

Appendix A-1 Search Strategy-English Keywords Venn diagram

Appendix A-2 Search Strategy-English Keywords

Health	Salt	Reduction	China
Health*	salt intake	reduce	Chinese
Disease*	salt consumption	restriction	
blood pressure hypertension	sodium	Restrict*	
Stroke, cerebrovascular	Sodium intake	curb	
Heart, cardiac	sodium consumption	limit	
kidney, renal	diet* salt	minimi*	
cardiovascular	diet* sodium		
chronic disease			
NCD* (see also two to the right)	Noncommunicable disease*	Non-communicable disease*	

Appendix A-3 Search Strategy-Chinese Keywords

健康	盐	降低	中国
高血压	钠	减少	中国人
冠心病	消耗	控制	我国
心脏病	摄入	控盐	
脑卒中,中风	食用	减盐限制	
肾脏,肾病疾病	食用盐	限盐	
		版理	
慢性病	食用钠		
非传染性疾病			

Study site (survey year)	First author	Sampling	Age range	Measurement	Sample size	Salt intake (Mean ± SD)
12 Chinese mainland provinces	Hipgrave <i>et al</i> ¹	Random sampling (randomly select 1 urban district and 2 rural counties. Further select 2 communities or townships and narrow down 5 neighborhoods or villages, finally 30 households were randomly selected)	18-45	Dietary measurement	6,072	Unweighted intake: 9.0g/day Population-weighted intake: 9.0/day
China (2008)	Ma <i>et al</i> ²	Based on the data of 2002 Chinese Nutrition and Health Condition Survey	-	-	45,349	National average: 10.7g/day Countryside: 11.1g/day Urban: 9.7g/day
9 Chinese mainland provinces (1997, 2009)	Liu <i>et al³</i>	Random sampling (Longitudinal survey)	18~75	-	19,508	1997: 12.7g/day 2009: 8.9g/day
11 China locations (2002)	Liu <i>et al</i> ⁴	Random population samples from 11 locations across China (Urumqi, Altai, Lhasa, Tulufan, Hetian, Guiyang, Guangzhou, Shanghai, Beijing, Shijiazhuang and Taipei).	45-56	Single 24-h urine collection	1,135 (572 men 563 women)	Male: 12.0 ± 5.0g/day Female: 10.3 ±4.9 g/day
China (2001)	Liu et al ⁵	Random samples of men and women from Han, Uygur, Kazak and Tibetan ethnic populations	45-56	Single 24-h urine collection	Han: 755 Uygur: 510 Kazaks: 204 Tibetans: 125 (age 45-56 year)	Han: 11.3 ±5.7g/day Uygur: 10.2±7.9g/day Kazaks: 12.5 ± 8.0g/day Tibetans: 14.8±6.7g/day
Beijing, Shanghai, Guangxi (2003)	Stamler <i>et al</i> ⁶	Age–sex stratified random sampling	40-59	Four 24-h dietary recalls and two 24- h urine collections with an average of 3 weeks between collections	Northern men: 276; Northern women: 285; Southern men: 140; Southern women: 138	Northern men: 17.2±5.4g/day Northern women: 14.6±4.5g/day Southern men: 8.8±3.5g/day Southern women: 7.5±3.1 g/day
Guangdong (2014)	Li et al. ⁷	Random sampling	-	24-h dietary recall for 3 consecutive days and 3-day weighed food record	7,421	7.6g/day

