Playground injuries in children

Hassan Sadeghi Naeini1
Kent Lindqvist2
Hamid Reza Jafari3
Amir Hossein Mirlohi4
Koustuv Dalal2,5
1Iran University of Science and Technology, Tehran, Iran; 2Division of Social Medicine and Public Health, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden; 3Environmental Planning Department, Graduate Environment Faculty, University of Tehran, Tehran, Iran; 4Apadana Research Center, Isfahan, Iran; 5Division of Public Health Science, School of Life Sciences, University of Skovde, Sweden

Background: Rapid urbanization and unplanned population development can be detrimental to the safety of citizens, with children being a particularly vulnerable social group. In this review, we assess childhood playground injuries and suggest safety mechanisms which could be incorporated into playground planning.

Methods: Inclusion criteria were “children” as the focus group, “playground” as the main field of study, and “unintentional injury” and “safety” as the concepts of study. The keywords used for the PubMed search were “playground”, “children”, and “injury”. Initially we accessed 182 articles. After screening according to inclusion criteria, 86 articles were found, and after reading the abstracts and then the full text, 14 articles were finally included for analysis. The papers reviewed included four case-control studies, three case studies, three descriptive studies, two interventional studies, one retrospective study, one cross-sectional study, and one systematic review.

Results: Playground-related fractures were the most common accidents among children, underscoring the importance of safety promotion and injury prevention in playgrounds, low-risk equipment and playing hours (week days associated with higher risk), implementation of standards, preventing falls and fall-related fractures, and addressing concerns of parents about unsafe neighborhoods. With the exception of one study, all of the reviewed papers had not implemented any practical safety plan. Safe engineering approaches were also ignored.

Conclusion: We recommend a systematic safety approach based on the “safety circle” which includes three main areas, ie, equipment, environment, and children.

Keywords: children, playground, injury, safety

Introduction

Health and safety problems are increasing with rapid urbanization and increasing population pressure in major cities. Studies in many industrialized countries show that public health is affected by increasing populations, and safety-related problems threaten all age groups.1 Rapid urbanization and unplanned increases in population elevate the risks for children in developing countries.2 According to global reports, around 51.5% of the world’s population, representing an estimated number of 7 billion people, are now living in cities.3,4 Undoubtedly, accidents occur in high population areas more often than in low population areas. Similarly, playground injuries in crowded neighborhoods are more likely to occur and with more serious consequences than in a neighborhood with a low ratio of population to accessible land area. Therefore, the safety of urban-dwelling children should be one of our most important global concerns. Child-oriented safety promotion programs focusing on sustainable and safe
neighborhoods play a significant role in creating safer cities and a better constructed environment. Healthy cities require safe playgrounds, given that children spend a lot of time in these facilities.6,7

Play is an integral part of childhood development,8–10 and is a powerful resource for acquisition of cognitive, psychosocial, and physical skills, so access to safe play spaces is essential.6,11–17 Playgrounds can make a significant contribution to social, emotional, and intellectual development during childhood,6 but with a high probability of childhood injuries.7,14,18 For example, in the US, nearly 211,000 children per year are treated in emergency rooms for playground-related injuries.7

Each year, 10–30 million children and adolescents sustain an injury, and approximately 950,000 children die every year due to accidental injuries or violence.19 A few years ago, some international groups and organizations addressed these problems and made voluntary standards for playgrounds (eg, ASTM F1487). In addition, new guidelines by the US Consumer Product Safety Commission have been developed for the prevention of injuries in children during play.20

Tens of millions of children require hospital care every year for nonfatal injuries, including those sustained in playgrounds.21 Several studies of injuries associated with playground equipment have been reported from around the world, but none has used large global databases to evaluate the types of injury in detail.8 The “World Report on Child Injury Prevention” has advocated global attention to reduce childhood injuries using a range of strategies, including playground safety and safeguards against injury.22–24

