Search strategies

Database: PubMed, MEDLINE, Web of Science, CINAHL Plus Full Text
Limit: English language, an article published between January 2018 – December
2022

Population: Adults with ischemic stroke (≥ 18 years old)

Intervention: Neural Networks

The search terms: (Ischemic Stroke* OR Ischaemic Stroke* OR

Cryptogeniclschemic Stroke* OR Cryptogenic Stroke* OR Cryptogenic Embolism

Stroke* OR Wake up Stroke* OR Acutelschemic Stroke* OR Embolic Stroke* OR

Cardioembolic Stroke* OR Cardio-embolic Stroke* OR Thrombotic Stroke* OR Acute

Thrombotic Stroke* OR Lacunar Stroke* OR Lacunar Syndrome* OR Lacunar

Infarction* OR Lacunar Infarct*) AND (Computer Neural Network* OR Computer

Neural Networks OR Perceptron* OR Neural Network Model* OR Connectionist

Model* OR Neural Network Model* OR Neural Network* OR Computational Neural

Network* OR Deep Learning OR Hierarchical Learning) AND (Diagnos* OR

Diagnos* and Examination* OR Postmortem Diagnos* OR Antemortem Diagnos*)

Database	Search	Search String						
(Search time)								
PubMed and	1	("ischemic stroke*"[Title/Abstract] OR "ischaemic						
MEDLINE		stroke*"[Title/Abstract] OR "stroke*"[Title/Abstract]						
		OR "cryptogenic stroke*"[Title/Abstract] OR						
		"cryptogenic embolism stroke*"[Title/Abstract] OR						
		'wake up stroke*"[Title/Abstract] OR "acuteischemic stroke*"[Title/Abstract] OR "embolic						
		stroke*"[Title/Abstract] OR "embolic						
		stroke*"[Title/Abstract] OR "cardioembolic						
		stroke*"[Title/Abstract] OR "cardioembolic stroke*"[Title/Abstract] OR "cardio embolic						
		stroke*"[Title/Abstract] OR "thrombotic						
		stroke*"[Title/Abstract] OR "acute thrombotic						
		stroke*"[Title/Abstract] OR "lacunar						
		stroke*"[Title/Abstract] OR "lacunar						
		syndrome*"[Title/Abstract] OR "lacunar						
		infarction*"[Title/Abstract] OR "lacunar						
		infarct*"[Title/Abstract])						

Supplementary Table 1. Search strategies

Database	Search	Search String					
(Search time)							
	2 3	("computer neural network*"[Title/Abstract] OR "computer neural networks"[Title/Abstract] OR "perceptron*"[Title/Abstract] OR "neural network model*"[Title/Abstract] OR "connectionist model*"[Title/Abstract] OR "neural network*"[Title/Abstract] OR "computational neural network*"[Title/Abstract] OR "computational neural network*"[Title/Abstract] OR "deep learning"[Title/Abstract] OR "hierarchical learning"[Title/Abstract]) (("diagnos*"[Title/Abstract] OR					
		"examination*"[Title/Abstract]) OR "postmortem diagnos*"[Title/Abstract] OR "antemortem diagnos*"[Title/Abstract]					
	4	1 AND 2 AND 3					
Web of Science	1	(Ischemic Stroke* OR Ischaemic Stroke* OR CryptogenicIschemic Stroke* OR Cryptogenic Stroke* OR Cryptogenic Embolism Stroke* OR Wake up Stroke* OR AcuteIschemic Stroke* OR Embolic Stroke* OR Cardioembolic Stroke* OR Cardio-embolic Stroke* OR Thrombotic Stroke* OR Acute Thrombotic Stroke* OR Lacunar Stroke* OR Lacunar Syndrome* OR Lacunar Infarction* OR Lacunar Infarct*)					
	2	(Computer Neural Network* OR Computer Neural Networks OR Perceptron* OR Neural Network Model* OR Connectionist Model* OR Neural Network Model* OR Neural Network* OR Computational Neural Network* OR Deep Learning OR Hierarchical Learning)					
	3	(Diagnos* OR Diagnos* and Examination* OR Postmortem Diagnos* OR Antemortem Diagnos*)					
	4	1 AND 2 AND 3					
CINAHL Plus Full Text	1	TX(Ischemic Stroke* OR Ischaemic Stroke* OR CryptogenicIschemic Stroke* OR Cryptogenic Stroke* OR Cryptogenic Embolism Stroke* OR Wake up Stroke* OR AcuteIschemic Stroke* OR Embolic Stroke* OR Cardioembolic Stroke* OR Cardio-embolic Stroke* OR Thrombotic Stroke* OR Acute Thrombotic Stroke* OR Lacunar Stroke* OR Lacunar Syndrome* OR Lacunar Infarction* OR Lacunar Infarct*)					
	2	TX(Computer Neural Network* OR Computer Neural Networks OR Perceptron* OR Neural Network Model* OR Connectionist Model* OR Neural Network Model* OR Neural Network* OR Computational Neural Network* OR Deep Learning OR Hierarchical Learning)					

