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Background: Particulate carriers are necessary to control the release of endostar and  prolong its 

circulation in vivo. The purpose of this study was to identify a suitable carrier for the  capsulation 

and delivery of endostar.

Methods: We prepared a series of poly (DL-lactide-co-glycolide) (PLGA) and poly (ethylene 

glycol) (PEG)-modified PLGA (PEG-PLGA) particulate carriers, and then characterized them 

according to their ability to prolong the circulation of endostar, their physicochemical properties, 

endostar-loading content, and in vitro and in vivo particulate carrier release profiles.

Results: All the particulate carriers had spherical core shell structures. The PEG-PLGA  material 

and nanosize range appeared to enable the carriers to encapsulate more endostar, release endostar 

faster in vitro, and accumulate more endostar in vivo. The drug loading capacity of PEG-PLGA 

and PLGA nanoparticles was 8.03% ± 3.41% and 3.27% ± 5.26%, respectively, and for PEG-

PLGA and PLGA microspheres was 15.32% ± 5.61% and 9.21% ± 4.73%. The cumulative 

amount of endostar released from the carriers in phosphate-buffered saline over 21 days was 

23.79%, 20.45%, 15.13%, and 10.41%, respectively. Moreover, the terminal elimination half-

life of endostar in the rabbit was 26.91 ± 7.93 hours and 9.32 ± 5.53 hours in the PEG-PLGA 

group and the PLGA nanoparticle group. Peak endostar concentration was reached at day 7 in 

the group treated with subcutaneous injection of PEG-PLGA microspheres and at day 14 in 

the group receiving subcutaneous injection of PLGA microspheres. Endostar was detectable 

in vivo in both groups after injection of the particulate carriers.

Conclusion: PEG-PLGA nanoparticles might be better than other nanoparticulate carriers for 

encapsulation and distribution of endostar.

Keywords: poly(DL-lactide-co-glycolide), nanoparticle, microsphere, endostar, peptide 

delivery

Introduction
Endostar, a novel recombinant human endostatin, has been approved by the Chinese 

State Food And Drug Administration for the treatment of nonsmall cell lung cancer. 

Endostar has a broad spectrum of activity against solid tumors, by inhibiting endothelial 

cell proliferation, migration, and vessel formation.1–4 Despite its apparent therapeutic 

value, the biological half-life of endostar, like most other protein drugs, is short because 

of its rapid metabolism. Multiple injections of endostar at a high dose (7.5 mg/m2/day 

in the first 2 weeks of a 3-week treatment cycle), in order to maintain therapeutic levels, 

are still associated with fluctuating plasma endostar concentrations.5,6 It is expected 

that a long-acting formulation of endostar would provide stable antitumor activity and 

result in fewer injection-related complications.7
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Several attempts have been made to generate long-acting 

forms of endostatin, including alteration of the  molecule 

to increase its stability, direct poly(ethylene glycol) (PEG) 

 modification of the peptide, and other approaches.8  Mutagenesis 

and modification of the molecule is difficult because the 

bioactivity and efficacy of the peptide must be maintained, 

and integrity of multiple active sites and  conformation must 

be preserved. Recently, endostar-loaded microspheres and 

PEG-modified poly(DL-lactide- co-glycolide) (PEG-PLGA) 

nanoparticles were prepared, with higher acid resistance and 

isoelectric point, and more  stability of endostar resulting from 

an additional nine amino acid sequence at the N terminus.9–12 

In addition, particulate  carriers represent new approaches to 

improving the pharmacodynamic properties of therapeutic pep-

tides, in that they can encapsulate and deliver drugs, and hydro-

lyze in an aqueous environment (hydrolytic degradation or 

 biodegradation) in a stable manner.13 Unlike other approaches, 

such as mutagenesis, direct PEGylation, and fusion to carrier 

proteins, particulate carriers have not been shown to change the 

amino acid sequence of any of the proteins involved.