Appendix B: Summary of salt/sodium intake levels in China

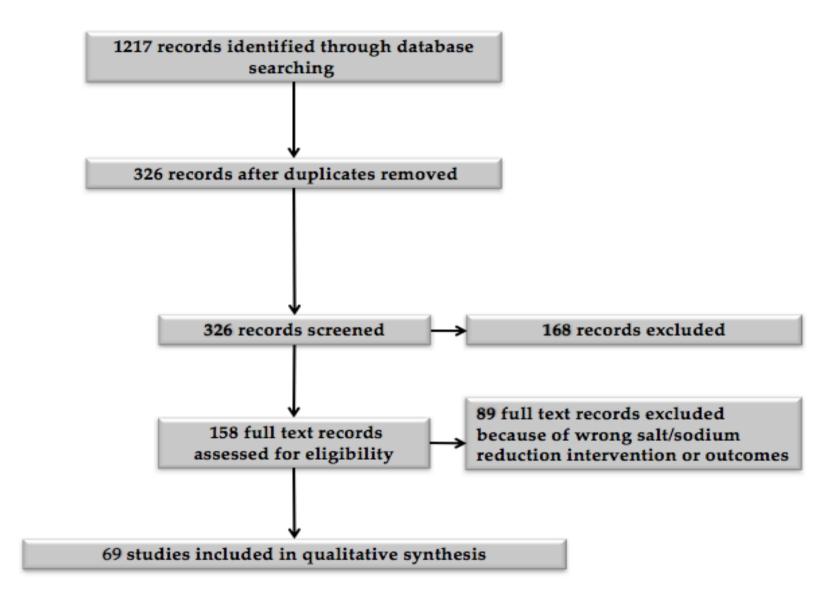
Beijing, (2015)	Zhao et al.8	Random sampling	Adults1	One-week salt	Adults: 1,981	Adult 15.2±9.1g/day
			8-59	estimation method	Children: 971	children 11.0±6.2g/day
			Childre			senior citizen 10.2±4.8g/day
			n≤18			
Beijing (2012)	Zhao <i>et al</i> . ⁹	Multi-stage cluster random sampling	>18	2-h dietary recall	1,841	Female: (7.6±5.6) g/day
				for 3 consecutive		Male: (8.2±5.9) g/day
				days and 3-day		Male higher than female (P<0.05)
				weighed food		
<u>(2014)</u>	D 110		10.00	record	2 200	
Shandong (2014)	Bi et al. ¹⁰	Random sampling	18-69	24-h dietary recall	2,208	5.745g/day (sodium)
				24-h urinary	2,112	5.398g/day (sodium)
				sodium excretion		
Shandong (2014)	Zhang <i>et al</i> . ¹¹	Random sampling	18-69	24-h urinary sodium excretion	2,184	13.9g/day
Yantai, Shandong	Xu et al. ¹²	Random sampling	18-69	24-h urine survey	1,500	11.8g/day
(2014)		r o			,	
Laiwu, Shandong	Wang et al. ¹³	Random sampling	18~69	72-h dietary recall	83	(6.318±2.661) g/day
(2014)				and weighed food		
				record		
Dalian Polytechnic	Fan <i>et al</i> . ¹⁴	Cluster Sampling	College	24-h dietary recall		6.66±1.23g/day
University (2012)			students	for 3 consecutive		
				days		
Liaoning (2014)	Yu et al. ¹⁵	Multi-stage stratified random sampling method	-	Self-report	11,192 families	(8.96±5.21) g/day
						Countryside: (10.07±5.67) g/day
						Urban city: (7.72±4.32) g/day
Liaoning (2007)	Dong et al. ¹⁶	Multi-stage stratified cluster sampling	35-85	-	29,970	15.5±9.5g/day
Hunan (2015)	Yin et al. ¹⁷	Multi-stage stratified random sampling	-	Dietary recall	4,200	10.3g/day
Hunan (2007)	Fu et al ¹⁸	Random sampling	>2	24-h dietary recall	180	10.1g/d
				for 3 consecutive	Families	
				days		
Jiangsu (2016)	Zhang, et al ¹⁹	Multi-stage sampling	18-69	24-h urinary	9,600	11.0±4.1g/day
				sodium excretion		
Jiangsu (2014)	Qin <i>et al</i> ²⁰	Random sampling	>18	Food frequency	2,502	9.8±6.3g/day
				questionnaire		
Jiangsu (2014)	Qin <i>et al</i> ²¹	Random sampling	>20	24-h dietary recall	2,518	11.4±9.6g/day
				and food frequency		
				questionnaire		

Zhejiang (2011)	Chen et al. ²²	Random sampling	-	24-h dietary recall for 3 consecutive days and 3-day weighted food	4,949	10.5g/day
Sanmen, Zhejiang (2015)	Qi <i>et al</i> . ²³	Random sampling	-	record Weighted food record	200 families, 1652 people	(8.91±33.15) g/day
Fujian (2010)	Hu et al. ²⁴	Stratified random sampling	-	Both standard average salt intake and 3-day weighed food record	213 families	7.63g/day

