Secondary cataract: an epidemiologic and clinical survey at the Yaounde Gynaeco-obstetric and Paediatric Hospital

André Omgbwa Eballé 1,3
Augustin Ellong 2
Guy Patrick Ella 2
Viola Andin Dohvoma 2
Assumpta Lucienne Bella 2
Côme Ebana Mvogo 1

1Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon; 2Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon; 3Yaoundé Gynaeco-obstetric and Paediatric Hospital, Yaoundé, Cameroon

Objective: To determine the incidence and risk factors of secondary cataract.

Materials and methods: A retrospective study involving a review of medical records in the ophthalmology unit of the Yaoundé Gynaeco-obstetric and Paediatric Hospital in Yaoundé, Cameroon, was carried out. All patients who had cataract surgery between January 2006 and September 2010 were included. Variables included age, sex, past medical history, morphology of primary cataract, type of surgery, intraocular lens implantation, site of implantation, intra- and postoperative complications, and the time lapse for the presentation of secondary cataract. Both univariate and bivariate analyses were carried out. The \(\chi^2 \) test was used to compare proportions, and \(P \)-values <0.05 were considered statistically significant.

Results: A total of 864 eyes of 718 patients had cataract surgery. Ninety-two eyes developed posterior capsule opacification, giving an incidence of 10.65%. The mean age of patients who developed secondary cataract was 52.3 \(\pm \) 23.05 years, with a range of 4 years to 84 years. Secondary cataract was more frequent in the age group of 0–20 years. The time lapse for presentation of secondary cataract was 64.7 \(\pm \) 9.53 days, with a range of 1 to 504 days. Risk factors for the development of secondary cataract were age (\(P = 0.000 \)), sex (\(P = 0.011 \)), cortical cataract (\(P = 0.000 \)), and postoperative inflammation (\(P = 0.000 \)).

Conclusion: The incidence of secondary cataract, though high in this study, is lower than that reported in other studies.

Keywords: cataract, secondary cataract, incidence, Cameroon

Introduction

Manual extracapsular extraction is the most frequently used surgical technique in the management of cataract in developing countries. 1–3 Posterior capsule opacification, which is also known as secondary cataract, is the most frequent complication following this technique. 4,5 Secondary cataract is the proliferation and migration of residual epithelial cells into the visual axis, causing a decrease in visual acuity. 4 It is an unpredictable and inevitable complication. Its incidence varies in the literature from 10% to 50% by 3 to 5 years after surgery. 6–8 Significant risk factors for the development of secondary cataract include age, type of surgical technique, lack of posterior chamber intraocular lens (IOL), poor preoperative dilatation, large IOL optic diameter (7 mm), lens material, lens design, experience of the surgeon, and persistence of cortical material. 7,9

Treatment is mainly by neodymium:yttrium aluminum garnet (Nd:YAG) laser capsulotomy. 7 However, this is not available in most ophthalmology units in Cameroon due to the cost. Even when available, the high cost of treatment, which is estimated at about
Peribulbar block was done with a combination of 3 mL of bupivacaine 0.5% and 3 mL of lidocaine 2% in adults, and 1 mL of a combination of corticosteroid (dexamethasone 0.1%) and antibiotics (neomycin and polymyxin B) as well as a mydriatic (tropicamide 0.5%). Postoperative follow-up consisted of the measurement of visual acuity and the search for early or late complications, including a posterior capsule opacification (secondary cataract). For bilateral cataracts, the second eye was operated on after an interval of 2 months.

Patients and methods
All the medical records of patients who consulted the ophthalmology unit of the Yaoundé Gynaeco-obstetric and Paediatric Hospital were reviewed. Patients included were both males and females of all ages who underwent cataract surgery in one or both eyes between January 2006 and September 2010.

All patients had received a comprehensive ophthalmic examination including visual acuity testing, refraction, slit-lamp examination of the anterior segment, posterior segment examination using a 78D Volk lens or Goldmann three-mirror contact lens, and intraocular pressure measurement using a noncontact tonometer. Younger children were examined under general anesthesia after a pediatric consultation that aimed at finding any systemic associations.

At the end of the examination, cataract was classified with respect to laterality (unilateral, bilateral), etiology (congenital, traumatic, complicated, or age related), and morphology of the opacity (white, cortical, nuclear, posterior subcapsular). Indication for surgery was either to improve vision or to prevent amblyopia.

