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Abstract: Metastatic events to the bone occur frequently in numerous cancer types such as 

breast, prostate, lung, and renal carcinomas, melanoma, neuroblastoma, and multiple myeloma. 

Accumulating evidence suggests that the inflammatory cytokine interleukin (IL)-6 is frequently 

upregulated and is implicated in the ability of cancer cells to metastasize to bone. IL-6 is able to 

activate various cell signaling cascades that include the STAT (signal transducer and activator 

of transcription) pathway, the PI3K (phosphatidylinositol-3 kinase) pathway, and the MAPK 

(mitogen-activated protein kinase) pathway. Activation of these pathways may explain the ability 

of IL-6 to mediate various aspects of normal and pathogenic bone remodeling, inflammation, 

cell survival, proliferation, and pro-tumorigenic effects. This review article will discuss the role 

of IL-6: 1) in bone metabolism, 2) in cancer metastasis to bone, 3) in cancer prognosis, and 4) 

as potential therapies for metastatic bone cancer.
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Introduction
Bone homeostasis is maintained by a variety of cell types that control remodeling of the 

bone matrix. Two important cell types that mediate bone homeostasis are osteoblasts 

and osteoclasts. Osteoblasts contribute to the bone matrix by production of type I 

collagen, deposition of hydroxyapatite crystals into the collagen matrix, and regula-

tion of osteoclast activity.1,2 Osteoblasts are of mesenchymal origin and differentiate 

from pre-osteoblasts. This process occurs via bone morphogenic proteins (BMPs) that 

induce runt-related transcription factor 2 (Runx2), leading to increased alkaline phos-

phatase activity.1 Conversely, osteoclasts resorb bone matrix3 and differentiate from the 

hematopoietic cell lineage upon stimulation in a differentiation process called osteo-

clastogenesis. Osteoclastogenesis is mediated by cytokines such as receptor activator 

of nuclear factor (NF)-κB ligand (RANKL) and macrophage-colony stimulating factor 

(m-CSF) (Figure 1A).3,4 RANKL, a membrane-bound ligand, and m-CSF a secreted 

factor, are predominantly produced by osteoblasts.5 Osteoclastogenesis is regulated 

primarily via RANKL and osteoblast-produced osteoprotegrin (OPG) expression, a 

decoy receptor to RANKL that suppresses RANKL activity.6 Osteoblasts that express 

RANKL have cell-to-cell contact with osteoclasts via ligand-receptor binding between 

RANKL and RANK (receptor activator of NF-κB) expressed on osteoclasts.7 RANKL 

functions to promote osteoclast differentiation and activity through stimulation of various 

pathways including the phosphatidylinositol-3 kinase (PI3K) pathway and the mitogen 

activated protein kinase (MAPK) pathway. The MAPK pathway leads to the activation 

of c-fos, nuclear factor of activated T-cells-2 (NFAT2), and other transcription factors.8,9 
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Figure 1 Model of osteoclastogenesis during bone homeostasis and tumor cell metastasis to bone. A) In normal bone, RANKL and m-CSF are produced primarily by 
osteoblasts. m-CSF binds to its receptor c-FMS, expressed on osteoclast progenitors, and RANKL binds to its receptor on pre-osteoclasts to promote osteoclastogenesis. 
Osteoprotegrin, also produced by osteoblasts, acts as a decoy receptor for RANKL and negatively regulates osteoclast differentiation. In this model, osteoblast and osteoclast 
activity are in homeostasis through careful regulation of osteoclastogenesis. B) When cancer cells metastasize to the bone, increased IL-6 may be produced by both the 
cancer cells and the osteoblasts, as an inflammatory response to the cancer cells. IL-6 then stimulates various types of stromal cells in the bone, which include bone marrow 
cells, osteoblasts, and fibroblasts in the area of the metastasis, to increase the expression of RANKL and m-CSF by osteoblasts. This IL-6-mediated increase in RANKL 
and m-CSF also occurs with injury and inflammation to the bone, but unlike in cancer metastasis, it is transient. RANKL and m-CSF then, in turn, activate the osteoclast 
differentiation cascade, where m-CSF strongly stimulates early stages of osteoclast differentiation, and RANKL stimulates late stages of osteoclast differentiation, as well as 
osteoclast activity. Once this occurs, osteoclast activity becomes dysregulated and reduces bone integrity. 
Abbreviations: c-FMS, colony stimulating factor 1 receptor; IL-6, interleukin 6; IL-6R, IL-6 receptor; m-CSF, macrophage-colony stimulating factor; RANKL, receptor 
activator of nuclear factor κB ligand; sRANKL, soluble form of RANKL.