The available evidence indicates that Sweden was the first country to appreciate the scope and significance of children’s health and injuries. Around six decades ago, the rate of childhood death in Sweden was higher than that in the US, but after the 1980s, because of forward planning, Sweden now has the lowest rates of child injury.23 An observational study from Wales showed that 90% of playground-related accidents requiring emergency room attendance were attributable to unsafe playground equipment.16,22 Previous research has also indicated that playground swings are the most common cause of traumatic brain injuries in children.5,10 In Canada, 28,500 children per year are treated in hospital for injuries related to falls in playgrounds.14

Falls from playground equipment are one of the most important causes of childhood injuries.11,13,15,21,24–27 Reports show that the majority of injuries in children aged younger than 13 years are related to school playground and equipment.15,22 In Ontario, falls from playground equipment are the second commonest cause of hospitalization as a result of sporting and recreational activities.14

This review assesses childhood playground injuries and addresses potential safety mechanisms by making some practical recommendations for childhood injury prevention in playgrounds.

Methods
In this research, we focused on physical safety and accidental events causing bodily injury to children during their activities in playgrounds. Neighborhood safety is a prominent issue for children, because outdoor safety encourages parents to allow their children to play in playgrounds.28 We reviewed the literature on playground injury and children’s safety using PubMed. Keywords were “playground”, “children”, and “injury”. We initially identified 182 relevant papers, without any limitations in the search. Eighty-six articles were found using the following limitations: “English language”, “human”, “age group under 18 years”, and “last 10 years”. Inclusion criteria were: children as a focus group; playground as the main field of study; and unintentional injury and safety as the concepts of the study. Exclusion criteria were: not involving playground injuries; cost–benefit injury studies; and specific groups, such as athletes. Likewise, editorials and articles discussing treatment of childhood injuries were excluded. On initial screening, 32 articles were excluded. We then critically reviewed 54 abstracts and excluded a further 33 papers. Full texts of the 21 remaining articles were accessed. Finally, 14 articles were included in our study. The whole screening and acceptance process is described in Figure 1.

Because playground injuries are complex phenomena and include environmental factors, characteristics of children, and related equipment, we categorized the papers under three main headings, ie, equipment, environment, and children.6,29

Results
The 14 papers included in this review comprised four case-control studies, three case studies, three descriptive studies, and two interventional studies, and one retrospective, cross-sectional, and systematic study each. The main findings of these papers are discussed in this section. Table 1 reports how long ago the studies were carried out, and Table 2 summarizes the methods and main findings of these studies.
Enforcement of appropriate standards for playgrounds would make these places safer for children. There is some experience of the positive effects of the implementation of playground standards around the world. For instance, in 1931, the National Parks Association in the US introduced some requirements on safe surfaces, and the National Recreation and Parks Association introduced a protocol for playground safety audits in the 1990s. Another example is the Canadian Standards Association’s guideline (CAN/CSA-Z614-07) for children’s playspaces and equipment.7,9,16 The most recent version of this standard was implemented in 136 elementary schools in Toronto, resulting in fewer school playground injuries.16 However, existing standards and guidelines are not enough for injury prevention in playgrounds, and related standards need revision.9

Standardization of playgrounds was mentioned in 30% of the studies reviewed. Use of appropriate materials for playground surfaces, and determination of appropriate dimensions for both equipment and free space around equipment was recommended by approximately 50% of the reviewed articles. Almost all the papers indicated that the majority of fractures involved the upper extremities, and that the main cause was falls.6,14,15,30–33 Falls were reported as the cause of injuries in playgrounds, and fractures as the outcome, in at least 50% of the reviewed articles.

Prevention of fractures in childhood was the main reason reported for wanting safer playgrounds.2,10,14 Safety promotion in playgrounds is paramount for both injury prevention and improving attitudes of parents towards environmental safety. Seven papers emphasized the need for preventive safety planning in playgrounds, and three of these recommended safety auditing.

Most of the papers mentioned fractures as one of the most common playground-related injuries. Fractures account for approximately 84% of hospital attendances for children, with an annual incidence rate of 12–42/1000 children.14 Almost all the papers indicated that the majority of fractures involved the upper extremities, and that the main cause was falls.6,14,15,30–33 Falls were reported as the cause of injuries in playgrounds, and fractures as the outcome, in at least 50% of the reviewed articles.