Database (Search time)	Search	Search String
	3	TX(Diagnos* OR Diagnos* and Examination* OR
		Postmortem Diagnos* OR Antemortem Diagnos*)
	4	1 AND 2 AND 3

ouppionionia		10010				
- Reference - Year - Country	 Sample size (total) Target population Age (year) Gender Methodological quality (MQ)* 	Objective	Neural Network approach/algorithm	The main feature(s)	Main/optimal results	Implementation for Clinical Practice
(Oman et al	- 60	To investigate	Three-dimensional	- CTA-SI	Stroke detection was	The research findings
2019)		the feasibility of	convolutional neural	- Non-contrast	improved when	show the potential of
2010)	Acute ischemic	ischemic stroke	petworks (3D CNNs)	computed	cerebral bemispheric	CNNs for a rapid
2010	- Acute Ischemic	dotaction from		tomography		procise and fully
- 2019	SILORE (AIS)				comparison, CTA-SI,	precise, and rully
-		computed				
- Finland	- Age (Median, Min-	tomography		- Computed	included in the CNN	assist healthcare
	Max): Group A = 73,	angiography		tomography	analysis (sensitivity =	providers (e.g.,
	47-82, Group B =	source images		perfusion	0.93, specificity =	radiologists and
	68, 26-91	(CTA-SI) using		(CTP)	0.82, an area under	clinicians) in the
		three-			the curve (AUC) =	detection/diagnosis of
	- Gender: Male = 29,	dimensional			0.93).	AIS.
	Female = 31	convolutional				
		neural networks.				
	- MQ = 90 %					
(Nishio et al	- 238	To develop and	Two-stage deep	Computed	A board-certified	The results of the
2020)	200	evaluate an	convolutional neural	tomography	radiologist with	current study
2020)			networks (Two stage		software (DCNNs)	demonstrate that the
2020	- AIS	dotoction		(CT) inages	boo improved AIS	detrotion system
- 2020	Ass. Not explicable		DCININS)		has improved AIS	
	- Age: Not applicable	system involving		magnetic		involving a two-stage
- Japan		a two-stage		resonance	= 41.3 %, precision =	deep learning model
	- Gender: Not	deep learning		imaging (MRI)	62 %, false positive	could significantly
	applicable	model.		images in which	per one case =	improve the sensitivity of
				an MRI	0.388).	radiologists in the
	- MQ = 90 %			examination was		detection of AIS.
				performed within		However, future studies
				24 hours		with more diverse
				following the CT		sample sizes and
				scan.		feasibility studies are