Appendix C: Summary of Salt Reduction Interventions in China

Source	Site	Setting	Sample Size	Target	Age	Period	Study Design	Aim	Intervention	Result
Salt Substi	tute						. –	·		
China Salt Substitute Collaborativ e Group 2007 ²⁵	Northern China	Rural	608	At-risk population	60 years mean	May 2004- August 2005	Double-blind randomized controlled trial	Effect of salt substitute on BP among high risk rural Chinese	Provision of salt substitute	Mean SBP is 3.7mmHg ^{III} lower vs. control. No detectable effects on DBP. Maximum net reduction of 5.4 mmHg achieved at 12 months.
Hu et al 2009 ²⁶	Northern China	Rural	187	At-risk population	58.4 years mean	May 2004- August 2005	Double-blind randomized controlled trial	Impact of salt substitute on BP control	Introducing salt substitute	Significantly reduced central and peripheral SBP and reduced arterial stiffness
Zhang et al, 2011 ²⁷	Laiwu (Norther n China)	Rural	411	Population (Both HBP and NHBP)	30-60 years old	3 months	Quasi- experiment	Impact of salt substitute on BP	Replacement of salt-substitute for both HBP and NHBP	Reduction of 7.4 /3.8 mm Hg ^{III} (SBP/DBP) in the HBP group. Reduction of 1.2 ^{III} /1.0 ^{III} mmHg ^{II} (SBP/DBP) in the NHBP group.
Li et al, 2013 ^{28,29}	5 northern provinces	Rural	120 townships	Population	No data available	2011-2012 (18 months)	Cluster- randomized trial	Effect of salt substitute and health education on BP, 24 HRUP, 24HRUS, and proportion of HTN	Health education and making salt substitute easily accessible.	Reduced daily sodium intake and increased daily potassium intake were found in intervention group.
Zhou et al, 2013 ³⁰	Northern China	Rural	372	Population (Both HTN and NHTN)	No data	2 years	Double- blinded randomized controlled trial	Effect of salt substitute among HTN and NHTN rural Chinese	Impact of salt substitute on BP	Reduction in SBP of 4 mmHg in HTN and lowers both SBP (2 mmHg) and DBP (2mmHg] in NHTN controls

	m:1 ·		000		40 11				T. 1 · · ·	
Zhao et al, 2014 ³¹	Tibet	Rural	282	Population	40 or older	Feb-May 2009	Patient- blinded	Effect of salt-	Introducing salt	Reduction in
201451				with		2009		substitute on BP	substitute to	SBP/DBP in the
				hypertensio			randomized controlled	among Tibetans	intervention	intervention group in
				n				living at high	group, control	comparison to the
				(SBP>140m			trial	altitude (4300	group use regular	control group was
				mHg)				meters and	salt	-8.2/-3.4 mmHg (PP)
								above)		and -7.6/-3.5 mmHg
										(ITC). After
										intervention, 19.2%
										of patients in
										intervention group
										have their BP under
										control compared to
										8.8% [□] in control
			1002		01.1	10 11		TTI : (group
Jardine et al, 2014 ³²	China	Rural	1903	Population	Older individuals	18 months	Cluster	The impact of	Education and	Mean follow-up
al, 2014 ³²					individuals		randomized	dietary salt	access to low-	urinary albumin:
							trial	reduction on albuminuria	sodium salt substitute	creatinine ratio
								albuillillui la	substitute	(UACR) was 0.19 mg/mmol lower vs.
										control ^m with a
										corresponding OR for
										albuminuria at 0.67
										(0.46–0.99).
Zhou et al,	Northern	Rural	200	Population	No data	3 years	Randomized	Effect of salt	Introducing salt	Salt substitute
2016 ³³	Northern	Rurai	families	ropulation	Nouata	5 years	controlled	substitute on BP	substitute	significantly reduced
2010			iannies				trial	Substitute on Di	Substitute	the increase in both
							ci iai			SBP [_] and DBP [_] vs.
										control.
China Salt	China	Rural	20,000	Population	No data	5 years	Cluster	Effect of salt	Introducing salt	Expected completion
Substitute	Ginna	i tui ui	_0,000	ropatation	no uuu	e yeare	randomized	reduction on	substitute	in 2019
and Stroke							controlled	the risk of		
Study ³⁴							trial	stroke		
Salt Substitu	te -Taste and	d acceptabil	ity							
Lai, Yue &	Beijing	Urban	24	Population	Not	No data	No data	To test the taste	Using extensive	No significant
Wu, 2010 ³⁵					available			and	triangle test to	differences of overall
								acceptability of	test difference	likeness between
								salt substitute	between ordinary	ordinary salt and salt
								(68.84% NaCl,	salt and salt	substitute samples.
								26.05% KCl,	substitute	
								4.81% MgSO ₄)		
Chau et al,	Hong	Urban	169	Population	No data	June to	Cross-	Compare the	N/A	Older HTN people are
2016 ³⁶	Kong			(Both HTN		August	sectional	preference of		more willing to