Prevention of fractures in childhood was the main reason reported for wanting safer playgrounds.2,10,14 Safety promotion in playgrounds is paramount for both injury prevention and improving attitudes of parents towards environmental safety. Seven papers emphasized the need for preventive safety planning in playgrounds, and three of these recommended safety auditing.

Discussion

The main findings of these papers highlight the importance of safety promotion and injury prevention in playgrounds and removing high-risk equipment. Implementation of standards,
<table>
<thead>
<tr>
<th>Reference</th>
<th>Location</th>
<th>Methods</th>
<th>Main findings</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiessel14</td>
<td>Toronto Canada</td>
<td>Case-control study</td>
<td>Data-gathering based on pediatric records at Toronto Hospital 1995–2002</td>
<td>Study of playground falls and related fractures according to gathered data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cases included those who fell from a height in playgrounds; controls were those who fell from a standing height</td>
<td>No significance difference found between two types of falls 48% (n = 3155) of all cases treated at the hospital had fractures, 1070 of which were detected as playground fall-related fractures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study of minor and major fractures</td>
<td>More than 85% of fractures were of the upper extremities</td>
</tr>
<tr>
<td>Heck et al18</td>
<td>Columbia</td>
<td>Intervventional study, a multiple baseline design, across three classrooms (5379 children)</td>
<td>Recording of child behavior during play (especially for slides and climbers)</td>
<td>5-day safety training course for children</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35% of falls occurred on surfaces with high-risk injury according to g level</td>
<td>Among second graders who had lower intervention, higher baseline rates detected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Occurrence of injuries during play with equipment 2 m in height occurred 2.56 times more often than 1.5 m ones</td>
<td>Children’s play behavior affected by presence of observers, but year-long supervision impractical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Surface material and height of equipment have some relationship with risk of injury; surface resilience can be a predictor of risk severity</td>
<td>Duration of intervention and supervision important</td>
</tr>
<tr>
<td>Howard16</td>
<td>Ontario Canada</td>
<td>Intervenational study changing unsafe to safe play. Study of injuries before and after intervention in 86 schools</td>
<td>Field observation in summers of 1991–1995</td>
<td>Assessment of playground surface materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interview of 1286 parents by telephone questionnaire</td>
<td>35% of falls occurred on surfaces with high-risk injury according to g level</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Occurrence of injuries during play with equipment 2 m in height occurred 2.56 times more often than 1.5 m ones</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Surface material and height of equipment have some relationship with risk of injury; surface resilience can be a predictor of risk severity</td>
</tr>
<tr>
<td>Lafores30</td>
<td>Montreal</td>
<td>Case-control study in 102 selected playgrounds</td>
<td>Field observation in summers of 1991–1995</td>
<td>Assessment of playground surface materials</td>
</tr>
<tr>
<td></td>
<td>Canada</td>
<td></td>
<td>Interview of 1286 parents by telephone questionnaire</td>
<td>19.5% total treated fractures (n = 2001) were related to playgrounds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fractures in boys were twice as common as in girls; 68% of cases were Chinese, 17% Malay, 11% Indian, and 4% others</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Most fractures (70.7%) occurred in children aged 5–12 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Most of fractures occurred during play with monkey bars and other upper body devices.</td>
</tr>
<tr>
<td>Mahadev31</td>
<td>Singapore</td>
<td>Retrospective study of play-related fractures in 390 patient records in a children's hospital during May 1997–December 1998</td>
<td>Samples categorized into 4 age groups (<2, 2–5, 5–12, and 12–15 years)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rate of 106.6/100,000 children for injuries related to falls</td>
</tr>
<tr>
<td>Mitchell33</td>
<td>New South Wales Australia</td>
<td>Descriptive study of hospitalization data (1992/93 to 2003/04) of children (aged ≤14 years) who had suffered injuries related to a fall from playground equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Decreasing incidence of head injuries, but increasing upper extremity injuries, so safety auditing and risk assessment needed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Playground safety standards have an important role in injury prevention</td>
</tr>
</tbody>
</table>