Supplementary Table 2. Summary Table

- Reference - Year - Country	 Sample size (total) Target population Age (year) Gender Methodological quality (MQ)* 	Objective	Neural Network approach/algorithm	The main feature(s)	Main/optimal results	Implementation for Clinical Practice
						recommended before use in the clinical field.
(Sheng et al., 2022) - 2022 - China	 - 210 - Ischemic Penumbra (IP) in Early Acute Cerebral Infarction (ACI) - Age (Mean, SD): 60.17 ± 7.98 - Gender: Male = 145, Female = 65 - MQ = 90 % 	To investigate the effect of the local higher- order singular value decomposition denoising algorithm (GL- HOSVD) in diffusion- weighted imaging (DWI) image and evaluate the effect in examining IP of early ACI patients.	The local higher-order singular value decomposition denoising algorithm (GL-HOSVD)	DWI image	The DWI based on the GL-HOSVD denoising algorithm shows optimal specificity, accuracy, and consistency (81.25 %, 87.62 %, and 0.52, respectively) in terms of IP detection.	The results showed that the GL-HOSVD algorithm had a high sensitivity, specificity, accuracy, and consistency in IP detection are worthy of clinical application and promotion. Moreover, this study reflects that the deep learning algorithm has a good development prospect in the field of imaging, and its clinical auxiliary effect can be expected in the future.
(Wang et al., 2021) - 2021	- 345 - AIS	To identify AIS from widely available non- contrast	3D-CNNs	- NCCT - CTA - CTA + (8- second delay	The diagnostic decisions according to the Endovascular Therapy Following	This study's results show the high potential of using deep learning to assist clinicians in detecting acute stroke
- China	- Age (Mean, SD). 67 ± 2 - Gender: Male = 188, Female = 157	tomography (NCCT) and CT angiography			for Ischemic Stroke 3 (DEFUSE3) showed high accuracy when using NCCT, CTA,	lesions with widely available NCCT and CTA images.

- Reference - Year - Country	 Sample size (total) Target population Age (year) Gender Methodological quality (MQ)* 	Objective	Neural Network approach/algorithm	The main feature(s)	Main/optimal results	Implementation for Clinical Practice
	- MQ = 100 %	(CTA) using deep learning.			and CTA+ (0.90±0.04).	
(Stib & Vasquez, 2020) - 2020 - USA	 - 540 - AIS - Age (Mean, SD): Training cohort = 70.8 ± 12.9, Validation cohort = 74.4 ± 13.2, Test cohort = 69.4 ± 14.5 - Gender: Male = 387, Female = 153 - MQ = 90 % 	To develop a convolutional neural network to detect large vessel occlusion (LVO) at multiphase CTA.	Deep Convolutional Neural Networks (DCNNs)	CTA	CNNs trained to detect LVOs at multiphase CTA achieved an AUC of 0.89 and a sensitivity of 100%.	CNNs could detect the presence of LVO, and its diagnostic performance was enhanced by using delayed phases at multiphase CTA examinations. This research is an essential step in incorporating deep learning to triage LVOs in the emergency setting and can potentially shorten the time to LVO detection with ultimate improvements in patient outcomes.

- Reference - Year - Country	 Sample size (total) Target population Age (year) Gender Methodological quality (MQ)* 	Objective	Neural Network approach/algorithm	The main feature(s)	Main/optimal results	Implementation for Clinical Practice
(Shinohara et al., 2020) - 2020 - Japan	- 22 - AIS - Age (Mean, SD): 75 ± 14 - Gender: Male = 13, Female = 9 - MQ = 90 %	To develop an interactive deep learning- assisted identification of the hyperdense middle cerebral artery sign (HMCAS) on NCCT among patients with AIS.	DCNNs	NCCT	The diagnostic performance of DCNN for HMCAS show sensitivity = 82.9%, specificity = 89.7%, accuracy = 86.5%, AUC = 0.947.	DCNNs appear potentially beneficial for identifying HMCAS on NCCT in patients with AIS. However, further studies, including larger sample sizes with various populations, are recommended before testing for feasibility in the clinical setting.
(Yang et al., 2022) - 2022 - China	- 88 - AIS - Age (Range): 33– 79 - Gender: Male = 54, Female = 34 - MQ = 90 %	To discuss the application values of deep learning algorithm-based computed tomography perfusion (CTP) imaging combined with head and neck computed tomography angiography (CTA) in diagnosing early AIS.	A new deconvolution network model based on deep learning (AD- CNNnet)	- CTP - CTA	The results showed that the peak signal- to-noise ratio (PSNR) and feature similarity (FSIM) of the AD- CNNnet method were significantly higher than those of traditional methods, while the normalized mean square error (NMSE) was significantly lower than that of traditional algorithms (P < 0.05). The sensitivity of the AD-CNNnet method	The results of this study provide a reference for the combined application of artificial intelligence technology (AD-CNNnet) and clinical imaging. Before implementation in the clinical setting, more patient sample data will be collected in the later study to further explore the application value of CTP combined with CTA based on deep learning algorithm in the