The purpose of this study was to identify a suitable car-

rier for encapsulation and delivery of endostar. Because the 

physicochemical and biological properties of peptide drugs are 

different from those of other agents, including molecular size, 

biological half-life, conformation stability, physicochemical 

stability, and bioavailability, the design and preparation of these 

carriers is different. Liposomes, microspheres, and nanopar-

ticles are mostly used for peptide drug delivery.11 The structure, 

charge, solubility, and other properties, including the liposomes 

used for the different peptides vary and the formulation methods 

and materials are different.14 Moreover, liposomes are used 

more often for encapsulation of lipid-soluble medicines because 

of their fat solubility. Therefore, we prepared endostar-loaded 

nanoparticles and microspheres, and assessed their ability to 

prolong the circulation time of endostar.

Materials and methods
Materials
Endostar 5 mg/mL was obtained from Shandong Simcere 

Medgenn BioPharmaceutical Co Ltd (Yantai, China). PLGA 

(lactide:glycolide ratio 50:50, molecular weight 45 kDa) and 

PEG-PLGA (PEG molecular weight 2 kDa and PLGA molecu-

lar weight 45 kDa) were purchased from Shandong Institute of 

Medical Instruments (Shandong, China).12 PEG and PLGA are 

nontoxic, nonimmunogenic, and biodegradable, with the poten-

tial for controlled release of injected drugs and site-specific 

drug delivery.15,16 Polyvinyl alcohol (PVA, molecular weight 

13–23 kDa) and the primary antibodies for endostatin were 

purchased from Sigma-Aldrich (St Louis, MO) and Santa Cruz 

Biotechnology (Santa Cruz, CA), respectively. All other chemi-

cals used were of analytical grade. The apparatus, including 

transmission electron microscopy (Philips, the Netherlands), 

microscopy (Jiangnan Optical-Electrical Co Ltd, Nanjing, 

China), photon correlation spectroscopy (Malvern, Worcester-

shire, UK), ultraviolet spectrophotometry (Spectrum China Ltd, 

Shanghai, China), low-temperature ultracentrifugation (Hitachi, 

Japan), and enzyme-linked immunosorbent assay (Bio-Tek, 

Winooski, VT) were used. New Zealand rabbits (2–3 kg) were 

purchased from the Animal Center of Shandong University, 

China. All experiments performed with animals were approved 

by the ethics committee of Shandong University.

endostar-loaded PLgA and Peg-PLgA 
nanoparticles and microspheres
The PLGA and PEG-PLGA nanoparticles were prepared by 

a double emulsion (mixing solvent) as described in previ-

ous studies.12,17,18 This preparation technique was adapted to 

obtain nanoparticles and microspheres. Briefly, the first emul-

sion (o/w) was formed between a dichloromethane solution 

of PLGA or PEG-PLGA 5 mg/mL and endostar (0.05 mL, 

5 mg/mL) by high-speed shearing (2800 rpm for 60 seconds). 

Subsequently, a volume of 2 mL of 0.1% (w/v) PVA was 

added into this primary w/o emulsion to obtain the double 

emulsion (w/o/w) by high-speed shearing (25,000 rpm for 

60 seconds). The solvent was evaporated in 10 mL of  aqueous 

solution (0.1%, PVA) by gentle magnetic stirring (1000 rpm) 

at room temperature. The nanoparticles were recovered by 

centrifugation (40,000 rpm for 40 minutes), and washed three 

times in phosphate-buffered saline.

The PLGA and PEG-PLGA microspheres were also 

prepared by a double emulsion method, which was slightly 

different from that used to create the nanoparticles.11 The pri-

mary w/o emulsion was emulsified at 400 rpm for 30 seconds, 

added to 50 mL of aqueous solution containing 0.1% PVA, 

and stirred at 900 rpm for 4 hours at room temperature to 

evaporate the organic solvents. The microspheres were col-

lected by centrifugation at 5000 rpm for 3 minutes, washed 

three times, and freeze-dried.