Cleavage of RANKL from the cell membrane by proteinases 

such as matrix metalloproteinase-7 (MMP7) yields the soluble 

form of RANKL (sRANKL), which has a physiological 

function that is still disputed, although both anti- and pro-

osteoclastogenic effects have been reported.5,10–12

As osteoclasts differentiate in response to pro-osteoclastic 

factors, these cells create a segregated zone, a sealed area 

between the osteoclast and the bone matrix.9 Osteoclasts then 

release hydrogen ions into the segregated zone, solubilizing 

the hydroxyapatite crystals and promoting acid-activated 
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proteinases such as cathepsin K to degrade the collagen 

matrix.9,13 Osteoblasts generate new matrix to fill the vacant 

area. The rate at which osteoclasts differentiate and resorb 

bone is carefully regulated by osteoblast-produced RANKL 

and OPG. Other cells in the bone matrix such as osteocytes, 

terminally differentiated osteoblasts, are able to regulate 

the generation and resorption of bone matrix by affect-

ing osteoblast and osteoclast activity.14 When osteocytes 

are mechanically stimulated by shock to bone resulting in 

dynamic fluid movement, they promote alkaline phosphatase 

activity in osteoblasts by cell-to-cell contact through the 

RANK/RANKL complex, increasing bone mineralization 

and turnover.15–17 In this manner, damaged sections of the 

bone are removed and are replaced with new bone matrix 

by osteoblasts.

In normal bone, homeostasis is maintained and bone 

integrity is preserved by a continuous cycle of bone renewal. 

However, when cancer cells metastasize to the bone, the bal-

anced and complex interplay of the cells is disrupted, leading 

to a pathologic condition that compromises bone integrity. 

One of the many characteristics that bone-homing cancer 

cells have in common is that most of them release copious 

levels of interleukin (IL)-6, which helps in facilitating bone 

invasion and growth of metastatic lesions.18–20 In this review 

article, the role of IL-6 in facilitating bone metastasis and 

approaches to measure serum IL-6 to predict progression of 

metastatic disease will be discussed. Additionally, new thera-

pies targeting IL-6 and their potential efficacy in preventing 

bone metastasis will be reviewed.

Frequency, consequences,  
and mechanisms of cancer  
cell metastases to bone
Various types of cancers metastasize to the bone, including 

breast, prostate, lung, thyroid, kidney, multiple myeloma, 

melanoma, and neuroblastoma.21–25 Usually the bone is only 

compromised at the site of metastasis, and not all types of 

bone metastases affect the bone in the same way. For example, 

breast cancer predominantly causes osteolytic lesions, result-

ing in an upregulation of osteoclast activity and subsequent 

decreased bone density and integrity that may lead to 

fractures.22,26 Conversely, prostate cancer results in primar-

ily osteoblastic lesions that are caused by cytokine-induced 

upregulation of osteoblast activity and subsequent increased 

bone density.26 This type of bone metastasis causes thickening 

of the bone, resulting in the possibility of nerve compression, 

vertebral fusion, and spinal cord compression depending on 

the location of the metastases. In contrast to what is found in 

normal bone where collagen fibers are highly organized and 

tightly packed, bone created by osteoblastic lesions contains 

disorganized and fragile collagen fibrils.27 This leads to a high 

degree of bone brittleness, increase in potential fractures, 

and pain as the normal bone is replaced by abnormal bone 

created by the osteoblastic lesions. A subset of prostate 

cancers may also cause osteolytic lesions due to the expres-

sion of different cytokines that promote osteoclast activity 

rather than osteoblast activity.28 Multiple myeloma causes 

only osteolytic lesions. Other cancers, including lung, kidney, 

and thyroid carcinomas, result in primarily osteolytic lesions, 

but osteoblastic lesions occur occasionally.26,29 Metastasis 

of the primary tumor to the bone occurs in about 60%–75% 

of patients with metastatic breast cancer, prostate cancer, 

neuroblastoma, or multiple myeloma.21–23,30 Metastases to the 

bone from other cancers such as lung, kidney, and thyroid 

only occur in 30%–50% of patients with metastases.24

The molecular mechanisms that determine when a cancer 

cell will metastasize to bone are not completely understood. 

