Table S1. Drug release kinetics of E/AC-Au/MTX

Formulation	Zero order		First order		Higuchi		Korsmeyer-Peppas		
	r ²	\mathbf{k}_0	r ²	$\mathbf{k_1}$	r^2	$\mathbf{k_2}$	r^2	k ₃	n
E/AC-Au/MTX	0.6120	2.56	0.7276	0.02	0.8196	16.29	0.9787	78.02	0.3571

 $[\]it r^2$: correlation coefficient, k_0-k_3 : rate constants, n: diffusional exponent.

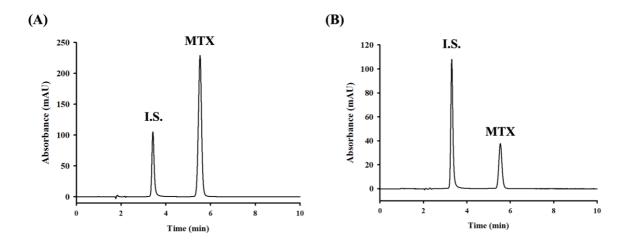


Figure S1. HPLC chromatograms of (A) MTX solution (40 μ g/mL) and (B) the supernatant to determine the entrapment efficiency of MTX-loaded nanoparticles.

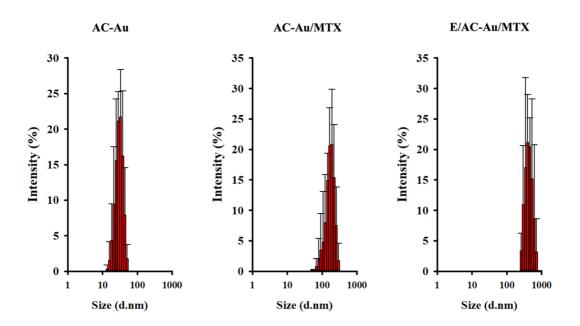
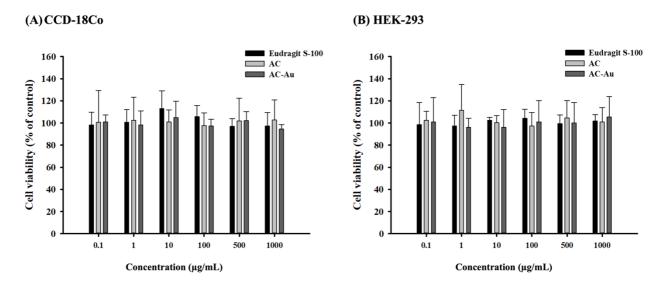



Figure S2. Particle size distribution of AC-Au-based nanoparticles determined by DLS.

Figure S3. Cytotoxic effect of vehicle components in (A) CCD-18Co cells and (B) HEK-293 cells (mean \pm SD, n = 6). Eudragit®-S 100 (methacrylic acid-methyl methacrylate copolymer (1:2)): a surface coating polymer, AC: aminoclay, and AC-Au: aminoclay-gold nanoparticles.