Li et al, 2009 ³⁷	5 Northern areas	Rural	608	and NHTN)	60 years mean	2014 May 2004- August 2005	survey Large-scale, blinded, randomized controlled trial	food saltiness and the willingness to consume low- sodium food To assess the saltiness, flavor and acceptability of food cooked with salt substitute	Food with different saltiness were distributed to participants for evaluation	consume low sodium food [™] No evidence that older people were less sensitive to tasting saltiness. Possible small differences (1.8mm) [□] in the flavor of salt substitute did not importantly deter the use of the salt substitute in this study group.
Salt-restricti	on tools									
Mei et al, 2010 ³⁸	Shanghai (Minhang District)	Rural	371	Population	15-69	2008-2009	Intervention Trial	Intervention effectiveness of dispatching salt- control spoons	Dispatchment of salt-control spoons with education materials	Increased awareness on salt-control knowledge and salt- control measurement
Cai et al, 2011 ³⁹	Shanghai (Baoshan District)	Rural	Around 300	Population	15-69	2008-2009	Intervention Trial	To evaluate the impact of salt- control spoons on KABP and salt intake	Dispatchment of salt-control spoons	Increase in salt- related health awareness by 20.7%只 Positive effect on KABP but not on salt intake.
Yang et al, 2013 ⁴⁰	Beijing (Shunyi District)	Rural	403	Population	15-79	2012 (6 month)	Randomized controlled trial	Impact of salt- restriction tools along with health education	Provision of salt- restriction tools and health education	41.2% [™] more use salt-restriction tools pre vs post. 34.8% more use such tools v.s control.
Chen et al, 2013 ⁴¹	Beijing	Rural area	403	Population	15-79	2012	A community intervention study	To evaluate the effect of an improved salt- restriction spoon on the attitude of salt- restriction, the using rate of salt-restriction- spoon, the actual salt intake, and 24-	Provision of salt- restriction spoons	The daily salt intake decreased by 1.42 g in the intervention group and by 0.28 g in the control group, and repeated measures analysis of variance showed significant change over time (F = 7.044 ^(T)) and significant difference

Wang et al, 2015 ⁴²	Shanghai	Urban, urban- rural fringe & Rural area	6866 individuals (2960 families)	Population	15-69	2008-2009	Multi-stage cluster trial	hour urinary sodium excretion (24HUNa). To evaluate the impact of salt- control spoons on the salt intake of Shanghai residents.	Provision of salt- control spoons	between groups by time (F = 2.589 ^{[-}) 41.15% of families still use the salt- control spoons in the 12 th month although the percentage decreased over time. 45.69% of the subjects have a daily salt intake of 6g or less, up from 37.24% at baseline.
Wang et al, 2015 ⁴³	Shanghai	Urban, urban- rural fringe & Rural area	6748 individuals (2941 families)	Population	15-69	2008-2009	Multi-stage cluster trial	To assess the impact of salt control spoons to improve knowledge and behavior on restricted salt usage among residents in Shanghai.	Provision of salt- control spoons	79.32% of residents have salt-restriction related knowledge in the 12 th month, compared to 39.52% at baseline. TV and popular science articles are the preferred way for the mass to obtain salt related knowledge.
Health Educa			110.000							D 1 1 00-
Chen et al 2008 ⁴⁴	Beijing	Urban	110,000	Population	No data	1987-1995	Intervention Trial	Impact of worksite intervention on salt intake & other CVD risk factors	Worksite screening Health education including reducing salt intake, smoke cessation	Reduction SBP 1.9mmHg, reduction DBP 2.2 mmHg [□] vs control Reduction in salt intake of 3.9g /day [□] vs control

He et al, 2015 ⁴⁵	Changzhi (Norther n China)	Urban	279	School children and their family members	10 years (children) 43.8 years (family members)	3.5 months	Cluster randomized controlled trial	Impact of education targeting school children on salt intake of them and their family members	Children receive educated on the harmful effects of salt and how to reduce salt intake	Salt intake reduction of 1.9 g/day ^{□□} in children and 2.9 g/ ^{□□} in adults vs. control. The mean effect on SBP was -0.8 mm Hg in children and -2.3 mm Hg [□] in adults.
---------------------------------	----------------------------------	-------	-----	--	---	---------------	--	---	--	--