Recent evidence shows that the CXC chemokine receptor 4/

chemokine (C-X-C motif) ligand 12 CXCR4/CXCL12 axis 

may play a role in this metastatic process. Studies have dem-

onstrated that cancer cells are attracted to the bone marrow 

due to the relatively high levels of CXCL12 expressed by 

osteoblasts, which acts as an attractant for the CXCR4 ligand-

positive cancer cells.31 Numerous studies have demonstrated 

that bone metastatic cancer cells from the breast, prostate, and 

myeloma overexpress the CXCR4 ligand, which promotes 

homing and metastasis to the bone and other organs.32–35 

Inflammatory cytokines, such as IL-6, increase CXCR4 

expression in breast cancer cells, specifically in a signal 

transducer and activator of transcription 3 (STAT3), and 

c-Jun-dependent manner.36 Given these findings, therapeu-

tics designed to block the CXCR4/CXCL12 axis are being 

evaluated in the prevention of bone metastases.37

Once cancer cells colonize in the bone, they have to adapt 

to the challenges of cell survival and growth in a foreign 

tissue environment. The bone is a reservoir of a complex 

mixture of growth factors38 that are released as the bone is 

degraded by metastatic lesions. The mixture of these growth 

factors include transforming growth factor (TGF)-β, insulin 

like growth factor (IGF)-1, insulin-like growth factor (IGF)-2, 

platelet derived growth factor (PDGF), bone morphogenic 

proteins (BMP), fibroblast growth factors (FGF), and other 

factors that significantly improve tumor cell survival and 

growth.39 These factors can promote the expression of pro-

survival signals such as B-cell lymphoma 2 (Bcl-2) and AKT, 

which inhibit apoptosis in the cancer cells. In addition, these 
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factors can also support further osteoclast differentiation 

and activity, leading to a vicious positive feedback loop (the 

vicious tumor–bone cycle) where additional growth factors 

are released, stimulating increased cancer cell growth and 

accelerated bone destruction. This accelerated bone destruc-

tion can lead to rapid loss of bone integrity in cancer patients 

causing fractures, pain, and loss of mobility.

IL-6, other cytokines, and 
growth factors in the bone 
microenvironment
IL-6 is a major pleiotropic, pro-inflammatory cytokine 

which plays a role in immune response, hematopoiesis, 

cell differentiation, wound repair, and bone remodeling.40,41 

Inflammation in the bone caused by injury or disease 

increases expression of IL-6 by reactive stromal cells of the 

bone and infiltrating monocytes and macrophages, promoting 

bone remodeling evidenced by higher osteoclast activity.42 

The reactive stromal cells for bone metastases are generally 

the mesenchymal stem cells in the bone marrow as well 

as the fibroblasts, osteoblasts, and osteocytes in the region. 

IL-6 production is directly stimulated by prostaglandin E2 

(PGE2) and TGF-β, while IL-1β and lipopolysaccharides 

indirectly stimulate IL-6 production via NF-κB activation 

(Figure 2).43–48 IL-6 binds to its heterotrimeric receptor, con-

sisting of two gp130 subunits and an IL-6 receptor subunit, 

on target cells and activates the STAT, MAPK, and PI3K 

pathways.49–52 IL-6 signaling through the Janus kinase (JAK)/

STAT3 pathways lead to expression of RANKL from osteo-

blast/stromal cells, causing direct stimulation of osteoclast 

differentiation and activity and resulting in bone destruction 

(Figure 3).53,54 Studies using IL-6 knockout mice have dem-

onstrated that IL-6 is necessary for upregulating osteoclast 

activity and bone resorption in vivo. IL-6 knockout mice were 

shown to be protected from increased osteoclast activity and 

subsequent bone degradation when their bones were injected 

with the arthritis-inducing antigen heat-killed Mycobacterium 

tuberculosis.55 IL-6 knockout bones that received antigen 

injections had less RANKL and IL-17 expression as well 

as reduced osteolysis and cartilage destruction near the site 

of injection compared with wild-type mice. IL-17 is a pro-

inflammatory and pro-osteoclastogenic cytokine implicated 

in arthritis and tumorigenesis that is produced in CD4+ helper 

and tumor infiltrating T-cells when activated by IL-6.56,57 

Additional mouse studies have demonstrated that inhibition 

of IL-6 activity, with an IL-6 receptor (IL-6R) antagonist 

that inhibits downstream receptor signaling, reduces bone 

resorption.58 These results suggest that IL-6 plays a major 

role in the upregulation of additional pro-osteoclastic factors 

essential for osteoclast activity.

Deregulation of IL-6 expression is implicated in disorders 

of bone homeostasis such as osteoporosis and osteopetrosis. 