Surgical technique used was either the conventional extracapsular cataract extraction (ECCE) or manual small incision cataract surgery (MSICS), which is a variant of the conventional ECCE. Phacoemulsification is not carried out in our setting due to lack of equipment and expertise. Peribulbar block was done with a combination of 3 mL of bupivacaine 0.5% and 3 mL of lidocaine 2% in adults, and general anesthesia with propofol was used in children. The lens was replaced by a polymethyl methacrylate IOL when implantation was possible.

Postoperative treatment included topical administration of a combination of corticosteroid (dexamethasone 0.1%) and antibiotics (neomycin and polymyxin B) as well as a mydriatic (tropicamide 0.5%). Postoperative follow-up consisted of the measurement of visual acuity and the search

<table>
<thead>
<tr>
<th>Table 1 Incidence of secondary cataract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cataract surgery (n)</td>
</tr>
<tr>
<td>Number of patients</td>
</tr>
<tr>
<td>Number of eyes</td>
</tr>
</tbody>
</table>
frequently amongst cases with cortical cataract \((P = 0.000) \) (Table 4). The right and left eyes were affected in equal proportions of 10.69\% \((48/449) \) and 10.60\% \((44/415) \), respectively \((P = 0.967) \).

MSICS was the most frequently performed surgical technique \((70.6\% \ [n = 610/864]) \), and IOL implantation in the capsular bag was carried out in 783 of the 829 operated eyes \((94.5\%) \). The occurrence of secondary cataract was not influenced by the surgical technique \((MSICS = 63/610, 10.3\%; \ \text{standard ECCE} = 29/254, 11.4\%) \) \((P = 0.964) \).

A total of 38.1\% of those with postoperative inflammation and 10.1\% of those with posterior capsule rupture developed secondary cataract. Postoperative inflammation was associated with the occurrence of secondary cataract \((P = 0.000) \) (Figure 2). The mean time lapse for the presentation of secondary cataract was 64.7 ± 99.53 days, with a range of 1 to 504 days. Time lapse was greater than 30 days in 56.5\% \((n = 52/92) \) of cases, and less than 30 days in 43.5\% \((n = 40/92) \) of cases. This difference was not statistically significant \((P = 0.211) \).

Secondary cataract developed in 15.2\% of cases \((84/783) \) in whom IOL was implanted in the sulcus compared with 10.7\% of cases \((7/46) \) in whom implantation was carried out in the capsular bag, but this difference was not statistically significant \((P = 0.344) \). Secondary cataract was symptomatic in 65.2\% of cases and discovered on routine examination in 34.8\% of cases \((P = 0.004) \).

Discussion

Epidemiologic characteristics of secondary cataract

The incidence of secondary cataract in the literature ranges from 10\% to 50\% after 3 to 5 years.\(^4\,^6\,^7\,^11\,^13\) The incidence in this series was 10.65\%. Guzek and Ching\(^14\) in Ghana and Yorston and Foster\(^15\) in Kenya reported values of 10.5\% and 10.8\%, respectively. Bensaid et al\(^16\) however, reported an incidence of 33\% in north Cameroon, and Shrestha et al\(^17\) reported an incidence of 59.3\% in Nepal refugee camps. Our value is higher than the 4.7\% reported by Muhammad et al\(^18\) in Pakistan. Factors such as age, etiology of cataract, type of surgery, and duration of postoperative follow-up could account for these differences.\(^19\,^20\)

The mean age of patients who developed secondary cataract was 52.30 ± 23.05 years. This is similar to the 57.43 ± 13.53 years reported by Daboué et al\(^11\) in Burkina Faso and lower than the 65.08 years reported by Georgalas et al\(^21\) and the 60 years reported by Prajna et al\(^22\) in India. This difference could be due to the relative low life expectancy in sub-Saharan countries. Secondary cataract was more frequent in patients aged below 20 years. The incidence of secondary cataract has been reported to be higher in young patients with values near 100\% after 3 years.\(^23\,^24\) There is greater residual lens epithelial cell proliferation and severe inflammatory reaction in young patients, which are major mechanisms by which secondary cataract occurs.\(^7\)

Secondary cataract was more frequent in female patients. A similar finding was reported by Prajna et al.\(^23\)

Characteristics of primary cataract

Age-related cataract was the most frequent of all operated cataracts. It is the most common etiology of cataracts.\(^25\,^27\) The occurrence of secondary cataract was more frequent