Explanation results: normal lettertype not significant p<0.05, p<0.001, between brackets (to) are the confidence intervals if available

KABP: Knowledge, attitude, behavior, practice
Salt Substitute: 65% sodium chloride, 25% potassium chloride, and 10% magnesium sulphate, unless otherwise noted
BP: Blood pressure
SBP: Systolic Blood pressure
DBP: Diastolic Blood pressure
HBP: High blood pressure
NHBP: Non-high blood pressure
HTN: Hypertension/hypertensive population
NHTN: Normotensive/normotensive population
PP: Per protocol analysis
ITC: Intention to treat analysis
24HRUP: 24-hour urinary potassium
QR: Odds Ratio

Appendix E: A summary of salt-reduction related government regulations in China

Document names (Chinese)	Document names (English)	Responsible Entities
中国慢行病防治工作规划(2012 — 2015)	National Plan of Prevention and Control of Chronic Diseases in China (2012-2015)	15 Chinese ministries including the Ministry of Health, Ministry of Education, Ministry of Finance
中国食物与营养发展纲要(2014- 2020)	Chinese Diet and Nutritional Development Regulation (2014-2020)	State Council of China
中国减盐行动《2010-2020 行动计 划》	China World Action on Salt and Health (CWASH) (2010-2020)	China Centre of Disease Control, China George Institute of Chronic Disease Control
预包装食品营养标签通则 (GB28050-2011)	Nutritional Labelling in Prepacked Food Legislation (GB28050-2011)	Ministry of Health
低钠盐QB2019-2005 行业标准 (QB2019-2005)	Industry Standard of Low Sodium Salt (QB2019-2005)	National Development and Reform Commission
绿色食品食用盐(NY/T 1040-2010)	Green Food, Edible Salt Industry Regulation (NY/T 1040-2010)	Ministry of Agriculture

References:

- 1. Hipgrave D, Chang S, Li X, Y W. Salt and Sodium Intake in China. *Jama*. 2016;315(7):703-705.
- 2. Ma G. The salt consumption of residents in China. *Chinese journal of prevention and control of chronic disease [Zhong Guo Man Xing Bing Yu Fang Yu Kong Zhi].* 2008;16(4).
- 3. Liu A. Chinese adult's dietary patterns and their relationship with hypertension among residents in nine provinces (1997-2009) [Phd]. *Chinese Centre for Disease Control and Prevention [Zhong Guo Ji Bing Yu Fang Kong Zhi Zhong Xin].* 2011.
- 4. Liu L, Ikeda K, Yamori Y. Inverse relationship between urinary markers of animal protein intake and blood pressure in Chinese: results from the WHO Cardiovascular Diseases and Alimentary Comparison (CARDIAC) Study. *International journal of epidemiology.* 2002;31(1):227-233.
- 5. Liu L, Liu L, Ding Y, et al. Ethnic and environmental differences in various markers of dietary intake and blood pressure among chinese han and three other minority peoples of china: Results from the WHO cardiovascular diseases and alimentary comparison (CARDIAC) study. *Hypertension Research.* 2001;24(3):315-322.
- 6. Stamler J, Elliott P, Dennis B, et al. INTERMAP: background, aims, design, methods, and descriptive statistics (nondietary). *J Hum Hypertens*. 2003;17(9):591-608.
- 7. Li S, Wen J, Deng X. Status and change trend of food consumption and nutrients intake in urban population of Guangdong province. *Zhong Guo Gong Gong Wei Sheng [Chinese journal of public health].* 2014;09:1109-1112.
- 8. Zhao F, Zhang P, Zhang L, et al. Consumption and sources of dietary salt in family members in Beijing. *Nutrients*. 2015;7(4):2719-2730.
- 9. Zhao Y, Yu Y, Jin Q. Cross-sectional study on dietary sodium and salt intake among urban residents above 18 years old in Beijing. *Chinese Journal of Health Education [Zhong Guo Jian Kang Jiao Yu].* 2012;08:616-619+638.
- 10. Bi Z, Liang X, Xu A, et al. Hypertension prevalence, awareness, treatment, and control and sodium intake in Shandong Province, China: baseline results from Shandong-Ministry of Health Action on Salt Reduction and Hypertension (SMASH), 2011. *Prev Chronic Dis.* 2014;11:E88.
- 11. Zhang J, Yan L, Tang J, et al. Estimating daily salt intake based on 24 h urinary sodium excretion in adults aged 18-69 years in shandong, china. . *Bmj Open.* 2014;4(7):e005089-e005089.
- 12. Xu J, Wang M, Chen Y, et al. Estimation of salt intake by 24-hour urinary sodium excretion: A cross-sectional study in yantai, china. . *Bmc Public Health.* 2014;14(1):136-136.
- 13. Wang Q, Shao H. Study on dietary sodium intake and excretion among residents in Laicheng district of Laiwu city. *Journal of community medicine [She Qu Yi Xue Za Zhi].* 2014;09:1-5.
- 14. Fan W. A survey on the sodium intake among college students. *Chinese Food and Nutrition [Zhong Guo Shi Wu Yu Ying Yang)*. 2014;20(1).
- 15. Yu L, Li N, You Y, et al. Analysis of self-reported daily salt intake and impact factor among Liaoning residents in 2014. *Preventitive medicine in practice [Shi Yong Yu Fang Yi Xue].* 2014;01:31-35.
- 16. Dong G, Sun Z, Zheng L, et al. Prevalence, awareness, treatment, and control of hypertension in rural adults from Liaoning Province, northeast China. *Hypertens Re.* 2007;30(10):951-958.
- 17. Yin L, Liu H, Liu J, Guan X. Dietary status and related influence factors of adults in Hunan province. *Practical preventive medicine [Shi Yong Yu Fang Yi Xue].* 2015;01:94-96.