Sex hormones such as 17-β-estradiol and testosterone have 

been shown to regulate IL-6 levels in the bone microenviron-

ment. 17-β-estradiol is known for its bone-preserving effects, 

which is supported by the fact that post-menopausal women 

experience a decrease in bone mineralization and density 

that may lead to osteoporosis.59 A recent study shows that 

17-β-estradiol reduces both IL-6 and IL-8 production by 

monocytes and multiple myeloma cells through a mechanism 
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Figure 2 Factors that increase IL-6 production in response to various stimuli. Increased IL-6 production is associated with stimuli such as infection and inflammation. 
Infection, injury, and cancer can all stimulate inflammation that can lead to the increase of IL-6-modulating factors such as IL-1β, COX-2, PGE2, and TGF-β. Infection can 
also promote LPS secretion from bacteria, which increases NF-κB-dependent IL-6 levels. There are two main IL-6 production pathways: NF-κB-dependent and NF-κB-
independent. NF-κB-independent pathways upregulate IL-6 secretion via TGF-β or PGE2, which is produced downstream of COX-2 activation. In the NF-κB-dependent 
pathway, LPS or IL-1β stimulate NF-κB activity that causes an increase in IL-6 production. 
Abbreviations: COX-2, cyclooxygenase 2; IL-1β, interleukin 1β; IL-6, interleukin 6; LPS, lipopolysaccharide; NF-κB, nuclear factor κB; PGE2, prostaglandin E2; TGF-β, 
transforming growth factor β.
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increased RANKL expression. IL-6 may also activate AKT via increased JAK-dependent PI3K activity and result in cell survival and anti-apoptosis signaling. Concomitantly, 
increased MAPK activity downstream of JAK activation can lead to upregulated cell growth, proliferation, and mitosis. In the IL-6 trans-signaling pathway, IL-6 first binds to 
the truncated sIL6R. The IL-6/sIL6R complex then binds to the membrane-bound gp130 dimer to form an IL-6 trans-signaling complex. Due to the fact that the sIL-6R lacks 
a membrane signaling domain, there appears to be significant differences in the intracellular signaling pathways. While IL-6 trans-signaling also leads to phosphorylation and 
activation of STAT3, increased cell survival, proliferation, and mitosis occurs in an AKT-and MAPK-independent manner. The exact mechanisms for IL-6 trans-signaling leading 
to increased cell survival, proliferation, and mitosis are not yet known. 
Abbreviations: IL-6, interleukin 6; JAK, Janus kinase; MAPK, mitogen-activated protein kinase; PI3K, phosphatidylinositol 3-kinase; RANKL, receptor activator of nuclear 
factor κB ligand; sIL6R, soluble IL-6 receptor; STAT3, signal transducer and activator of transcription 3.

that is not yet fully understood.60,61 The chemokine IL-8 is 

also a pro-inflammatory molecule, which like IL-6, can 

increase inflammation in the bone and cause excessive 

bone resorption by upregulating the transcription factor 

NF-κB.62,63 In turn, increased NF-κB activity stimulates 

IL-6 expression and secretion into the extracellular matrix.64 

Studies have shown that the binding of 17-β-estradiol to the 

estrogen receptor inhibits NF-κB transcriptional activity by 

preventing inhibitor of NF-κB alpha (IκBα) degradation, 

leading to decreased IL-6 expression.60,65 IκBα is normally 

constitutively expressed and bound to NF-κB, thus prevent-

ing the translocation of the transcription factor into the 

nucleus and initiation of the transcription of NF-κB-related 

genes.66 17-β-estradiol has also been shown to suppress 
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IL-6 activity by inhibiting STAT3 through upregulation of 

protein inhibitor of activated STAT3 (PIAS3).67 In addition, 

testosterone decreases IL-6 expression by inhibiting NF-κB 

activity in osteoblasts via the hypothalamic-pituitary-adrenal 

axis, normally a potent stimulator of IL-6 production. Both 

of these result in testosterone-mediated bone-preserving 

effects.68–70 Therapies that involve suppression of testosterone 

and 17-β-estradiol are effective against androgen-dependent 

prostate and breast cancer respectively; however, bone density 

decreases significantly with these therapies leading to an 

increased chance of developing osteoporosis.71

IL-6 production by cancer cells 
and stromal cells in the bone 
microenvironment facilitates 
invasion and metastasis
IL-6 produced by cancer cells initiates a variety of down-

stream signaling cascades that can lead to bone destruction 

(Figure 1B). Many cancer cell types that metastasize to the 

bone endogenously produce and secrete high levels of IL-6. 

On the other hand, other cancer cell types stimulate the 

surrounding stromal cells to release copious amounts of this 

cytokine. Some cancer cell types such as IL-6-dependent 

multiple myeloma cells do not express IL-6 and rely on the 

bone microenvironment’s reactive stromal cells to produce 

IL-6 in response to the presence of the tumor cells.72 This 

stroma-dependent increase of IL-6 in the extracellular matrix 

may be specific to the microenvironment of the metastasis. 