(Continued)
Upper Extremity Injuries and Fractures

Recording as common injuries for all age groups, with an upward trend; head injury rate decreased Numbers of times equipment used in playgrounds sampled were 3762, 2309, and 825 for climbing, horizontal ladders, and slides, respectively Frequency of use was different between schools and park playgrounds Injury rate for school playgrounds was 59/100,000 per year and 0.26/100,000 per year for park playgrounds

Nixon

Olsen

Powell et al

Schwebel et al

Sherker

Better implementation of safety standards necessary Distribution of equipment was not obvious between school and park playgrounds; comparison of equipment within the samples was not possible; however, the overall rate of injuries was low Intervention could reduce this low injury rate further

Understanding of importance of safety should be communicated in addition to playground safety training School playground safety involves a system for proper safety supervision Improving playground safety needs planned endeavors Effective maintenance should be implemented in all playgrounds Inadequate spaces around equipment should be checked and improved Local residents should be encouraged to clean and remove trash, broken equipment and debris, involves local and neighborhood municipal bodies

No relationship between somatic abilities and injury, findings might be useful for playground equipment and toy manufacturers

Potential bias towards more serious falls among controls To assist with compliance, upon completion of the schools’ commitment to the study, free playground surface materials were provided to control schools

Case Studies

Case Study of Playground Equipment-related Injuries in Children

Case Study and Comprehensive Survey

Description of Hazards in 78 Playgrounds

Case Study of 49 Girls and 51 Boys

Development of a Designed Dummy for Simulation of Accidental Falls

Development of a Case-Control Study

Validation of Methods of Biomechanics and Epidemiology

Main Focus Group was Children Aged <13 Years Who Suffered a Play-related Fracture

School Playground Safety Involves a System for Proper Safety Supervision

Understanding of Importance of Safety Should Be Communicated in Addition to Playground Safety Training

Improving Playground Safety Needs Planned Endeavors

Effective Maintenance Should Be Implemented in All Playgrounds

Inadequate Spaces Around Equipment Should Be Checked and Improved

Local Residents Should Be Encouraged to Clean and Remove Trash, Broken Equipment and Debris, Involves Local and Neighborhood Municipal Bodies

No Relationship Between Somatic Abilities and Injury, Findings Might Be Useful for Playground Equipment and Toy Manufacturers

Potential Bias Towards More Serious Falls Among Controls

To Assist with Compliance, Upon Completion of the Schools’ Commitment to the Study, Free Playground Surface Materials Were Provided to Control Schools

<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nixon</td>
<td>Brisbane, Australia</td>
<td>Case study of playground equipment-related injuries in children. Assessment of emergency data from 2 hospitals over 2 years focusing on children. Random sampling and selection of 16 playgrounds and one hour observation in each sample during spring, winter, and autumn.</td>
</tr>
<tr>
<td>Olsen</td>
<td>Iowa, USA</td>
<td>Case study and comprehensive survey description of significance of plan for injury prevention in school playgrounds. Using a safety model as a basic plan for development of injury prevention in schools.</td>
</tr>
<tr>
<td>Powell et al</td>
<td>Chicago, IL</td>
<td>Description of hazards in 78 playgrounds including 42 cases in low-income neighborhoods and 26 cases in very low-income neighborhoods.</td>
</tr>
<tr>
<td>Schwebel et al</td>
<td>USA</td>
<td>Case study of 49 girls and 51 boys, mostly Caucasian, who attended in a laboratory for motor ability tests, measured by balancing block on head, balance beam walking, bead stringing. Unintentional injury questionnaire filled out by mothers.</td>
</tr>
<tr>
<td>Sherker</td>
<td>Melbourne, Australia</td>
<td>Validated methods of biomechanics and epidemiology. Development of a case-control study. Development of a designed dummy for simulation of accidental falls. Main focus group was children aged <13 years who suffered a play-related fracture. 5 hospitals selected for study.</td>
</tr>
<tr>
<td>Reference</td>
<td>Location</td>
<td>Methods</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Sherker32</td>
<td>Victoria, Australia</td>
<td>Unmatched case-control study in 5 hospitals and 78 randomly selected control schools, data gathered October 2000–December 2002</td>
</tr>
<tr>
<td>Tan et al</td>
<td>Singapore</td>
<td>Cross-sectional descriptive study and assessment of data documented during February 2002–January 2004 in emergency departments of three hospitals</td>
</tr>
</tbody>
</table>