- 18. Fu Z, Liu J, Liu H, Jin D. Dietary patterns of urban residents from 1982 to 2012 in Hunan. *Journal of Central South University Medical sciences [Zhong nan da xue xue bao. Yi xue ban].* 2014;39(7):713-717.
- 19. Zhang Y, Wang M, Shi J, Li P, Pei X, MH. D. Prevalence, awareness, treatment and control of hypertension and sodium intake in Jiangsu Province, China: a baseline study in 2014. *BMC Public Health.* 2016;16(1):56.
- 20. Qin Y, Li T, Lou P, et al. Salt intake, knowledge of salt intake, and blood pressure control in Chinese hypertensive patients. *J Am Soc Hypertens.* 2014;8(12):909-914.
- 21. Qin Y, Melse-Boonstra A, Pan X, et al. Association of dietary pattern and body weight with blood pressure in Jiangsu Province, China. *BMC Public Health.* 2014;14:948.
- 22. Chen J, Zhang R, Zhang H. Dietary intake and nutrition status of urban residents in Zhejiang province. *Chinese journal of public health [Zhong Guo Yu Fang Yi Xue Za Zhi].* 2011;02:170-173.
- 23. Qi X, Wang Z, Jiang M, Cheng G. Investigation on salt intake of residents in Sanmen county. *Zhejiang journal of preventive medicine [Zhejiang Yu Fang Yi Xue]*. 2015;03:281-282.
- 24. Hu M, Chen Z, Lin S, Lin X, Wang M, Wu J. Investigation and analysis on the salt intake of residents in Fujian province. *Chinese journal of control of endemic diseases [Zhong Guo Di Fang Bing Fang Zhi Za Zhi].* 2010;06:435-437.
- 25. The China Salt Substitute Study Collaborative Group. Salt substitution: a low-cost strategy for blood pressure control among rural Chinese. A randomized, controlled trial. *Journal of Hypertension.* 2007;25(10):2011-2018.
- 26. Hu J, Jiang X, Li N, et al. Effects of salt substitute on pulse wave analysis among individuals at high cardiovascular risk in rural China: a randomized controlled trial. *Hypertens Res.* 2009;32(4):282-288.
- 27. Zhang GH, Ma JX, Guo XL, et al. [Field observation on the effect of low-sodium and high-potassium salt substitute on blood pressure in the rural community-based population in China]. *Chinese Journal of Epidemiology [Zhonghua liu xing bing xue za zhi].* 2011;32(9):859-863.
- 28. Li N, Yan LL, Niu W, et al. A large-scale cluster randomized trial to determine the effects of community-based dietary sodium reduction--the China Rural Health Initiative Sodium Reduction Study. *Am Heart J.* 2013;166(5):815-822.
- 29. The George Institute for Global Health China. Study identifies a new community-based strategy to reduce population sodium intake in rural China. 2013; <a href="http://www.georgeinstitute.org.cn/media-releases/study-identifies-a-new-community-based-strategy-to-reduce-population-sodium-intake-in?utm_source=George+Institute+External+Email+List&utm_campaign=0783bfc986- TGI eNewsletter RADAC&utm_medium=email&utm_term=0_0972953fbb-0783bfc986-95170073.
- 30. Zhou B, Wang HL, Wang WL, Wu XM, Fu LY, Shi JP. Long-term effects of salt substitution on blood pressure in a rural North Chinese population. *Journal of Human Hypertension.* 2013;27(7):427-433.
- 31. Zhao X, Yin X, Li X, Yan L, Lam C, Li S. Using a Low-Sodium, High-Potassium Salt Substitute to Reduce Blood Pressure among Tibetans with High Blood Pressure: A Patient-Blinded Randomized Controlled Trial. *PLoS ONE* 2014;9(10):e110131.
- 32. Jardine M, Li N, Ninomiya T, et al. Dietary sodium reduction reduced albuminuria in 1,903 rural chinese: A cluster randomised trial. *Nephrology.* 2014;19:28.
- 33. Zhou B, Webster J, Fu LY, et al. Intake of low sodium salt substitute for 3 years attenuates the increase in blood pressure in a rural population of North China A randomized controlled trial. *International Journal of Cardiology.* 2016;215:377-382.
- 34. The George Institute. China Salt Substitute and Stroke Study (SSaSS). 2014; <u>https://clinicaltrials.gov/ct2/show/NCT02092090</u>. Accessed July, 2016.

