon® mould (9 mm diameter and 18 mm length, 
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suitable for mechanical test) and moved into ultrasonic 

vibration for 15 minutes. After complete solidification, the 

porous foam was removed from the mould and the salt and 

acetic acid were washed out by immersing the samples in 

distilled water for at least 5 days. The water was refreshed 

twice a day to help ensure the complete dissolution of the salt. 

The samples were then washed ultrasonically in deionized 

water for 24 hours to thoroughly eliminate the remnants 

of acetic acid. After complete washing of the samples 

and drying at 100°C for another 24 hours, interconnective 

porous composite scaffolds were obtained. As is known, the 

resulting porous structure of the scaffolds could have been 

influenced by various processing parameters, including 

viscosity-average molecular weight of nylon 6,6, dispersing 

temperature, volume of acetic acid, n-HA content, and so 

on. Thus we fixed all parameters except n-HA content in 

the composite to study the influence on the morphology and 

mechanical properties of scaffolds.

characterization and analysis of n-hA/
nylon 6,6 composite scaffolds
A transmission electron microscope (TEM, Philips CM 10; 

Philips, Amsterdam, the Netherlands) was used to examine 

the microscopic morphology of n-HA powder in slurry and 

in composite. FT-IR spectra were obtained with a Jasco-

6300 FT-IR spectrometer (Great Dunmow, Essex, UK). The 

powders of n-HA, nylon 6,6, and n-HA/nylon 6,6 composite 

were, respectively, mixed with KBr and pressed into disks for 

IR analysis. The spectra were collected over a range of 400–

4000 cm−1. X-ray diffraction (XRD) was used to characterize 

the crystallinity, chemical composition, and structure of the 

materials to test the outer surface of the scaffolds directly. 

The analyses were performed with a Philips X’Pert on n-HA, 

nylon 6,6, and n-HA/nylon 6,6 composite with 40 and 60 

wt% n-HA, using CuKα radiation. Scans were performed 

with 2θ degree from 10° to 90° at a rate of 0.4°/minute. The 

porosities of n-HA/nylon 6,6 scaffolds with various n-HA 

content were evaluated by the method described by Guobao 

and Ma.34 The porosity of the scaffold, ε, was calculated 

from the measured apparent density (D
a
) and the skeletal 

density (D
s
) by the formula: ε = (1−D

a
/D

s
) × 100%. For each 

scaffold, five specimens were tested. The assessment of the 

in vitro bioactivity was carried out by soaking the scaffolds 

in simulated body fluid (SBF) which was prepared according 

to Kokubo and Takadama.35 For each sample, two fragments 

(approximately 9 mm × 9 mm) were cut and immersed in 

sterilized polyethylene containers maintained at 37°C for 

7 and 14 days. When extracted, each sample was rinsed in 

distilled water, and left to dry at room temperature in a clean 

place. The morphology of the composite scaffolds before 

and after soaking in SBF was observed with a scanning 

electron microscope coupled with energy dispersive X-ray 

microanalysis (SEM/EDX, Philips XL30), to verify the 

formation and growth of the apatite layer on the composite 

scaffold surfaces. The compressive strength and modulus of 

the composite scaffold were determined using a mechanical 

testing machine (Reger-3050, Beijing, China). According 

to the guideline of ASTM standard D 695–96, a cylindrical 

specimen was prepared with a length twice its diameter. In 

this study, cylindrical samples were prepared with diameters 

of 9 mm and lengths of 18 mm. Four porous samples of each 

porosity were subjected to this test. The testing conditions 

were room temperature, at 60% relative humidity. The 

crosshead speed was set at 0.5 mm/minute, and the load was 

applied until the specimen was compressed to approximately 

60% of its original length. The compressive modulus was 

calculated as the slope of the initial linear portion of the 

stress–strain curve.

Results and discussion
characterization of n-hA/nylon 6,6 
composite
Microscopic morphology of n-hA and composite
Figure 1 shows the TEM photographs of the n-HA crystals 

and the composite powders. Figure 1A indicates that acicular 

HA crystals are of nanometer grade and have an approximate 

crystal size of 15–25 nm in diameter and 35–75 nm long. 

The composite particles shown in Figure 1B are 20–40 nm in 

diameter and 45–80 nm long. It can be seen that the composite 

particles are larger in diameter and longer than n-HA crystals 

with the nylon 6,6 component present on the surface of the 

n-HA needle crystals. This slight growth in n-HA crystal 

size may have resulted in condensation and agglomeration 

of nanocrystals. The apatite crystals in natural hard tissues 

are formed as thin enamel needles, 5–20 nm by 60 nm and 

A B

Figure 1 TEM photographs of n-hA crystals (A) and composite particles (B).
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over 100 nm long.36 The shape and size of the prepared 

n-HA crystals are similar to the apatite crystals in natural 

bone, a similarity that is beneficial for making a biomimetic 

 composite. When using the n-HA/nylon 6,6 composite 

powders to make bulk products, the n-HA crystals can be 

made to disperse uniformly in the polymer matrix.