Abbreviations: Ch, children; env, environment; eq, equipment.

There is a close relationship between safety promotion and the community. Playground safety needs plans based on integrated cooperation in communities. This is a multifactorial process, which needs to be accommodated in safety planning, as playground injury prevention is a planned process, involving the participation of children themselves. Additional keywords we identified in our literature review include falls, surface, height, fractures, monkey bars, slides, upper extremity, injury, children, play, and childhood development, so future approaches that include these terms may help us to formulate practical guidelines for the prevention of playground injuries. In this regard, we recommend a “safety circle”, which may be able to address most playground safety issues. Figure 2 makes some recommendations for playground safety promotion and playground-related injury prevention, and has three main components, ie, equipment, environment, and children.

Equipment

Safety audits and risk assessments should be performed for all playground equipment. Swings, climbers, and slides in particular are known to be high-risk for injury, so an in-depth
safety audit of their safety and supervision requirements is essential.

Environment

Environmental characteristics are divided in two parts, ie, hazards and physical features. Environmental hazards include noise, poor lighting, and air pollution. Physical environmental features include signage, graphics, and a esthetic concepts, and can be used to enhance safety.

Children

The physical and behavioral characteristics of children should also be surveyed. Generally, play-related behavior in children can be considered risky, given that children love excitement and adventure, and this needs to be taken into account when planning for safer and healthier playgrounds. Because there is no correlation between children’s motor abilities and risk-taking behavior, assessment of children’s behavior requires more in-depth observation. Study of body types and anthropometric measurements may be needed to achieve a better match between playground equipment and children’s physical characteristics.

The safety circle approach may meet some other needs in playground safety planning as well, including:

- Integration of safety systems and urban planning
- Devising a pathway for documentation of all near-miss injuries, and actual injuries and events, from source of risk through to treatment or emergency presentation to hospital
- Safety audits and proper supervision in playgrounds
- Public education on playground safety
- Cooperation of nongovernment organizations in safety promotion
- Specific studies about environmental factors (ie, hazardous material, illumination, noise pollution, visual pollution), and characteristics of children themselves (ie, anthropometric measurements, behavior, and attitude surveys)

In addition, the following measures would enable better conditions for children’s safety in playgrounds:

- Practical research in developing countries
- Making reliable databases for playground-related child accidents in low-income countries
- Investigation of any existing standards so that revisions can be made to overcome existing safety problems in playgrounds
- More research and surveys about the safety of children in public playgrounds

There is a clear need for better recognition of childhood safety issues and for more child playground safety studies. Despite the gravity of the problem, the number of relevant studies reported in the scientific literature is low. Playground accidents are more common in developing countries than in developed countries, but most of the research and literature thus far comes from high-income countries. Also, population density is a risk factor for childhood accidents in developing countries, so playground safety assessment in high-risk communities is mandatory. Comparison of accident types and rates between developing and developed countries should be investigated further to enable appropriate audit methods and planning to be formulated, particularly for developing countries, although adaptation of safety measures and recommendations would be required according to the economic and cultural characteristics of local communities.

In this review, we have hopefully paved the way for the introduction of an effective approach to the promotion of playground safety and prevention of childhood injuries. Playground safety is important, and therefore global endeavors for safety promotion and injury prevention in playgrounds are warranted.

Disclosure

The authors report no conflicts of interest in this work.

References