- Reference - Year - Country	 Sample size (total) Target population Age (year) Gender Methodological quality (MQ)* 	Objective	Neural Network approach/algorithm	The main feature(s)	Main/optimal results	Implementation for Clinical Practice
					was 93.66%, and the specificity was 96.18%.	prognosis of patients with AIS.
(Lu et al., 2022) - 2022 - China	- 986 - AIS - Age (Median, IQR): 55, 47-65 - Gender: Male = 664, Female = 322 - MQ = 90 %	To develop a deep-learning model to identify AIS in NCCT and evaluate its diagnostic performance and capacity for assisting radiologists in decision- making.	Two-stage DCNNs	NCCT	The AUC of the deep learning model were 83.61% (sensitivity = 68.99%, specificity = 98.22%, and accuracy = 89.87%)	The developed model can help screen early AIS and save more time. The healthcare team, especially, radiologists and clinicians assisted with the model can provide more effective guidance in making patients' treatment plans in the clinic.
(Zhang et al., 2021) - 2021 - China	- 300 - IS - Age (Mean, SD): 66.53 ± 12.13 - Gender [#] : Male ~ 159, Female ~ 141 - MQ = 90 %	To apply deep learning in ischemic stroke lesion detection using MRI Images	DCNNs (Faster R-CNN + YOLOV3 + SSD)	MRI images	Three categories of deep learning object detection networks including Faster R- CNN, YOLOV3, and SSD are applied to implement automatic lesion detection with the best precision of 89.77%.	This study result shows that DCNNs can improve the intelligence level of computer-aided diagnosis of stroke and promote the development of the theory and practice of artificial intelligence in the medical field. In the future, more data on IS should be collected to increase the generalizability of result.

*Based on the Checklist for Diagnostic Test Accuracy Studies of the Joanna Briggs Institute Critical Appraisal tools. Percentage of "Yes" = The number of "yes"/ (the number of "unclear"+ the number of "no") × 100 (See table 3 in main document). #In this study, the author only reported that the proportion of males and females of the patients is about 9/8. Therefore, Male ~ 159 and Female ~ 141 are approximate numbers.

Supplementary Table 3. *The methodological quality of the included studies*

Appraisal questions/Reference	(Oman et al., 2019)	(Nishio et al., 2020)	(Sheng et al., 2022)	(Wang et al., 2021)	(Stib & Vasque z, 2020)	(Shino hara et al., 2020)	(Yang et al., 2022)	(Lu et al., 2022)	(Zhang et al., 2021)
I Patient selection									
1. Was a consecutive or random sample of patients enrolled?		+	+	+	+	+	+	+	+
2. Was a case-control design avoided?	-	-	-	+	-	-	?	-	?
3. Did the study avoid inappropriate exclusions?	+	+	+	+	+	+	+	+	+
II Index test									
4. Were the index test results interpreted without knowledge of the results of the reference standard?	+	+	+	+	+	+	+	+	+
5. If a threshold was used, was it pre-specified?		+	+	+	+	+	+	+	+
6. Is the reference standard likely to classify the target condition correctly?	+	+	+	+	+	+	+	+	+
7. Were the reference standard results interpreted without knowledge of the results of the index test?	+	+	+	+	+	+	+	+	+
8. Was there an appropriate interval between the index test and reference standard?	+	+	+	+	+	+	+	+	+
9. Did all patients receive the same reference standard?	+	+	+	+	+	+	+	+	+
10. Were all patients included in the analysis?	+	+	+	+	+	+	+	+	+
Percentage of yes* (%)	90 %	90 %	90 %	100 %	90 %	90 %	90 %	90 %	90 %