Table 2 Distribution of secondary cataract according to sex

<table>
<thead>
<tr>
<th>Sex</th>
<th>Patients operated (n)</th>
<th>Secondary cataract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n</td>
</tr>
<tr>
<td>Males</td>
<td>355</td>
<td>31</td>
</tr>
<tr>
<td>Females</td>
<td>363</td>
<td>54</td>
</tr>
<tr>
<td>Total</td>
<td>718</td>
<td>85</td>
</tr>
</tbody>
</table>

Figure 1 Distribution of secondary cataract according to age.
in congenital and post-traumatic cataract than age-related cataract. However, this difference was nonsignificant ($P = 0.066$). Several authors report that close to 100% of cases with congenital and post-traumatic cataract develop a secondary cataract. $^{28–31}$ Patients with congenital cataract are young and therefore have greater epithelial cell proliferation and severe inflammatory reaction. On the other hand, trauma stimulates residual lens cells, increasing cytokine production, which is responsible for secondary cataract. 7,21,32

In this series, secondary cataract was more frequent in cases with cortical cataract. Schein et al33 reported a similar finding. In an experimental study reported by Argento et al, 34 secondary cataract was least frequent with white cataract, as cataract maturity induces changes in the anterior and equatorial cells, which are responsible for posterior capsular opacification.

Surgical technique

There was no statistically significant difference in the development of secondary cataract between conventional ECCE and MSICS. Similar results were reported by Moulick et al29 in India (standard or conventional ECCE = 28.1%, MSICS = 15.4%, $P = 0.69$) and Guzek and Ching14 in Ghana (MSICS = 21.9%, conventional ECC = 12.5%, $P = 0.127$). Surgical technique is therefore not a risk factor for the development of secondary cataract.

There was no statistically significant difference in the development of secondary cataract between eyes with sulcus implantation and those with capsular bag implantation.

Table 3 Distribution of secondary cataract according to etiology of primary cataract

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Patients operated (n)</th>
<th>Secondary cataract Frequency</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age related</td>
<td>634</td>
<td>58</td>
<td>9.14</td>
</tr>
<tr>
<td>Post-traumatic</td>
<td>124</td>
<td>19</td>
<td>15.32</td>
</tr>
<tr>
<td>Congenital</td>
<td>72</td>
<td>12</td>
<td>16.67</td>
</tr>
<tr>
<td>Iatrogenic</td>
<td>34</td>
<td>3</td>
<td>8.82</td>
</tr>
</tbody>
</table>

According to Ayed et al, 9 sulcus implantation is a risk factor of secondary cataract development, because it may trigger uveal reaction and blood–aqueous barrier breakdown. They concluded that capsular bag implantation could prevent the development of secondary cataract.

Postoperative complications

The occurrence of secondary cataract was statistically linked to postoperative inflammatory reaction ($P = 0.000$). This relationship was reported by Ayed et al.9 Postoperative inflammation might stimulate capsular opacification by the release of mediators such as transforming growth factor β, interleukin, and basic fibroblast growth factor.32

Secondary cataract: time lapse and symptoms

The mean time lapse for secondary cataract development was 64.7 ± 99.53 days. This period is below the 10 months reported by Georgalas et al.21 No explanation for this difference has been found.

According to Pandey et al,35 visual impairment does not correlate with the degree of posterior capsular opacification. Some patients are asymptomatic with an advanced fibrosis, whereas others present a significant decrease in visual acuity in spite of a lesser degree of fibrosis. In this study, two-thirds of patients were symptomatic.

Conclusion

The incidence of secondary cataract is high in our series, but it is lower than that in other studies. Risk factors in our setting include cortical cataract, post-traumatic cataract, congenital cataract, and postoperative intraocular inflammation. Thorough cortical clean-up will help reduce the incidence of secondary cataract.

Table 4 Secondary cataract according to the morphology of primary cataract

<table>
<thead>
<tr>
<th>Morphology</th>
<th>Eyes operated (n)</th>
<th>Secondary cataract n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>532</td>
<td>49</td>
<td>9.20</td>
</tr>
<tr>
<td>Cortical</td>
<td>48</td>
<td>15</td>
<td>31.25</td>
</tr>
<tr>
<td>Posterior subcapsular</td>
<td>171</td>
<td>13</td>
<td>7.60</td>
</tr>
<tr>
<td>Nuclear</td>
<td>113</td>
<td>15</td>
<td>13.27</td>
</tr>
</tbody>
</table>
Disclosure

The authors report no conflicts of interest in this work.

References