Physicochemical characterization
The entrapment efficiency of particulate carriers was assayed 

using a direct method. After dissolving the lyophilized nano-

spheres or microspheres in 0.05 N NaOH and 1% sodium 

dodecyl sulfate, the endostar content was estimated using the 

micro bicinchoninic acid protein assay, which was validated 

using purified endostar.12,19 The lower limit of detection was 
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0.005 µg/mL. No interference with PEG-PLGA, PLGA, or 

the stabilizers was observed. The drug-loading capacity and 

entrapment efficiency were calculated as follows:

Endostar loading capacity (%) = M
endostar

/M
endostar–loaded particulate carriers

  

             × 100

         EE (%) = M
endostar

/M
endostar devoted

 × 100

where EE is entrapment efficiency, M
endostar

 is the amount 

of drug in the nanoparticles or microspheres (M
endostar

 = 

C × V, C is  concentration in the supernatant, V is volume), 

M
endostar–loaded particulate carriers

 is the amount of nanoparticles or 

microspheres containing endostar, and M
endostar devoted

 is the 

initial amount of endostar.

Morphology of the nanoparticles was observed by 

 transmission electron microscopy, and particle size 

 distribution (mean diameter and polydispersity index) was 

determined by photon correlation spectroscopy. The size 

of the microspheres was determined using a microscope 

whereby 200 particles were counted to calculate the average 

diameter and percentage distribution of the microspheres.12

The presence of residual PVA on the surface of the particles 

was determined by both direct and indirect methods.20 The 

nanoparticles or microspheres were digested in 0.05 N NaOH 

and 1% sodium dodecyl sulfate. The solution obtained was then 

neutralized and analyzed for PVA content using the colorimet-

ric method.21 Residual PVA was also calculated according to 

the difference between the total amount used and the amount 

present in the supernatant during the washing steps. The average 

of the results obtained by the two methods was used.

release studies in  
phosphate-buffered saline
The nanoparticles or microspheres were also evaluated for 

their in vitro release characteristics using the horizontal shaker 

method.22 Endostar-loaded nanoparticles or microspheres 

were suspended in phosphate-buffered saline (pH 7.4, 0.01% 

sodium azide, 0.02% Tween80) in an Eppendorf dialysis tube, 

and stirred at 37°C ± 0.5°C and 100 rpm. At appropriate inter-

vals, we centrifuged the suspension, collected the supernatant, 

and added fresh phosphate-buffered saline dialysis buffer to 

the tube. The amount of endostar in the supernatants was 

determined using the micro bicinchoninic acid protein assay. 

Subsequently, the endostar release profiles were expressed in 

terms of cumulative protein release versus time.

In vivo release studies
The in vivo evaluation was performed using 30 male New 

Zealand rabbits, which were randomly divided into six 

groups and housed individually in a room at constant ambient 

 temperature and humidity. After an overnight fast, a bolus of 

endostar, endostar-loaded PLGA, or PEG-PLGA nanoparti-

cles containing endostar 90 mg/m2 was administered through 

the aural vein. In the other three groups, the same amount of 

endostar or endostar-loaded PLGA and PEG-PLGA micro-

spheres was given subcutaneously at the back of the neck. 

Blood samples were collected from the aural vein at a series 

of time intervals. The endostar concentration in plasma was 

determined using an enzyme-linked immunosorbent assay, 

which was validated using purified recombinant human 

endostatin with a detection limit of 0.002–0.5 µg/mL.

Amount of endostar in different  
tissues in vivo
The amount of endostar in the different tissues was detected 

by Western blot assay using a polyclonal antiendostatin 

antibody for investigating clearance efficacy in the rabbit.12,23 

Fifteen New Zealand rabbits, divided into three groups, were 

given the same dose of endostar, endostar-loaded PEG-

PLGA, or PLGA nanoparticles at 180 mg/m2. Tissue samples 

of liver, spleen, and lung were collected, weighed, and 

homogenated when the rabbits were sacrificed. The amount 

of endostar was determined by Western blot assay.

