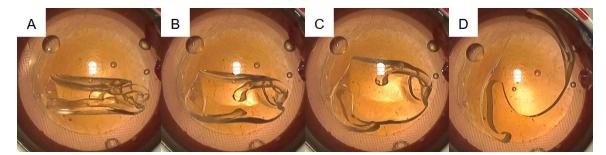
- 1 ORIGINAL RESEARCH
- 2 Rocher et al

## 3 Intraocular lens unfurling time exponentially decays


## 4 with increased solution temperature

- 5 Erick E Rocher<sup>1</sup>, Rishima Mukherjee<sup>1</sup>, James Pitingolo<sup>1</sup>, Eli Levenshus<sup>1</sup>, Gwyneth Alexander<sup>1</sup>,
- 6 Minyoung Park<sup>1</sup>, Rupsa Acharya<sup>1</sup>, Sarah Khan<sup>1</sup>, Jordan Shuff<sup>1</sup>, Andres Aguirre<sup>1</sup>, Shababa Matin<sup>2</sup>,
- 7 Keith Walter<sup>3</sup>, Allen Eghrari<sup>4</sup>
- 8
- 9 <sup>1</sup>Center for Bioengineering Innovation and Design, Department of Biomedical Engineering, Johns
- 10 Hopkins University, Baltimore, MD, United States; <sup>2</sup>Rice 360 Institute for Global Health
- 11 Technologies, Rice University, Houston, TX, United States; <sup>3</sup>Department of Ophthalmology,
- 12 Wake Forest Baptist Health, Winston-Salem, NC, United States; <sup>4</sup>Department of Ophthalmology,
- 13 Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- 14
- 15 Correspondence: Allen Eghrari
- 16 Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of
- 17 Medicine, 400 N Broadway, Smith 5013, Baltimore, MD, United States, 21231
- 18 Email <u>allen@jhmi.edu</u>
- 19

## 20 Supplementary Materials

21 22

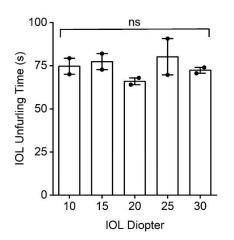
- 23
- 24
- 25



26

Figure S1 IOL unfurling stages over time. This standardization allowed for consistent and unambiguous assessment of IOL unfurling following injection. (A) IOLs initially were fully furled with both haptics stuck to the optic. (B) Often, one haptic became free of the optic prior to the other haptic. (C) Eventually, both haptics were free of the optic. (D) IOLs were determined to be fully unfurled when the optic was round and planar. IOL = intraocular lens.

32


33 **Table S1** Descriptive statistics of IOL diopter used in each study. Multifocal IOLs are +3.0D and

34 toric IOLs are 1.50-3.00 CYL.

| Environment  | Solution          | Optic Type | Mean  | SD   | Minimum | Maximum |
|--------------|-------------------|------------|-------|------|---------|---------|
| 6-well plate | BSS               | Toric      | 29.69 | 0.36 | 29.0    | 30.0    |
| 6-well plate | BSS               | Monofocal  | 23.94 | 1.25 | 23.0    | 25.5    |
| 6-well plate | BSS               | Multifocal | 25.31 | 0.36 | 25.0    | 26.0    |
| 6-well plate | Dispersive<br>OVD | Toric      | 28.88 | 0.34 | 28.5    | 29.5    |
| 6-well plate | Cohesive<br>OVD   | Toric      | 28.94 | 0.57 | 28.0    | 30.0    |
| 6-well plate | Dispersive<br>OVD | Monofocal  | 21.69 | 0.96 | 20.0    | 23.0    |
| 6-well plate | Cohesive<br>OVD   | Monofocal  | 20.88 | 1.26 | 19.5    | 23.0    |
| Plastic Eye  | Dispersive<br>OVD | Toric      | 26.67 | 0.65 | 26.0    | 27.5    |
| Plastic Eye  | Cohesive<br>OVD   | Toric      | 26.67 | 0.65 | 26.0    | 27.5    |

IOL = intraocular lens, BSS = balanced salt solution, OVD = ophthalmic viscoelastic device.

35 36



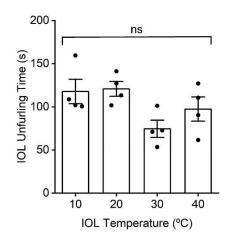

37

Figure S2 IOL unfurling time is not affected by diopter *in vitro*. Toric IOLs (AcrySof SA6AT3,
Alcon, Geneva, Switzerland) of diopters ranging from 10 to 30 were injected into a 6-well plate

40 filled with BSS. The entirety of the experiment was conducted at room temperature (22°C). IOL =

41 intraocular lens, BSS = balanced salt solution.

42



43

Figure S3 Modulating the temperature of the IOL prior to injection did not significantly affect

45 unfurling time *in vitro*. IOL diopters used in this study ranged from 24.5 to 25. IOL = intraocular

46 lens.

47

48 **Table S2** Fitted functions for each model, determined from trials ranging from 20°C to 40°C. All

49 models are two-parameter exponential functions (shown below). Significance was determined at

50 the 0.05 level by comparing the fitted function against a function of constant IOL unfurling time.

51 
$$y = ae^{bx}$$

52 y = intraocular lens unfurling time (s), x = solution temperature of respective model (°C)

| Environment  | Solution          | Optic Type | $a \pm SE$         | $b \pm SE$            | $R^2$ | Significance      |
|--------------|-------------------|------------|--------------------|-----------------------|-------|-------------------|
| 6-well plate | BSS               | Toric      | 17989 ±<br>53409   | -0.23244 ±<br>0.14756 | 0.731 | <i>P</i> < 0.001  |
| 6-well plate | BSS               | Monofocal  | 72877 ±<br>85615   | -0.29821 ±<br>0.05864 | 0.986 | <i>P</i> < 0.0001 |
| 6-well plate | BSS               | Multifocal | 30383 ±<br>38086   | -0.26368 ±<br>0.06248 | 0.967 | <i>P</i> < 0.0001 |
| 6-well plate | Dispersive<br>OVD | Toric      | 30644 ±<br>85980   | -0.23304 ±<br>0.13945 | 0.738 | <i>P</i> < 0.0001 |
| 6-well plate | Cohesive<br>OVD   | Toric      | 3879.9 ±<br>1739.5 | -0.16192 ±<br>0.02186 | 0.961 | <i>P</i> < 0.0001 |
| 6-well plate | Dispersive<br>OVD | Monofocal  | 14476 ±<br>22317   | -0.21515 ±<br>0.07643 | 0.866 | <i>P</i> < 0.0001 |
| 6-well plate | Cohesive<br>OVD   | Monofocal  | 7306.2 ±<br>4068.7 | -0.1823 ±<br>0.02739  | 0.962 | <i>P</i> < 0.0001 |

53

IOL = intraocular lens, BSS = balanced salt solution, OVD = ophthalmic viscoelastic device.