Flow cytometric immunophenotyping of hematological malignancies: the way forward in Nigeria

John Ayodele Olaniyi
Department of Hematology, University College Hospital, Ibadan, Nigeria

Aim: This review serves to awaken the interest of stakeholders involved in research and management of hematological malignancies (HM) in the efficacy of flow cytometry in the immunophenotypic characterization of leukemias and lymphomas. This well-defined characterization plays a crucial role in diagnosis, classification, prognostic evaluation, and detection of minimal residual disease, in the context of clinical features and morphological diagnosis.

Methodology: Relevant literature was retrieved to highlight the principles of operation of flow cytometry, indications and applications, derivable clinical information and clinical relevance, sources of error, and necessary steps towards definitive and specific diagnosis of each HM.

Conclusion: Flow cytometric immunophenotyping (FCIMPT) of HM is highly demanding and capital intensive but its usefulness in profiling these exceptionally heterogeneous disorders, and allowing proper classification along the latest WHO classification guidelines, thereby paving the way for targeted therapy and clinical trial-driven management, significantly outweighs the cost, which can be fully recovered if properly managed. In a low-resource setting like Nigeria, limited immunohistochemistry serves to bridge the gap in technological advancement.

Keywords: flow cytometry, immunophenotyping, hematological malignancies, Nigeria

Introduction
Hematologic malignancies (HM) are a group of neoplasms that arise through malignant transformation of bone marrow derived cells. There is great diversity in this group of disorders reflecting the complexity of normal hemopoiesis. These malignancies are clonal disorders of hemopoietic stem cells whereby an abnormal clone of cells proliferates autonomously, suppressing normal hemopoiesis, and also infiltrates tissues and organs, thereby disturbing their normal physiological activities. The fundamental defect is believed to be due to a genetic aberration at the level of the hemopoietic stem cell.

HM, traditionally regarded as leukemias, lymphomas and myeloma, are in fact exceptionally heterogeneous, with WHO classification (2008) system recognizing over 60 different clinical and pathological disease subtypes. This complexity is further reflected in widely varying clinical features, treatment pathways and outcome associated with these diseases. While some HM are acute and can be rapidly fatal, if untreated, many others are insidiously progressive and become chronic, leading to eventual death. The acute types are often malignancies emanating from precursor cells while the insidious ones are often malignancies arising from relatively or fully matured cells.
Historical background and current diagnostic competency in Nigeria

Historical perspective

Limited or low technology immunophenotyping (IMPT) was carried out at the University College Hospital, Ibadan in the early 1980s by Williams et al using very simple and cheap methods to characterize hemopoietic cells. Using the first generation of monoclonal antibodies that were emerging at that time, as well as modified indirect immunofluorescence microscopy, the first case of adult T cell lymphoma leukemia (ATLL) was described in Africa. However, over years of economic downturn, even limited immunohistochemistry (IHC) became unavailable until hematologists/pathologists in the diaspora came to our aid.

Current status of IMPT in Ibadan Nigeria

Records show that the first immunohistology service was established in 2004 at the surgical research laboratory of Dr. Clement Adebamowo and collaborators; however, minimal immunohistochemical studies were previously undertaken. In the last two years, immunohistochemistry started emerging in Ibadan, Nigeria through the collaborative effort of Nigerians in diaspora, eg, the efforts of the Global Health Initiative through Professor Olufunmilayo Olopade of the University of Chicago and also the Aboderin Foundation Fund, which was provided by a Nigerian philanthropist. In this instance, the most important and relevant monoclonal antibodies for each particular disease were identified and utilized. This goes a long way toward confirming diagnosis in controversial histology reports and in determining the need for targeted therapy, eg, rituximab.

Although advances in science and technology have created techniques for the molecular diagnosis of most of these HM in the developed world, in Nigeria and probably most of Africa, the diagnosis of HM has remained at a rudimentary level because we failed to carefully define our priorities. Therefore, clinical features, morphology and occasionally limited immunohistochemistry remain our mainstay in diagnosing HM.

Flow cytometry (FC) is a very robust and effective method for the diagnosis of HM and hence FCIMPT of HM is the most relevant clinical application of flow cytometry. IMPT of abnormal hemato logical cells is very useful for the diagnosis, classification, prognostic evaluation and detection of residual disease in patients with HM. The procedure evolved over the last two decades from microscopic evaluation of antibody staining to flow cytometry, which is now recognized as the preferred method for data analysis.