statistical analysis
All experiments were performed in triplicate, and data are 

shown as means ± standard deviation. The Student’s t-test 

was used to compare the treatment groups. P , 0.05 was 

considered to be statistically significant in all cases. The 

pharmacokinetics of endostar distribution were calculated 

using the DAS 2.0 program.23

Results
Physicochemical characterization
The endostar-loaded nanoparticles and microspheres were 

found to have a spherical core shell structure with a rela-

tively smooth surface. Although the size of the PEG-PLGA 

nanoparticles was similar to that of the PLGA nanoparticles 

(147.32 ± 31.93 nm vs 127.31 ± 26.18 nm, respectively, 

P . 0.05), the loading capacity and encapsulation efficiency 

was greater than for the PLGA nanoparticles (8.03% ± 

1.21% vs 3.27% ± 1.36%, P , 0.05). The size of the PEG-

PLGA nanoparticles was smaller than that of the PLGA 

 microspheres (147.32 ± 31.93 nm vs 27.45 ± 4.26 µm, 

P , 0.01), but there was no significant  difference between 

the PEG-PLGA nanoparticles and PLGA microspheres with 

regard to their loading capacity and encapsulation efficiency 
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(8.03% ± 1.21% vs 9.21% ± 1.73%, P . 0.05). The residual 

PVA content of the PEG-PLGA nanoparticles was negli-

gible compared with that on the PLGA nanoparticle surface 

(0.6% ± 1.1% vs 6.3% ± 2.5%, P , 0.05). The amount of 

PVA on the PEG-PLGA microspheres was also less than that 

of the PLGA microspheres (0.3% ± 0.6% vs 3.2% ± 1.9%, 

P , 0.05). The particle size, loading capacity, encapsulation 

efficiency, PVA content, zeta potential, and polydispersity 

index of the particulate carriers are shown in Table 1.

release studies in  
phosphate-buffered saline
Endostar was released more rapidly from the nanoparticles 

than the microspheres, and the release speed from the 

PEG-PLGA nanoparticles was higher than that from the 

PLGA nanoparticles from the third release day onwards. 

The PEG-PLGA nanoparticles released more encapsulated 

endostar over the same time period. Endostar release from the 

endostar-loaded nanoparticles and microspheres (pH 7.04) 

in vitro was biphasic, with an initial abrupt release, followed 

by more sustained release (Figure 1). In the initial burst 

release, a significant amount of endostar was released within 

24 hours (9.27% for the PEG-PLGA nanoparticles, 10.56% 

for the PLGA nanoparticles, 5.02% for the PEG-PLGA 

microspheres, and 6.67% for the PLGA microspheres). 

 Subsequently, the endostar displayed a sustained release 

 profile. Cumulative endostar release over 21 days was 

24.15% for the PEG-PLGA nanoparticles, 20.31% for the 

PLGA nanoparticles, 14.35% for the PEG-PLGA micro-

spheres, and 10.32% for the PLGA microspheres.

release studies in vivo
Endostar concentrations in rat plasma in the PEG-PLGA 

nanoparticle-treated group could be maintained at high levels. 

Although the concentration of endostar in blood 10 minutes 

after intravenous administration in the endostar group was 

about four times that in the PEG-PLGA nanoparticle group, it 

was quickly removed from the circulation in the endostar only 

group, with a terminal elimination half-life of 2.72 ± 1.43 hours. 

While the endostar-loaded PEG-PLGA and PLGA nanopar-

ticles exhibited markedly delayed blood clearance, the elimina-

tion half-life of endostar was 26.93 ± 7.93 hours and 9.35 ± 

5.51 hours, respectively (P , 0.05). The areas under the curve 

for endostar in the PEG-PLGA, PLGA nanoparticle, and endo-

star groups were 69821.95 ± 6219.84 µg/L*hour, 15238.77 ± 

5916.18 µg/L*hour, and 23396.31 ± 7951.65 µg/L*hour, 

respectively. Mean plasma concentrations for the endostar 

and endostar-loaded nanoparticles in rabbits are shown in 

Figure 2. The endostar-loaded microspheres also showed 

a sustained release profile whereby the peak concentration 

was reached on day 7 for the PEG-PLGA microspheres and 

on day 14 for the PLGA microspheres, and was maintained 

until day 27 (Figure 3). The peak concentration of endostar 

in the PEG-PLGA microsphere group was higher than that 

in the PLGA microsphere group (0.3974 ± 0.0316 µg/mL vs 

0.3015 ± 0.0276 µg/mL, P , 0.05).