For example, injection of Walker (W256) mouse mammary 

cancer cells and MatLyLu (MLL) mouse prostate cancer-

like cells into mice has been shown to differentially express 

IL-6 depending on the location.73 Specifically, local injection 

of W256 and MLL cells into the bone causes upregulation 

of IL-6, macrophage colony stimulating factor (m-CSF), 

RANKL, and Dickkopf-related protein 1 (DKK1) in the bone 

stromal cells. DKK1 is a member of the dickkopf family of 

factors that has been shown to be elevated in the bone marrow 

of patients with breast cancer bone metastases.74 However, 

when these cells metastasized to nonosseous organs, there 

was little to no expression of IL-6, m-CSF, RANKL, or 

DKK1, indicating that some cancer cells stimulate surround-

ing cells to release pro-osteoclastic factors only in the bone 

microenvironment.73,75

It has been proposed that cancer cells induce an inflam-

matory response in osteoblasts which may lead to the 

stimulation of osteoclast differentiation and activity.76,77 The 

inflammatory response of osteoblasts in response to cancer 

cell-conditioned medium in vitro has been shown to cause 

an upregulation of PGE2, which induces IL-6 and activates 

osteoclasts via RANKL and PTHrP production.18,74,75 This 

effect was seen in breast cancer cells, oral squamous car-

cinoma cell lines, and in neuroblastoma cells.18,75,76 The 

induction of the inflammatory response to the cancer cell-

conditioned medium may be due to NFκB activation via 

an IL-6-independent mechanism within the osteoblasts.77 

Suppression of NFκB activity with methylseleninic acid 

reduced cytokine production by osteoblasts in response to 

cancer cell-conditioned medium, which may translate to 

reduced bone destruction in vivo.

IL-6 has been demonstrated to increase RANKL expres-

sion from osteoblasts and thus stimulate osteoclastogenesis. 

However inhibitors of RANKL fail to suppress IL-6-mediated 

osteoclastogenesis and bone resorption.78,79 This suggests 

that IL-6 has potential redundant pathways that upregulate 

bone destruction and could interfere with the efficacy of 

targeted therapies against RANKL such as denosumab, 

a humanized monoclonal antibody against RANKL.80 

RANKL-independent pathways could mediate IL-6 induced 

osteoclastogenesis. For instance, cancer induced inflamma-

tion leads to the stimulation of NF-κB activity, which initi-

ates IL-6 production (Figure 2). NF-κB activity is also able 

to stimulate cyclooxygenase (COX)-2 activity, which would 

result in the production of PGE2, stimulating more IL-6 

release.81 High levels of PGE2 have been shown to promote 

potent, pro-osteoclastic factors.82 IL-6 may also be inducing 

other pro-osteoclastic factors that functions independently 

from RANKL such as IL-1β.83 IL-1β has also been shown 

to increase NF-κB activity84 that could result in a feedback 

loop that further increases IL-6.

IL-6 and its soluble receptor  
as a prognostic factor for cancers 
that metastasize to bone
Predicting disease outcomes in cancer patients with metasta-

sis to bone is difficult due to the inherent high level of tumor 

cell heterogeneity within a specific type of cancer. Current 

attempts at general prognostics are based mostly on tumor 

grading, staging, and invasive characteristics derived from 

histological and other types of physical analysis of biopsies.85 

Specific, factor-based categorization of cancer is limited 

to a handful of well characterized receptor and antigenic 

tests. For example, prostate specific antigen (PSA) has long 

been used as a prognostic factor to estimate progression of 

prostate cancer.86 Immuno-assays are performed to detect 

receptors for estrogen (ER), progesterone (PR), and human 
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epidermal growth factor receptor 2 (Her2/neu) to aid in 

directing treatment strategies for breast cancer.87 Improving 

prediction accuracy by using more prognostic factors can 

hasten the detection of any changes in the progression of 

the disease.