For Nigeria to meet the millennium development goals in health programs in general and specifically in the management of HM, a giant stride will have to be taken not only to improve manpower development in cancer diagnosis and treatment but also in equipping our specialist hospitals with modern equipment of which flow cytometry is one part. All requirements for efficient and continuous functioning of such equipment will also have to be provided.

This review discusses the principle of operation and usefulness of FC, and also follows the WHO classification to discuss the immunophenotypic characteristics of common HM found in Nigeria.

What information can be provided by FCIMPT on HM?

FCIMPT helps to give precise immunophenotypic characteristics of pathological hemopoietic cells. Leukemic/lymphomatous cells reflect immunophenotypic characteristics of healthy cells blocked at a certain stage of differentiation. Malignant blood cells display different aberrant phenotypes as defined by cross-lineage antigen expression; asynchronous antigen expression; ectopic phenotypes; and abnormal differentiation pathways, among others.

Multiple accumulated data have shown increased incidence of these aberrant phenotypes in acute leukemias, chronic lymphoproliferative disorders and plasma cell dyscrasias, which allows for discrimination between healthy cells and pathological cells within a sample. FCIMPT basically performs the following activities.

Enumeration of leukemic cells

The number of pathological cells identified morphologically in the bone marrow/peripheral blood samples is currently used for the diagnosis of several conditions. Diagnostic criteria based on the proportion of blasts in several conditions like myelodysplastic syndrome or acute leukemia; the percentage of plasma cells in plasma cell dyscrasias; and the number of mature-appearing lymphocytes in chronic lymphocytic disorders are used, based on morphology and cytochemistry. Just as FC is useful in the diagnostic laboratory for the enumeration of CD4 T-lymphocytes in HIV infection, it has also become the preferred method to assess the number of hemopoietic progenitor cells (CD34+ cells) in cell products that will be used for bone marrow or peripheral
blood stem cell transplantation.29 In this application, FC has been shown to be a robust and reproducible technology.30–32 Immunophenotypic enumeration of leukemic cells has both diagnostic and prognostic value.

Characterization of leukemic cells

After identification and enumeration of pathological cells, immunological characterization is carried out in terms of (i) lineage assignment; (ii) analysis of degree of heterogeneity of the abnormal cell population attributable to either the existence of different pathological clones or the presence of cells in different maturation stages; and (iii) further phenotypic characterization of each of the pathological cell subsets identified.

The principles of FC

FC uses the principles of light scattering, light excitation and emission of fluorochrome molecules to generate specific multiparameter data from particles and cells in the size range of 0.5 µm to 40 µm diameter. The cells are hydrodynamically focused in a sheath of phosphate buffer saline before intercepting an optimally focused light source. Lasers are most often used as light source in FC.

As the cells of interest intercept light, they scatter it, and fluorochromes are excited to a high energy state. This energy is released as photons of light with specific spectral properties unique to different fluorochromes.

One unique feature of FC is that it measures fluorescence per cell or particle. This contrasts with spectrophotometry in which the percent absorption and transmission of specific wave lengths of light is measured for a bulk volume of sample.

The scattered and emitted light from cells and particles are converted to electrical pulses by optical detectors. Collimated light is picked up by confocal lenses focused at the interception point of the cells and the light source. Light is sent to different detectors by using optical filters. For example a 525 nm band-pass filter placed in the light path prior to the detector will allow only green light to pass into the detector. The most common type of detector used in flow cytometry is the photomultiplier tube (PMT).

The electrical pulses originating from light detected by the PMT are then processed by a series of linear and log amplifiers. Logarithmic amplification is most often used to measure fluorescence in cells. This type of amplification expands the scales for weak signals and compresses the scale for strong or specific fluorescence signals.

After the different signals or pulses are amplified they are processed by an analog to digital converter which in turn allows for events to be plotted on a graphical scale.

FC data outputs are stored in the form of computer files using FCS 2.0 or 3.0 standards. Data corresponding to one sample can be stored as a list mode file and/or histogram file.

The Beckman Coulter XL (Beckmann Coulter SA Pty Ltd, Growthpoint Business Park, Midrand, South Africa) instruments are bench-top, flow cytometer analyzers. They are capable of acquiring multiparameter FC data but they cannot separate or purify cells. Sorting is a specialized process that requires sophisticated electronic components not incorporated into most bench-top instruments. The Beckman-Coulter ELITE-ESP and Dako-CyomationMoFli high speed sorters (University of California, Berkeley, CA) are representative research grade cell sorters. Sorters include the following components: a turnable transducer which permits the breaking of the fluid sheath into individual droplets, which will encapsulate single cells; electric charge delays for charging individual droplets; deflection plates for deflecting individual charged droplets into collection tubes; and software settings for defining sorting criteria.