"+": yes; "-": no; "?": unclear; "\": not applicable *The number of "yes" / (the number of "unclear" + the number of "no") ×100

Reference

- Lu, J., Zhou, Y. R., Lv, W. Z., Zhu, H. Q., Tian, T., Yan, S., . . . Zhu, W. Z. (2022). Identification of early invisible acute ischemic stroke in noncontrast computed tomography using two-stage deep-learning model. *Theranostics*, *12*(12), 5564-5573. https://doi.org/10.7150/thno.74125
- Nishio, M., Koyasu, S., Noguchi, S., Kiguchi, T., Nakatsu, K., Akasaka, T., . . . Itoh, K. (2020). Automatic detection of acute ischemic stroke using non-contrast computed tomography and two-stage deep learning model. *Computer Methods and Programs in Biomedicine*, *196*, Article 105711. <u>https://doi.org/10.1016/j.cmpb.2020.105711</u>
- Oman, O., Makela, T., Salli, E., Savolainen, S., & Kangasniemi, M. (2019). 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. *European Radiology Experimental, 3*(1), Article 8. <u>https://doi.org/10.1186/s41747-019-0085-6</u>
- Sheng, H., Wang, X. L., Jiang, M. P., & Zhang, Z. S. (2022). Deep Learning-Based Diffusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Ischemic Penumbra in Early Cerebral Infarction. *Contrast Media Mol Imaging*, 2022, Article 6270700.
 - https://doi.org/10.1155/2022/6270700
- Shinohara, Y., Takahashi, N., Lee, Y., Ohmura, T., & Kinoshita, T. (2020). Development of a deep learning model to identify hyperdense MCA sign in patients with acute ischemic stroke. *Jpn J Radiol*, *38*(2), 112-117. <u>https://doi.org/10.1007/s11604-019-00894-4</u>
- Stib, M. T., & Vasquez, J. (2020). Detecting Large Vessel Occlusion at Multiphase CT Angiography by Using a Deep Convolutional Neural Network. *297*(3), 640-649. <u>https://doi.org/10.1159/000486689</u>

10.1148/radiol.2020200334

- Wang, C. Y., Shi, Z., Yang, M., Huang, L. X., Fang, W. X., Jiang, L., . . . Wang, H. (2021). Deep learning-based identification of acute ischemic core and deficit from non-contrast CT and CTA. *Journal of Cerebral Blood Flow and Metabolism*, *41*(11), 3028-3038, Article 0271678x211023660. <u>https://doi.org/10.1177/0271678x211023660</u>
- Yang, Y., Yang, J. J., Feng, J., & Wang, Y. (2022). Early Diagnosis of Acute Ischemic Stroke by Brain Computed Tomography Perfusion
 Imaging Combined with Head and Neck Computed Tomography Angiography on Deep Learning Algorithm. *Contrast Media Mol Imaging*, 2022, Article 5373585. https://doi.org/10.1155/2022/5373585
- Zhang, S. J., Xu, S. H., Tan, L. W., Wang, H. Y., & Meng, J. L. (2021). Stroke Lesion Detection and Analysis in MRI Images Based on Deep Learning. *Journal of Healthcare Engineering*, 2021, Article 5524769. <u>https://doi.org/10.1155/2021/5524769</u>