Ir analysis
Because both n-HA and nylon 6,6 are polar compounds, the 

interactions between n-HA and nylon 6,6 can be formed  easily 

through hydrogen bonds. The IR spectrum showing n-HA, 

nylon 6,6, and n-HA/nylon 6,6 is shown in Figure 2.

1. The absorption peaks of the OH− groups of HA in com-

posites was lower than typical peaks of HA due to the 

hydrogen bonds between HA and nylon 6,6, which 

showed a slight shift in the composite;

2. No obvious shift was observed for the absorptions of 

phosphate bands in composites compared with that in 

typical peaks of HA, suggesting that almost no bonding 

occurred between phosphate bands of HA and nylon 6,6. 

Possibly the atomic structure of PO
4
3− does not permit the 

formation of hydrogen bonds between HA and amide, 

because three negative charges above three oxygen 

atoms tend to attract calcium ions intensively, to reach a 

stable structural form. On the other hand, the orientation 

property of the hydrogen bonds between OH of HA and 

amide would hamper the formation of hydrogen bonds 

between them;

3. The stretching vibration frequency of N–H groups in 

nylon 6,6 at 3303 cm–1 changes to 3304 cm−1, whereas 

the bending vibration frequencies of N–H at 1538 and 

688 cm−1 move to 1541 and 686 cm−1. The stretching peak 

of C=O in nylon 6,6 rises to 1639 cm−1 in the composite. 

The peaks of C–H in nylon 6,6 at 2935 and 2859 cm−1 

increase slightly to higher wavenumbers of 2937 and 

2861 cm−1 in the composite. These spectral shifts indicate 

that the composition and structure of both components 

hardly changes after interaction with each other, and 

that hydrogen bonds exist mainly between the hydroxyl 

of HA and the amido group of nylon 6,6 because of the 

variations in their absorption peaks. Moreover, the addi-

tion of n-HA crystals into condensed polymer matrix 

disturbs the strong interaction in nylon molecules and 

influences their chemical environment. Furthermore, the 

electronegativity of the oxygen atom is stronger than that 

of the nitrogen atom, and the attraction of the oxygen in 

the OH− group of HA to hydrogen is stronger than that 

of the nitrogen on amide of nylon 6,6, ie, the positive 

charge on the hydrogen of OH− is stronger than that of 

the hydrogen of amide, which makes the formation of 
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Figure 2 Ir spectra of n-hA (A), nylon 6,6 (B) and n-hA/nylon 6,6 nanocomposite (C) powder.
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hydrogen bonds easier between hydrogen of OH− and 

nitrogen of the amido group than that between oxygen 

of OH− and hydrogen of amide.

XrD analysis
Figure 3 shows the XRD patterns of pure nylon 6,6, 40 

wt% n-HA/nylon 6,6 composite, 60 wt% n-HA/nylon 6,6 

composite, and n-HA in powder. Nylon 6,6 has various 

crystalline phases and usually presents the more stable α 

phase rather than the γ phase in XRD patterns. The two strong 

diffraction peaks at 2θ ≈ 20.4° and 24.1° are the distinctive 

feature of the α phase of nylon 6,6, which are designated 

as α1 and α2, respectively. The diffraction peak of the 

γ phase is at 2θ ≈ 21.8°.37 Figure 3 shows that almost all the 

characteristic peaks of HA appear in the composite powders, 

while the intensity of these peaks increases with decreased 

weight percentage of nylon 6,6. Though the intensities are 

lower than those of pure nylon 6,6, α1 and α2 are still the 

main diffraction peaks observed in the composite samples 

and γ phase and also appear in the composite powders.

We can draw the following conclusion from the above 

results:

The intensity change of the nylon 6,6 characteristic peaks 

after forming the composite, which might be caused by the 

disturbance of n-HA crystals to the arrangement of nylon 

6,6 molecules. Moreover, the introduction of n-HA induces 

the appearance of the γ phase in composites which is unstable 

and seldom appears in nylon 6,6 at room temperature; more 

n-HA loadings would amplify this phenomenon. The addition 

of n-HA also changes the structure of the α crystalline phase. 