FC has undergone major technical advances to provide high sensitivity and specificity through improved instrumentation, introduction of new monoclonal antibodies, utilization of “up to 6 color staining,” permeabilizing agents, and CD45 gating strategies.

Pre-analytical factors for blood and bone marrow samples are that: (a) anticoagulant (EDTA or heparin) be used; (b) the specimen is analyzed within 24 hours; (c) storage should be at 2°C–20°C; (d) there is no need to isolate mononuclear cells; and (e) great care be taken with lysing procedures.

It is recommended that immunophenotyping should be assessed in conjunction with clinical features and cell morphology with strict adherence to quality system essentials, and careful selection of fluorochromes: antibodies whose normal expression is rather dim (eg, CD7, CD10, CD11b, CD13, CD2, CD34, CD64, CD117 or Tdt) should be labeled with the brightest fluorochromes like phycoerythrin and, if instrumentation allows, allophycocyanin.

Extensive studies6–12,33–37 have been done on the factors that affect the results of immunophenotyping, including:

1. The type and quality of samples.
2. The reagent and sample preparation protocols.
3. Instrument set-up and calibration.
4. Potential components of subjectivity introduced during data analysis or with the interpretation of the results represent the most common sources of variability.
Assess morphology and cytochemistry (SBB or MPO and NSE)

- Clearly myeloid
 - No further action
- Not clearly myeloid
 - Immunophenotype with first line panel (Table 4)
 - L3 or TdT-negative B-lineage
 - Surface immunoglobulin and/or light chain immunoglobulin
 - Lineage established
 - Lineage not established
 - All markers negative
 - CD33
 - CD7
 - CD41, CD42
 - CD61
 - Anti-glycophorin A
 - Check equivocal flow cytometry results by immunocytochemistry

Figure 1 Flow chart for the diagnosis of acute leukemia.

Note: Reproduced from NewBU.16

Abbreviations: MPO, myeloperoxidase; NSE, nonspecific esterases; SBB, Sudan Black B.

Figure 2 T-acute lymphoblastic leukemia (ALL): lymphocyte development.

Note: Reproduced from NewBU.16

Immunophenotyping and hematological malignancies

Assess morphology, apply the first line panel of McAb (Table 4) and assign CLL score

CLL score 3–5
Typical or atypical CLL morphology

No further action

CLL score 0–2
Non-CLL morphology or atypical CLL

Apply selected second line panel of McAb in the light of morphology and results with the first line panel (Table 5)

Suspected
- HCL, HCL-variant, SLVL
- B-NHL or B-PLL
- Plasma cell neoplasm
- LGL-leukemia
- B-NHL or B-PLL
- T-PLL or T-NHL

CD11c, CD25
CD103, HC2
Cyclin D1
Cytoplasmic Ig (kappa/lambda)
CD79a, CD138
CD33, CD4, CD8
CD16, CD56
CD11b, CD57
TIA-1
CD3, CD7, CD4, CD8
CD25
TdT
α-TCR γδ

Figure 3 Flow chart for the diagnosis of chronic lymphoproliferative disorders.

Note: Reproduced from NewBLU.11

Abbreviations: nHL, B-non-Hodgkin’s lymphoma; PLL, B-prolymphocytic leukemia; CLL, chronic lymphocytic leukemia; HCL, hairy cell leukemia; LGL, large granular lymphocyte; McAb, monoclonal antibody; SLVL, splenic lymphoma with villous lymphocyte; T-PLL, T-prolymphocytic leukemia; T-NHL, non-Hodgkin’s lymphoma.

The clinical application of FC

The clinical applications of FCIMPT include the diagnosis and subtyping of lymphoproliferative disorders and leukemias; detection of residual disease in the above mentioned; CD34 assays; determination of lymphocyte subsets; paroxysmal nocturnal hemoglobinuria (PNH) studies; fetal–maternal hemorrhage; DNA ploidy; apoptosis; and platelet aggregation.