Amount of endostar in different  
tissues in vivo
The amount of endostar in different tissues in the PEG-

PLGA nanoparticle group was greater than in the PLGA or 

Table 1 Physicochemical characteristics of the nanoparticles and microspheres

Formulation Particle size Loading (%) EE (%) PVA content (%) Zeta potential (mV) PDI

Peg-PLgA nanoparticles (nm) 147.32 ± 31.93  8.03 ± 1.21 75.97 ± 8.67 0.6 ± 1.1 -16.2 ± 0.3 0.39 ± 0.15
PLgA nanoparticles (nm) 127.31 ± 26.18  3.27 ± 1.36* 65.45 ± 9.62* 6.3 ± 2.5* -33.3 ± 0.2 0.31 ± 0.18
Peg-PLgA microspheres (µm)  45.79 ± 6.87* 15.32 ± 1.21* 91.84 ± 3.29* 0.3 ± 0.6 -25.1 ± 0.5 0.46 ± 0.19
PLgA microspheres (µm)  27.45 ± 4.26*  9.21 ± 1.73 82.74 ± 5.67 3.2 ± 1.9* -57.9 ± 0.6 0.73 ± 0.22

Note: *Significantly different from PEG-PLGA nanoparticles (P , 0.05).
Abbreviations: EE, entrapment efficiency; PLGA, poly(DL-lactide-co-glycolide); PEG-PLGA, poly(ethylene glycol) modified poly(DL-lactide-
 co-glycolide); PVA, polyvinyl alcohol; PDI, polydispersity index.
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Note: *Significantly different from PEG-PLGA nanoparticles (P , 0.05).
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microsphere groups. The amount of endostar was assayed 

by Western blot assay.12 Endostar was detectable only in the 

endostar-containing PEG-PLGA group and PLGA nanopar-

ticle group 5 hours after intravenous nanoparticle injection 

and was not detectable after subcutaneous microsphere 

injection (Figure 4). The relative tissue content of endostar 

(endostar: actin, %) in the endostar-loaded PEG-PLGA 

nanoparticle group was 200.5 ± 12.5 in the liver, 216.3 ± 15.2 

in the spleen, and 176.7 ± 8.6 in the lung, and was 109 ± 6.6, 

91 ± 5.7, and 67 ± 4.4, respectively, in the endostar-loaded 

PLGA nanoparticle group. Endostar was not detectable in 

the endostar or microsphere groups, even at day 7 after sub-

cutaneous injection.

Discussion
Both nanoparticles and microspheres can be developed 

using a double emulsion method, with similar release 

characteristics.11,12,24 However, there are still some differ-

ences between these two carriers. Table 1 shows higher 

encapsulation efficiencies of endostar in microspheres and 

PEG-PLGA particulate carriers, and less residual PVA con-

tent in PEG-PLGA particulate carriers. This may be attributed 

to the larger size and smaller surface area that enables the 

microspheres to encapsulate more drug and adsorb less PVA 

than the nanoparticles.25 The higher encapsulation rate for 

the endostar-loaded PEG-PLGA nanoparticles might result 

from the hydrophilic moiety on PEG. This hydrophilic moiety 

on the surface can more easily bind and encapsulate soluble 

endostar into particulate carriers. Less residual PVA on the 

surface of the PEG-PLGA nanoparticles or microspheres 

confirmed that PEG-PLGA was more hydrophilic than PLGA 

and hinders surface adsorption of PVA.20 Thus, the encapsu-

lation efficiency of PEG-PLGA nanoparticles was high.