Crystal sizes of n-HA are calculated by Sherrer formula from 

XRD patterns of different specimens:38

 D
b b

hld

0
2

=
−

0 89
2

.

cos ,

λ

where λ is the wavelength, θ is the Bragg angle, b is the half 

width of the characteristic peak, and b
0
 is the half width of XRD 

machine proof-read by multicrystal silicon powder, giving a 

value of b
0
 = 0.1215. Table 1 shows the crystal value calculated 

by the half width and Bragg angle of HA at its characteristic 

peaks: (002) peak and (300) peak. The data indicate that the 

size of HA crystals is in nanoscale and the size of HA crystals 

is bigger in composite than pure HA. This may be attributable 

to the influence of the process of composite preparation and/

or the interaction between HA and nylon 6,6.

characterization of n-hA/nylon 
6,6 scaffolds
Porosity
The porosity of the scaffold was assessed by comparing 

the apparent density to the skeletal density. The former was 

10 20 30 40 50 60

2θ (deg.)
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Figure 3 XrD patterns of nylon 6,6 (A), 40 wt% n-hA/nylon 6,6 composite (B), 60 wt% n-hA/nylon 6,6 composite (C) and n-hA (D) in powder.
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measured from volume and mass of porous foams. In detail, 

the scaffolds were cut into cylinders 9 mm in diameter 

and 18 mm high. The skeletal density of the scaffold was 

calculated using the density of HA and nylon 6,6. Table 2 

gives the porosity size of n-HA/nylon6,6 scaffolds with 

different n-HA contents (40 and 60 wt%) that resulted a 

slight change in the mean porosity percentage. The mean 

porosities of the scaffolds were almost 80% when the n-HA 

content was 40 wt% in the composite. When n-HA content 

reached 60 wt%, the scaffold still had a high mean poros-

ity of about 75%, which is desirable for tissue-engineering 

application.39,40

Microarchitecture
Figure 4 shows the microstructure of n-HA/nylon 6,6 scaf-

fold with 40 wt% n-HA. The figure shows that the scaffold 

possesses uniformly distributed cubic pores and uniform 

pore size with thin pore walls. The investigation of the scaf-

fold morphology showed that most pores were macropores, 

ranging in diameter from 230 to 485 µm, which is simil-

iar to the size of NaCl crystals. It has been reported that 

pores .150 µm can facilitate internal mineralized bone for-

mation.41 Furthermore, micropores with a diameter , 50 µm 

were observed on the walls of the macropores, which will be 

helpful for fibrovascular colonization and nutrient transporta-

tion. The porous structure of the composite scaffold with 40 

wt% n-HA exhibits a high interconnectivity of macropores 

and micropores. Figure 5 presents SEM photographs of the 

n-HA/nylon 6,6 porous scaffold with 60 wt% n-HA, in which 

the n-HA content is similar to that in natural bone. This figure 

shows an abundant and well-developed porosity, with pore 

sizes similar to the scaffold with 40 wt% n-HA. The pore wall 

thickness is increased in comparison with the scaffold with 

40 wt% n-HA, typically 48 µm to 85 µm. Figure 5B shows 

that in the microstructure of the pore wall, there are plenty 

of micropores ,50 µm in diameter. Thus we could conclude 

from our qualitative evaluation of the SEM images that the 

microstructure of n-HA/nylon 6,6 scaffold with both 40 and 

60 wt% n-HA was extremely promising, because it was highly 

porous, with a well-developed network of interconnected 

pores, whose size can exceed 100 µm. In fact it has been 

underlined that high porosity is likely to boost osteogenesis 

in vivo, since bone regeneration involves vascularization, 

as well as recruitment and penetration of cells from the sur-

rounding tissue. Moreover, 100 µm is  usually considered the 

minimum requirement for pore size to allow cell migration, 

vascularization, and transport processes; higher pore sizes 

could promote such phenomena further.42

Mechanical properties
Figure 6 shows the mechanical behaviors of the composite 

scaffolds with different n-HA content. We should note that 

both the compressive strength and the compressive modulus 

of the composite scaffolds are enhanced with an increase in 

n-HA content, which acts as the bioactive and  reinforcing 

filler for the nylon 6,6 matrix. When the porosities of 

the samples varied from approximately 80% to 75%, the 

 compressive strength of the scaffolds gradually increased 

from 8.1 to 10.2 MPa, and the modulus from 375 to 446 MPa. 

Table 1 The crystal size of n-hA in powder materials

D(hkl) 
(nm)

Pure  
n-HA

40 wt% n-HA/ 
nylon 6,6

60 wt% n-HA/ 
nylon 6,6

n-hA D(002) 25.3 40.4 41.5
D(300) 18.2 23.1 24.9

Table 2 The mean porosities of n-hA/nylon 6,6 scaffolds with 
different n-hA content

n-HA Content (wt%) Mean porosity (%)

40 80.29
60 75.38

A B

C

Figure 4 Low (A, B) and high (C) magnification SEM images of the composite 
scaffolds with 40 wt% n-hA, prepared using Nacl leaching.