To date, the clinical utility of the FCIMPT characterization of hematological malignancies has been based mainly on the investigation of the similarities between leukemic and healthy cells.6–12,33,34 Assessments of the lineage and differentiation stage of the pathology represent the basis of current IMPT diagnosis and classification of hematological malignancies. It is however well established that leukemic cells display immunophenotypic features that are different from those present in healthy cells.
of the same cell lineage and maturation stage. Most probably these phenotypic aberrations are related to the existence of leukemic cells with underlying genetic aberrations. In support of the fact that specific genetic abnormalities are associated with characteristic phenotypic aberrations, many reports have shown this link between specific genetic alterations and the immunophenotypic characteristics of leukemic cells in both acute myeloblastic leukemia (AML) and acute lymphoblastic leukemia (ALL). However immunophenotyping cannot be used as a screening method to select cases carrying specific genetic abnormalities because the sensitivity and specificity of detection of aberrant immunophenotypes is poor. This may be related to technical issues.

Lineage assignment of pathological cells

1. Mature (chronic hematologic malignancies): express highly specific markers such as CD3/TCR complex in T cell disorders.
2. In acute leukemia, there is a major challenge because of the immaturity of the cells.
 - Cross-lineage expression: lymphoid markers TdT, CD2, CD7 and CD19 was demonstrated in MPO+ myeloid leukemic cells. Positivity for myeloid antigens CD13, CD33 and CD15 can be found in a variable proportion of ALL cases.
 - Incidence of real biphenotypic/bilineage cases is very low.
3. The specific markers for cells of the B lymphoid lineage are cytoplasmic CD79a and either surface or cytoplasmic immunoglobulin.
4. For T cell lineage the most specific markers are cytoplasmic or surface CD3 and T cell receptor (TCR).
5. For myeloid cells, MPO+ and lysozyme are the most highly specific markers.
6. Myeloblast subclassification into different myeloid cell lineages largely remains a challenge for the future.

Diagnosis of acute leukemia

The strategy for leukemia IMPT includes the following: identify blasts/abnormal cells; determine lineage (B, T-lymphoid or myeloid); determine immunological subtype; search for leukemia aberrant phenotypes; and customize follow up panel for minimal residual disease.

Figures 1, 2 and 3, and Tables 1, 2, 3 and 4 clearly summarize the diagnostic pattern of hematological malignancies with the aid of flow cytometry.

Conclusion

FCIMPT of hematological malignancies has become indispensable in view of its role in clearly defining the complex hematopoietic malignancies according to lineage and maturation stage, using differentiation markers. It is also fast, sensitive and specific. It appears expensive to maintain, but careful planning, including having a regional center to start with, along

Table 1	Panels of antibodies for the scoring system for biphenotypic acute leukemia		
Score	B-Lymphoid	T-Lymphoid	Myeloid
2	CD79a	CD3	MPO
	cCD22	TC Ralpha/beta	
1	CD19	CD2	CD117
	CD20	CD5	CD13
	CD10	CD8	CD33
	CD10	CD10	CD65
0.5	TdT	TdT	CD14
	CD34	CD7	CD15

Abbreviation: TCR, T-cell receptor.

Table 2	Diagnosis of acute leukemias (B-ALL subtypes)		
Precursor	Common	Pre-B-	Mature-B-
B-ALL	ALL	ALL	ALL
HLA-DR	Positive		
cCD22			
CD79a			
CD19			
TdT	Positive	Negative	
CD10	Negative	Positive	Negative
cIgM	Negative	Positive	Negative
slg	Negative	Positive	

Note: Reproduced from NewBu.45

Abbreviations: ALL, acute lymphoblastic leukemia; B-ALL, B-acute lymphoblastic leukemia.

Table 3	Diagnosis of acute leukemia (T-ALL subtypes)		
Pro-T-ALL	Pre-T-ALL	Cortical-T-ALL	Mature-T-ALL
TdT	Positive		Negative
cCD3	Positive		
CD7	Positive		
CD2	Negative	Positive	
CD5	Negative	Positive	
CD4	Negative	Positive for CD4 or CD8	
CD8	Negative	Positive for CD4 and CD8	
CD1a	Negative	Positive	Negative
sCD3	Negative	Positive	

Note: Reproduced from NewBu.45

Abbreviation: T-ALL, T-acute lymphoblastic leukemia.
with meticulous management, coupled with its wide benefit will offset the cost. It is high time to make a seismic change in the management of hematological malignancies in Nigeria.

Acknowledgments
The author acknowledges with gratitude the support of the UICC and Global Health Initiative of University of Chicago for the joint scholarship awarded to study flow cytometry immunophenotyping at the University of Chicago and also thanks Professor Olufunmilayo Olopade for providing the enabling environment and Professor CKO Williams for his advice on the manuscript.

Disclosure
The author reports no conflicts of interest in this work.

References
23. Matutes E, Catosky D. CLL should be used only for the disease with B cell phenotype. Leukemia. 1993;7(6):917–918.

