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Abstract: Adhesion of commercially produced fullerene fine particles to  Cryptomeria 

japonica, Chamaecyparis obtusa and Camellia japonica pollen grains was investigated. 

The  autofluorescence of pollen grains was affected by the adhesion of fullerene fine particles to 

the pollen grains. The degree of adhesion of fullerene fine particles to the pollen grains varied 

depending on the type of fullerene. Furthermore, germination of Camellia japonica pollen grains 

was inhibited by the adhesion of fullerene fine particles.

Keywords: Cryptomeria japonica, Chamaecyparis obtusa, Camellia japonica, autofluorescence, 
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Introduction
Nanotechnology is now being utilized all over the world, both in research, and in 

practical applications. Nanosized fine particles are of increasing importance because 

they are suitable for many applications in the fields of electronics,1 sensors,2 catalysis,3 

medicine,4 and biotechnology.5–7 Production of nanosized fine particles such as fuller-

ene, titanium dioxide, and carbon nanotubes, has increased rapidly in recent years. 

Large quantities of these fine particles are discharged to the environment intention-

ally or unintentionally in the course of their production, use, and disposal. These will 

inevitably lead to pollution of both the biotic and abiotic components of the environ-

ment. Studies on the potential effects of these fine particles on human health and on 

the environment are therefore very important.8–14

It was reported that various fine particles adhered to pollen in the atmosphere.15,16 

The physiological activities of pollen grains could be influenced by the adhesion of 

fine particles. Speranza et al14 reported that Pd-nanoparticles cause increased toxic-

ity to kiwifruit pollen compared to soluble Pd (II). However, there is as yet no report 

on the adhesion of pollen grains and fullerene fine particles. Fullerene nanoparticles 

frequently form fine aggregates, so we describe them here as “fullerene fine particles”. 

In this study, adhesive characteristics between pollen grains and fullerene fine particles 

and the effects of fullerenes on the germination of pollen grains were investigated.

Materials and methods
Pollen grains
Pollen grains of Cryptomeria japonica, Chamaecyparis obtusa and Camellia japonica 

were used as a model (these pollen grains cause hay fever in Japan). Pollen grains 

of Cryptomeria japonica and Chamaecyparis obtusa were purchased from the 
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Genetic Resource Department, Forest Tree Breeding Center 

(Ibaraki, Japan). Pollen grains of Camellia japonica were 

obtained from the botanical gardens of the University of 

Tsukuba. These were dehydrated using silica gel and stored 

at −80°C.

Chemicals
Fullerene fine particles were used as a model for com-

mercially produced fine particles. Many kinds of fullerene 

fine particles are commercially produced and widely used 

for various applications. For our experiments, two types of 

fullerene fine particles were purchased: F1 (C
60

/C
70

 mixture 

containing 20% C
70

 and 1% higher fullerenes) from Strem 

Chemicals (Newburyport, MA) and F2 (C
60

 99%) from 

Honjo Chemical Co (Osaka, Japan). The stored pollen 

grains of Cryptomeria japonica, Chamaecyparis obtusa 

and  Camellia japonica were maintained at 4°C for 4 hours 

and then at 25°C for 1 hour before mixing with fullerene. 

Five mg of each kind of pollen grains were placed in 2 mL 

Eppendorf tubes, followed by addition of 2 mg each of F1 

and F2, then mixed using a vortex mixer for 150 seconds. 

After mixing, they were placed on glass slides (Matunami 

Glass Co Ltd, Osaka, Japan).

Microscopic observations
We have previously developed a method for identifying 

different pollen grains on the basis of autofluorescence 

and size of pollen grains.17,18 Fluorescence and bright-field 

 micrographs of pollen grains on a glass plate were taken using 

a fluorescence microscope (Leica DMR; Leica  Microsystems, 

Tokyo, Japan) equipped with both an ultraviolet illuminating 

system using a xenon lamp and a band-pass filter (central 

wavelength: 340 nm) and CCD camera (SPOT ISA-CE 

Color; Diagnostic Instruments, Inc, Sterling Heights, MI). 