A B

Figure 5 sEM images of the composite scaffolds with 60 wt% n-hA: (A) the cross-
section of the scaffold with a porosity of 75%; (B) the micropores located on the 
pore walls of macropores in the scaffold.
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These results are similar to the upper value of the strength 

of cancellous bone (12.2 MPa, with porosity of about 70%), 

which has been regarded as the lowest porosity required for 

cell infiltration and proliferation and the ingrowth of new 

bone tissue.40,43,44 It is well known that it is difficult to achieve 

high compressive strength for porous materials because of 

the negative effects of the porous structure. So it is reason-

able in this case that the compressive strength and modulus 

decreased with the growth of scaffold porosity.

In vitro bioactivity evaluation
Figures 7 and 8 present some selected images of the 

composite scaffold surfaces with different n-HA content 

immersed in SBF for various lengths of time (7 and 14 days). 

As the immersion time is lengthened, the apatite’s nucleation 

through the scaffold surface increases. The apatite’s layer of 

spherical particle aggregates, with relatively small crystals, 

suggests a high nucleation rate. Our electron microscope 

observation confirmed that a calcium phosphate layer, of bone 

apatite, can efficiently grow on the surface and pore walls of 

the scaffold by incubation of the sample in a solution with 

an ionic composition similar to human blood plasma.45 The 

results of our study, and results from other authors45 indicate 

that the apatite formation mechanism could be as follows: 

the HCl in the SBF increases the number of polar groups 

on the nanocomposite surface which in turn increases their 

affinity with the silicate ions, which provide specific sites 

for the apatite nucleation. As a result, a very high number of 

apatite nuclei are formed on the nanomaterial surface during 

the incubation in SBF. EDX curves in Figure 9 indicate an 

increase in phosphorous and calcium contents after soaking 

in SBF for 7 and 14 days. The EDX analysis suggested that 

these spherical particles could be calcium-deficient and non-

stoichiometric apatite with Ca/P ratio of 1.53 and 1.60 for 

both n-HA/nylon 6,6 composite scaffolds (40 and 60 wt%) 

after immersion in SBF for 1 and 2 weeks, respectively. As 

the immersion time increased, the Ca/P ratio increased until 

it reached a value of 1.67, which corresponds to a biological 

apatite. This suggests that, under these conditions, the n-HA/

nylon 6,6 composite scaffolds behave as a bone substitute 

in tissue engineering. Other studies have reported that the 

induced apatite layer on the surfaces of different bioactive 

materials during their incubation in SBF was also calcium-

deficient.46,47

Conclusions
We adapted an interfacial in situ synthesis method to the 

fabrication of bone-like n-HA/nylon 6,6 nanocomposites. 

This method provides the uniform distribution of n-HA 

needle-like particles in a nylon network, similar to normal 

bone and reduces their ability to agglomerate. Therefore, 

the high proportion of HA and uniform distribution of n-HA 
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Figure 6 The influence of n-HA content on the compressive strength (A) and 
modulus (B) of n-hA/nylon 6,6 scaffolds prepared by salt leaching/solvent casting 
technique.
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Figure 7 sEM micrographs of the 40 wt% n-hA/nylon 6,6 composite scaffolds’ 
surface after soaking in the sBF for (A) 7 days and (B) 14 days.

A B

Figure 8 sEM micrographs of the 60 wt% n-hA/nylon 6,6 composite scaffolds’ 
surface after soaking in the sBF for (A) 7 days and (B) 14 days.
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granules in the nylon network enable the scaffolding material 

to possess high bioactivity and sufficient mechanical strength. 

FT-IR and XRD analysis confirmed that chemical bonds were 

formed between n-HA and nylon 6,6 in composite powders. 

The aim of processing bone, tissue-engineered, scaffolds with 

a highly porous structure, desired pore size, and sufficient 

mechanical strength, encouraged us to focus on preparing 

scaffolds using the salt-leaching/solvent casting method 

and n-HA/nylon 6,6 nanocomposite powder. Our results 

demonstrated that these n-HA/nylon 6,6 composite scaffolds 

are three-dimensionally porous and that the compressive 

strength and modulus of 60 wt% n-HA/nylon 6,6 scaffold 

with an approximate porosity of 75% is comparable to the 

upper value strength of natural cancellous bone. The mean 

size of macropores in n-HA/nylon 6,6 scaffold with 40 wt% 

n-HA ranged from 200 to 500 µm, and on their walls there 

were micropores with pore sizes ,50 µm. The higher the 

percentage n-HA content, the thinner the pore walls, but this 

did not change the pore size of the scaffolds. Moreover, the 

presence of bioactive n-HA particles enhanced the scaffolds’ 

bioactivity and improved their ability to induce the formation 

of an apatite layer on their surfaces. Therefore, the n-HA/

nylon 6,6 composite scaffolds with high n-HA content were 

similar to natural bone in bioactivity and mechanical prop-

erties, which makes them a possible candidate biomaterial 

suitable for use as bone substitutes.
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