Recently, interest in using serum IL-6 as a specific 

prognostic factor for prostate cancer and breast cancer has 

risen.88–90 Current research demonstrates that serum IL-6 

levels are significantly increased in many cancer patients 

with invasive prostate cancer compared with benign prostatic 

hyperplasia (BPH).91 It has been shown that higher levels 

of serum IL-6 in patients with castration-resistant prostate 

cancer correlates to shortened survival times.92 Serum IL-6 is 

also elevated in prostate and breast cancer patients with distal 

metastases compared with patients without metastases,92,93 

and higher serum IL-6 levels have been associated with 

lower patient survival rates in metastatic breast and prostate 

cancer.94 The spread of breast cancer cells into the local lym-

phatic system is also significantly correlated with increased 

IL-6 levels.93 Other studies have supported these findings 

and have shown that IL-6 correlates with the extent and size 

of prostate cancer bone metastases; specifically, the larger 

and more compromised the bone was, the higher the level 

of serum IL-6.95,96 Furthermore, significant elevation of IL-6 

levels in the serum have been seen in prostate cancer patients 

who have experienced a relapse, where IL-6 levels positively 

correlate with cachexia.90,97 Additionally, IL-6 levels have 

been shown to correlate with measures of morbidity and poor 

patient health.98 In one case study, a sharp increase in serum 

IL-6 was detected in terminally ill cancer patients who were 

experiencing extreme cachexia.99

A comprehensive study involving patients with metastatic 

gastric cancer, which can also metastasize to the bone,100,101 

demonstrated a significant correlation between serum 

IL-6 levels and the extent of gastric cancer progression.102 

Specifically, IL-6 levels correlated with tumor grade and the 

extent of invasion into the gastric organ as well as lymphatic 

and hepatic systems. Long-term survival rates were much 

higher with patients that had low levels of serum IL-6, and 

post-surgical probability of metastasis was higher in patients 

with high serum IL-6.102 The use of serum IL-6 levels for 

prognosis in a clinical setting is limited by gaps in the cur-

rent understanding of mechanisms by which IL-6 specifically 

mediates the progression of metastatic disease as well as a 

lack of large clinical trials to assess baseline and range of 

fluctuation of serum IL-6 levels.

In addition to serum IL-6 levels, the concentration of 

soluble receptor to IL-6 (sIL-6R) in the serum may also help 

predict the aggressiveness of cancer metastasis and the level 

of bone destruction. Even in the absence of cancer, high levels 

of serum concentration of sIL-6R can predict the rate and 

level of osteolysis in patients with hyperparathyroidism.103 

High levels of sIL-6R in the serum have also been associated 

with increased generalized inflammation, rheumatoid arthri-

tis, inflammatory bowel disease, asthma, and inflammation-

associated colorectal cancer.104 sIL-6R enables a process 

called IL-6 trans-signaling, where cells that do not possess 

IL-6 receptor, or have low levels of it, can respond to IL-6 

(Figure 3). This occurs through an unclear mechanism by 

incorporating the sIL-6 receptor into the gp130 receptor 

dimer on the cells, forming a IL-6 receptor heterotrimer 

and enabling the cells to respond to IL-6.105 Interest in 

IL-6 trans-signaling has increased in the past several years 

as new research show that sIL-6R is produced by various 

cancer cells, and the serum concentration is associated 

with decreased survival and increased aggressiveness of 

metastases in breast, prostate, and colorectal cancers.95,106,107 

Some data suggest that IL-6 trans-signaling causes various 

effects that promote cancer metastases including, increased 

detachment, proliferation, and migration through a path-

way that is independent of STAT1, STAT3, or MAPK.108 

This suggests that IL-6 trans-signaling is distinct from the 

canonical IL-6 signaling pathway and could be due to the 

lack of the membrane signaling domain on the sIL-6 recep-

tor subunit (Figure 3). However, IL-6 trans-signaling does 

cause increased RANKL expression in synovial fibroblasts 

through a STAT3-dependent manner,53 which suggests that 

trans-signaling may use some of the canonical IL-6 pathway 

to exert its effects. Although there is a convincing amount 

of evidence to suggest that higher serum sIL-6R levels may 

be associated with a worse cancer prognosis, little is known 

about the specifics of the IL-6 trans-signaling pathway, and 

more studies need to be done before assessing whether sIL-6R 

is a therapeutic target.

Serum IL-6 levels may predict  
response to cancer therapy
It is critical to determine throughout a patient’s treatment 

whether the current therapy plan should be maintained or 

whether new therapies need to be initiated. Changes in 

serum IL-6 levels in patients undergoing chemotherapies or 

targeted therapeutics may act as a biomarker that can predict 

whether a patient is responding or not. In one clinical study, 

combination therapy using docetaxel and zoledronic acid, a 

bisphosphonate that inhibits osteoclastic activity, was admin-

istered to prostate cancer patients with bone metastases.109 
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Patients that responded to the therapy had a 35% decrease in 

overall serum IL-6 levels, while patients that did not respond 

had a 76% increase in serum IL-6 levels.109 A confounding 

variable in this finding is that some of the increase in serum 

IL-6 may be due to a stress response to the chemotherapeutic 

agents themselves, and the high levels of IL-6 may actually 

confer drug resistance.110 However, IL-6 has also been cor-

related to C-reactive protein (CRP) levels in the serum, and 

reduction in CRP levels alone may indicate positive biologic 

effects of chemotherapeutics indicated by a reduction in serum 

IL-6.111,112 Although there is a dearth of clinical studies using 

IL-6 as a predictive biomarker of therapeutic response, initial 

studies support the concept that changes in serum cytokine 

levels such as IL-6 are worthy of more investigation.