Samples for scanning electron microscopy study were 

prepared according to the method of Vinckier and Smets.19 

Samples were observed with a field emission scanning 

 electron microscope (JSM-6330F; JEOL, Tokyo, Japan).

Germination efficiency
The effect of the adhesion of fullerene fine particles on the 

germination of pollen grains was studied using  Camellia 

japonica pollen grains (the germination conditions for Camel-

lia japonica pollen grains have already been determined20 but 

the conditions for Cryptomeria japonica and Chamaecyparis 

obtusa have not been determined yet). Stored pollen grains 

of Camellia japonica were maintained at 4°C for 4 hours 

and then at 25°C for 1 hour before mixing with fullerene and 

commencing germination tests. Five mg of pollen grains of 

Camellia japonica were placed in a 2 mL Eppendorf tube, 

followed by addition of 2 mg of each type of fullerene fine 

particle and mixed using a vortex mixer for 150 seconds. After 

mixing, the mixture was placed on a sterilized agar medium20 

(which consisted of 1.3% agar, 10% sucrose, autoclaved at 

121°C for 15 minutes) on top of a glass slide. Cultures of 

pollen grains were carried out at 25°C. After 24 hours of 

incubation, the percentage of germinated pollen grains was 

calculated. The experiments were performed in triplicate.

Results and discussion
Figure 1 shows fluorescence micrographs for adhesion of 

both F1 and F2 fullerenes to Cryptomeria japonica pollen 

grains. Autofluorescence decreased when F1 fullerenes 

adhered to pollen grains (Figure 1c) and it was more affected 

by F1 than F2 fullerenes (Figure 1d). Figure 2 shows fluo-

rescence micrographs of adhesion between pollen grains 

of Chamaecyparis obtusa and fullerene fine particles 

(F1 and F2). Fluorescence micrographs for the adhesion 

of pollen grains of Camellia japonica with F1 and F2 are 

shown in Figure 3.

As with Cryptomeria japonica, autofluorescence of 

Chamaecyparis obtusa and Camellia japonica was reduced 

by adhesion of F1 (Figures 2c and 3c). The pollen grains of 

Chamaecyparis obtusa and Camellia japonica showed more 

reduction in autofluorescence with F1 than with F2 adhesion. 

When pollen grains of Cryptomeria japonica, Chamaecy-

paris obtusa or Camellia japonica with adhered F1 or F2 

were added to 0.6 M mannitol solution (isotonic solution) and 

gently suspended, some of the F1 or F2 detached from the 
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100 µm

Figure 1 Adhesion of various fullerene fine particles to Cryptomeria japonica 
pollen grains. A) No addition [light microscope], B) No addition [fluorescence 
microscope], C) Addition of fullerene (F1) fine particles [fluorescence microscope], 
D) Addition of fullerene (F2) fine particles [fluorescence microscope].
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pollen grains, and their autofluorescence was observed again 

under a fluorescence microscope (data not shown). It was 

confirmed that F1 and F2 did not destroy the autofluorescing 

substance but reduced its activity by adhering to the pollen 

grains. Characteristics of fullerene fine particles such as their 

size distribution, surface structure, specificity, and compo-

nents may affect adhesion (the mechanisms and detailed 

characteristics of F1 and F2 are now being investigated).

Adhesion between pollen grains and fullerene fine 

particles could be attributed to their surfaces (ie, structure 

and composition) and the extent of their compatibility with 

one another. The surface of pollen grains of Cryptomeria 

japonica, Chamaecyparis obtusa or Camellia japonica dif-

fered from one another (Figure 4). Also, the pollen grains 

have wide variation in the composition and structure of 

their outer walls (orbicle and sexine for the outermost layer; 

nexine for the innermost layer) and inner walls.19 The cell 

walls of pollen grains are mainly composed of sporopollenin, 

lipids, lignin and other components.21–23 On the other hand, 

some reports have shown that aside from the composition 

of carbon black and polystyrene nanosized fine particles, 

extremely small particle size, surface area, surface structure, 

and oxidizing capacity affect their properties.24,25

The effect of the adhesion of F1 and F2 fullerene fine 

particles on the germination of Camellia japonica pollen 

grains is shown in Figure 5(a-c). The influence of F1 and F2 

fullerene fine particles on the germination ratio of Camel-

lia japonica pollen grains is shown in Figure 5(d). The 

germination ratio of Camellia japonica pollen grains with 

adhesion of F1 was decreased by one-third compared with 

the control. The viability of the Camellia japonica pollen 

grains was estimated at about 90% using a fluorochromatic 

reaction test26,27 (data not shown). Possibly the adhesion of 

F1 to pollen grains causes damage to the plasma membrane. 