- 35. Lai Y, Yue X, Wu Y. Study on the difference in taste between ordinary salt and a low-sodium, high-potassium salt substitute. *Circulation.* 2010;122(2):e353.
- 36. Chau PH, Ngai HHY, Leung AYM, Li SF, Yeung LOY, Tan-Un KC. Preference of food saltiness and willingness to consume low-sodium content food in a Chinese population. *Journal of Nutrition, Health and Aging.* 2016:1-8.
- 37. Li N, Prescott J, Wu Y, et al. The effects of a reduced-sodium, high-potassium salt substitute on food taste and acceptability in rural northern China. *British Journal of Nutrition.* 2009;101(07):1088-1093.
- 38. Mei KW, Wei MQ, Wang J. KABP investigation of residents on salt control in Minhang district of Shanghai and evalution on the intervention effectiveness of dispatching salt-control spoons. *China Health Education Journal [Zhong Guo Jian Kang Jiao Yu]*. 2010;26(9):655-657.
- 39. Cai Z, Chen T. Effect assessment of salt reduction intervention among residents in Baoshan district, Shanghai. *Chinese Journal of Health Education [Zhong Guo Jian Kang Jiao Yu Qi Kan]*. 2011;27(8):571-573.
- 40. Yang S, Zhang X, He C, Chan J, Sun X. Analysis of the effect of salt reduction initatives in Shunyi District, Beijing. *China J Prev Contr Chron Dis [Liu Xing Bing Xue Diao Cha].* 2015;23(12).
- 41. Chen J, Tian Y, Liao Y, et al. Salt-restriction-spoon improved the salt intake among residents in China. *PLoS ONE*. 2013;8(11).
- 42. Wang Y, Shi Y, Wu C, et al. Evaluation on a Mass Campain for Salt Control in Shanghai: Change in Salt Consumption. *J Environ Occup Med [Huan Jing Yu Zhi Ye Yi Xue].* 2015;32(1):38-42.
- 43. Wang X, Li M, Ding J, et al. Evaluation on a Mass Campaign for Salt Control in Shanghai: Knowledge and Behavior Improvements on Restricted Salt Usage. *J Environ Occup Med [Huan Jing Yu Zhi Ye Yi Xue].* 2015;32(1).
- 44. Chen J, Wu X, Gu D. Hypertension and cardiovascular diseases intervention in the capital steel and iron company and Beijing Fangshan community. *Obesity Review.* 2008;9.
- 45. He FJ, Wu Y, Feng XX, et al. School based education programme to reduce salt intake in children and their families (School-EduSalt): Cluster randomised controlled trial. *BMJ (Online).* 2015;350.