IL-6 promotes chemotherapy 
resistance
Chemotherapeutics traditionally have been and are currently, 

a mainstay in therapies against metastatic disease. However, 

resistance to chemotherapeutics is common, and the mecha-

nisms mediating resistance have been difficult to determine. 

Recent experimental results suggest that chemotherapy resis-

tance is mediated through a relatively heterogeneous set of 

mechanisms, including downregulation of apoptotic signals, 

increased drug clearing and deactivation from cancer cells, 

multidrug resistance gene mutations, and stimulation of cell 

survival pathways via gene amplification.113–115

A substantial amount of chemotherapy resistance research 

presently focuses on upstream mediators of cell survival. In 

the bone microenvironment, high concentrations of IL-6 have 

recently been shown to confer resistance to apoptosis in breast 

and prostate cancer cells as well as neuroblastoma cells.18,116,117 

Specifically, prostate cancer cell activity of NF-κB has 

been shown to cause high IL-6 production, which promotes 

docetaxel resistance in prostate tumors and associated bone 

metastases by upregulating the pro-survival AKT pathway 

in an IL-6-dependent manner (Figure  3).49 Additionally, 

resistance to paclitaxel is observed in breast cancer patients 

whose metastatic lesions show high levels of IL-6.115 This high 

IL-6 production could itself be a function of the cancer cell’s 

response to chemotherapeutics. One particular study presented 

evidence that paclitaxel induced expression of IL-6 in cervical 

cancer cells via the c-Jun N-terminal kinase (JNK) signaling 

pathway.110 More studies need to be conducted to assess the 

full role of IL-6 in conferring chemotherapeutic resistance, 

but these preliminary studies may support a rationale for using 

combination therapy of IL-6 inhibitors along with classical 

chemotherapeutic agents.

IL-6 as a target for therapy
Currently, the only kinds of therapies that can treat bone 

metastases are supportive therapies using 1) bisphosphonates 

to reduce osteolytic burden, 2) radiotherapy and analgesics 

to alleviate pain, and 3) surgical intervention to reinforce 

weak bones.24,118,119 The humanized monoclonal antibody 

to the IL-6 receptor, tocilizumab (Actemra®) was approved 

by the United States Food and Drug Administration (FDA) 

on January 11, 2010 and was previously approved in Japan 

and the European Medicines Agency (EMEA) in 2008 

(Table 1).120 Although tocilizumab is approved only for rheu-

matoid arthritis (RA) in the United States and Europe as well 

as Castleman’s disease in Japan, recent studies have shown 

that tocilizumab is also effective as an antitumor agent against 

U87MG glioma cells. Tocilizumab exerts an inhibitory 

effect on the JAK/STAT3 pathway by preventing IL-6 from 

binding to its receptor, thereby inhibiting IL-6 signaling.121 

Similar antitumor effects were seen with S6B45  multiple 

myeloma cells where a modified version of tocilizumab 

significantly inhibited the proliferation of these cells in 

vitro.122 Tocilizumab has also been effective in blocking 

cartilage and bone destruction in IL-6-mediated autoimmune 

diseases such as synovitis and RA, where the mechanism of 

bone destruction is similar to that of bone metastases and 

high, local IL-6 levels were reported.123 Thus, tocilizumab 

may be effective as part of a combination therapy with bis-

phosphonates to control cancer cell-mediated destruction of 

the bone. However, there is no public data that exists for the 

efficacy of tocilizumab in inhibiting the progression of bone 

metastases. Other inhibitors of IL-6 activity for the treatment 

of various autoimmune diseases such as lupus, RA, Crohn’s 

disease, and Castleman’s disease are being developed or are 

undergoing FDA approval.

Another anti-IL-6 drug that is being developed for 

bone metastatic prostate and renal carcinomas and mul-

tiple myeloma is (Centocor’s) CNTO-328 (Siltuximab).124 

This chimeric, monoclonal antibody to IL-6120,125 recently 

completed initial clinical trials for prostate cancer, kidney 

cancer, and renal cell carcinoma with mixed results. Some 

preliminary results from the completed trials indicate 

minimal side effects with the inhibitor; however, there was 

a general lack of correlation with IL-6 inhibition and reduc-

tion in tumor growth.125,126 The lack of tumor inhibition may 

be due to the nature of the trial that attempted to ascertain 

the safety profile of the drug, thereby leading to the use of 

a lower dose than may be effective. However, new clinical 

trials with dose escalation are planned. On the other hand, 

clinical trials on relapsed and refractory multiple myeloma 
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Table 1 Targeted therapies for IL-6