In order to understand why F1 obstructed the germination 

of pollen grains of Camellia japonica, comparative evalu-

ation of F1 and F2 properties such as surface area, surface 

structure, oxidation potentials, and their radical scavenging 
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Figure 2 Adhesion of various fullerene fine particles to Chamaecyparis obtusa 
pollen grains. A) No addition [light microscope], B) No addition [fluorescence 
microscope], C) Addition of fullerene (F1) fine particles [fluorescence microscope], 
D) Addition of fullerene (F2) fine particles [fluorescence microscope].
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Figure 4 Scanning electron microscopic images of various pollen grains. A) Cryptomeria 
japonica pollen grain, B) Surface of Cryptomeria japonica pollen grain, C) Chamaecyparis 
obutsa pollen grain, D) Surface of Chamaecyparis obutsa pollen grain, E) Camellia 
japonica pollen grain, F) Surface of Camellia japonica pollen grain.
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Figure 3 Adhesion of various fullerene fine particles to Camellia japonica pollen grains. 
A) No addition [light microscope], B) No addition [fluorescence microscope], C) 
Addition of fullerene (F1) fine particles [fluorescence microscope], D) Addition of 
fullerene (F2) fine particles [fluorescence microscope].
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activities have been considered, and studies of these aspects 

of the fullerenes are now underway.

Here we report for the first time, an analysis of the 

adhesion characteristics of fullerene fine particles to pollen 

grains, and the effects of these particles on the germination 

of pollen grains. When evaluating adverse effects in the 

practical application of fullerene fine particles, selection 

of those that have little effect on living organisms and the 

environment would be desirable. However, it should be 

noted that the work presented here is qualitative analysis of 

adhesion between fullerene fine particles and pollen grains. 

Quantitative evaluation of the degree of adhesion (or adhe-

sion efficiency) between fullerene fine particles and pollen 

grains is yet to be conducted.

Roshchina and Karnaukhov28 investigated changes in 

the autofluorescence spectra of Philadelphus grandiflorus, 

Epiphyllum hybridum, and Plantago major pollen grains 

after 100 hours exposure to ozone. The fluorescence maxi-

mum at 530–550 nm disappeared in carotenoid-containing 

pollen grains of Philadelphus grandiflorus and Epiphyllum 

hybridum, and a new maximum at 475–480 nm arose that 

correlated with lipofuscin-like substances observed in the 

extracts from the pollen grains. The carotenoid-less pollen 

of Plantago major showed only an increase of the maximum 

at 470 nm, and no lipofuscin in the extracts (the main indi-

cators of pollen damage by ozone in carotenoid-containing 

microspores are the lipofuscin-like compounds).

It is necessary to analyze various pollen grains and 

many kinds of fullerene fine particles to be able to quantify 

their degree of adhesion. Where fullerene fine particles 

are responsible for oxidation and radical activities,29,30 the 

degree of tolerance of the fullerene particles by the pollen 

grains may be related to the antioxidative potential of the 

pollen grains. Pollen grains exhibit autofluorescence by 

amino acids, vitamins, isoprenoids (carotenoids), phenyl 

propanoids (lignin and flavonoids), and quinones. The 

relationship between the fullerene fine particles and the 

antioxidative potential of various pollen grains, as well 

as their effect on the germination of pollen grains, will be 

examined. We are also currently investigating the adhesion 

characteristics between various kinds of other fine particles 

(titanium dioxide, carbon nanotubes) and various kinds of 

pollen grains, and their effects on autofluorescence and 

germination.
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