The release speeds of the nanoparticles and microspheres 

were also different. PEG-PLGA or PLGA nanoparticulate 

carriers would hydrolyze in an aqueous environment (hydro-

lytic degradation or biodegradation), and release the encap-

sulated drug.13 The biodegradation rate of the particulate 

carriers was dependent on the hydrophilic/lipophilic ratio 

of the polymer and surface area. The more hydrophilic and 

the larger the surface area of the polymer, the more rapid 

its degradation.26 Thus, the presence of PEG had a positive 

effect on degradation of the nanoparticles and microspheres. 

As can be seen in Figure 2, higher total amounts of endo-

star were released from the PEG-PLGA nanoparticles and 

microspheres (Figure 2). The higher release effect observed 

for the nanoparticles as compared with the microspheres 

might be attributed to their larger surface area. Thus, different 
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 particulate carriers are chosen to control the release of drugs, 

modify their pharmacokinetics, enhance their anticancer 

effect, and decrease their toxicity.27–29 The PEG-PLGA nano-

particles encapsulated more endostar and released endostar 

more rapidly than the other three carriers.

Microsphere carriers were not suitable for loading 

 endostar. Most drug-loaded microspheres are too large in 

diameter to be administered intravenously, because large-

sized particulate carriers embolize easily in the blood ves-

sels,  triggering an opsonization effect in the immune system 

and they also have difficulty crossing endothelial barriers 

in  various hosts.30 Moreover, the effect of some medicines 

injected subcutaneously shows significant variation at dif-

ferent injection sites in different individuals, and this is 

attributed to variation in body response.31–33 Because of the 

presence of proteolytic enzymes, cellular infiltrates,  various 

cytokines, and pH gradients, subcutaneous conditions are 

complex in vivo. The release profile of endostar from the 

microspheres confirmed that the concentration levels of 

endostar were fluctuant and lower (Figure 3), and not detect-

able in tissues (data not shown).

However, the intravenously administered nanoparticles 

accumulated more easily in tissues, and the plasma concen-

tration of endostar was higher. Five hours after intravenous 

or subcutaneous injection, endostar was only detectable 

in the endostar-containing PEG-PLGA and PLGA nano-

particle groups, and not detectable in the endostar only or 

microsphere groups. The relative content of endostar in the 

endostar-loaded PEG-PLGA nanoparticle group was more 

than that in the endostar-loaded PLGA nanoparticle group. 

Furthermore, the elimination half-life of endostar in the 

PEG-PLGA nanoparticle group was longer than that in the 

PLGA nanoparticle or endostar groups (P , 0.05). These 

observations might result from PEG having a hydrophilic 

moiety which can prevent interactions with other cells and 

proteins,15,16 being cleared from the systemic circulation, and 

being transported in the lymphatic system. Studies have dem-

onstrated that nanoparticles with a PEG layer 100 nm thick are 

not easily engulfed by phagocytes.34,35 Moreover, PEG-PLGA 

nanoparticles might also accumulate easily in tumor tissue. 

As a result of the enhanced permeability of tumor endothe-

lium and lack of lymphatic drainage in tumor cells, there is 

increased extravasation and accumulation of drug in tumor 

vasculature and tumor tissue. In addition, endothelial cells in 

tumors are distinct from those in normal tissues, possessing 

wide fenestrations, ranging from 200 nm to 1.2 mm in size. 

The vascular pore size of the LS174T tumor, a human colon 

adenocarcinoma, may be as large as 400 nm.36 This large pore 

size allows passage of nanoparticles into the extravascular 

spaces, which is known as the “enhanced permeation and 

retention” effect. Thus, the PEG-PLGA nanoparticles accu-

mulate more easily in tumor tissue.

Conclusion
PEG-PLGA nanoparticles can maintain good concentrations 

of endostar in plasma and tissues, and show more promising 

characteristics than PLGA nanoparticles and microspheres. 

Although more investigations need to be done, PEG-PLGA 

nanoparticles seem to represent a suitable endostar carrier 

system. PEG-PLGA nanoparticles might also become novel 

carriers for other peptide medicines, providing new oppor-

tunities to control delivery of peptide drugs.
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