FDA approval status Drug manufacturer Drug name Drug type Reference

Approved drugs
Approved for rheumatoid 
arthritis

Roche and Chugai Tocilizumab Monoclonal humanized  
antibody to IL-6 receptor

Melton L et al120

Kudo M et al121

Promising drugs in trials
Phase 2 trials prostate cancer, 
multiple myeloma

Centocor CNTO-328 Monoclonal chimeric  
antibody to IL-6

Melton L et al120

Zaki MH et al128

Phase 1 trials completed and  
Phase 2 trials pending

Avida, purchased by Amgen C326 or AMG-220 Avimers Silverman et al133

Sheridan C132

is still ongoing. Preliminary results from a Phase 2 trial on 

these patients demonstrate positive results with manageable 

side effects and good safety profile.127 This is supported by 

a study showing that siltuximab can inhibit prostate cancer 

cell growth in vitro and improve survival by reducing the 

level of cachexia in an animal model of prostate cancer.128 

In addition, siltuximab has been shown in mice to inhibit 

the conversion of androgen-dependent prostate cancer into 

a more aggressive, bone metastatic, and difficult to treat 

androgen-independent prostate cancer.129 Treatment with 

siltuximab also decreased serum CRP levels, which cor-

related to improved outcome in treatment-resistant prostate 

cancer.112 Other recent data indicate that STAT3 and MAPK 

activity is suppressed in patients taking siltuximab, which 

may inhibit IL-6 mediated drug resistance.130 However, in a 

separate Phase 2 clinical trial involving castration-resistant 

prostate cancer where the disease had progressed beyond 

docetaxel therapy, siltuximab had a minimal clinical effect, 

despite positive biological IL-6 inhibition.131 New clinical 

trials using a combination of siltuximab and chemothera-

peutics such as docetaxel are underway.131

The use of antibodies for therapeutically inhibiting 

cytokines such as IL-6 may soon be replaced by utilizing 

small protein, nonantibody-based inhibitors called avimers. 

Avimers may surpass monoclonal antibodies in efficacy 

and potency, while reducing cost. Because these proteins 

lack immunoglobulin domains, they are much less immu-

noreactive, and their smaller size (∼4 kDa) allows tighter 

interactions between the avimer and their target cytokine or 

receptor.132,133 In addition, due to their reduced immunoreac-

tive nature, they should theoretically reduce occurrences of 

serious side effects such as acute allergic reactions, which 

currently are a common problem with antibody therapeutics. 

Because of the promising features of this type of biological 

therapeutic, many pharmaceutical companies are pursuing 

the development of drugs based on nonantibody protein 

compounds, but the majority of these compounds are still in 

preclinical or Phase 1 trials.

Avida recently developed an avimer against IL-6 called 

C326 or AMG-220.134 Their studies show that this avimer 

has superior stability and drug longevity compared with anti-

body-based inhibitors,73 resulting in an increase in both the 

half-life and the shelf-life of the drug. Avida published results 

demonstrating that their avimer against IL-6 has an IC
50

 in 

the picomolar range leading to much smaller doses, and as 

it can be produced in Escherichia coli, the cost is reduced.133 

AMG-220 is also being developed for Castleman’s disease, 

an autoimmune disorder that is characterized by high levels of 

serum IL-6 which is thought to cause the hyper-proliferation 

of B-cells, leading to high fevers, joint pain, weight loss, 

and anemia.135 Currently, a Phase 1 trial for Crohn’s disease 

is also in progress and is recruiting volunteers with stable 

disease and generally good health.133,136,137

Although not all IL-6 inhibitors currently being developed 

or on the market are designed for cancer, IL-6 inhibitors, in 

principle, should work similarly for all diseases where IL-6 is 

deregulated. Therefore, IL-6 inhibitors should effectively inhibit 

IL-6-dependent cancers by reducing metastases to the bone and 

bone destruction. Availability of IL-6 inhibitors for the treatment 

of various cancers and bone metastases should improve as new 

uses of the inhibitors are approved by the FDA.

Conclusion
Recent research and publications have demonstrated that 

IL-6 is one of the major factors upregulating and modulating 

cancer-mediated bone destruction. The information presented 

in this review illustrates the potential for IL-6 as a prognostic 

factor. In addition, fluctuations in serum IL-6 levels could 

help direct additional treatment strategies in the future, but 

clinical studies are needed to assess that potential. There is 

also evidence from in vitro, in vivo, and preliminary clinical 

trials to suggest that specific anti-IL-6 therapies may improve 

cancer survival rates and reduce metastatic burden in some 

types of cancers. However, additional studies and appropriate 

clinical trials need to be done to fully ascertain the effective-

ness of anti-IL-6 therapies in cancer patients.
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