# List of Supplements

| Supplement 1. The preferred reporting items for systematic reviews and meta-         |
|--------------------------------------------------------------------------------------|
| analyses (PRISMA) 2020 checklist2                                                    |
| Supplement 2. The detailed literature search strategy for each database              |
| Supplement 3. Summary of included studies evaluating the effects of drugs or food on |
| the pharmacokinetics and pharmacodynamics of levothyroxine                           |
| Supplement 4. Quality assessment of included studies                                 |
| Supplementary Table 1. Quality assessment of included interventional studies. 21     |
| Supplementary Table 2. Quality assessment of included interventional                 |
| randomized studies                                                                   |
| Supplementary Table 3. Quality assessment of included pre-post studies27             |
| Supplementary Table 4. Quality assessment of included observational cohort           |
| studies                                                                              |
| Supplementary Table 5. Quality assessment of included case series                    |
| Supplementary Table 6. Quality assessment of included case reports                   |
| Reference                                                                            |
|                                                                                      |



### Supplement 1. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) 2020 checklist

| Section and Topic             | Item<br># | Checklist item                                                                                                                                                                                                                                                                                       | Location where item is reported |
|-------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| TITLE                         | -         |                                                                                                                                                                                                                                                                                                      | 1                               |
| Title                         | 1         | Identify the report as a systematic review.                                                                                                                                                                                                                                                          | Title page                      |
| ABSTRACT                      | -         |                                                                                                                                                                                                                                                                                                      | •<br>•                          |
| Abstract                      | 2         | See the PRISMA 2020 for Abstracts checklist.                                                                                                                                                                                                                                                         | Abstract page                   |
| INTRODUCTION                  | 1         |                                                                                                                                                                                                                                                                                                      | 1                               |
| Rationale                     | 3         | Describe the rationale for the review in the context of existing knowledge.                                                                                                                                                                                                                          | Part 1. Paragraph 1&2           |
| Objectives                    | 4         | Provide an explicit statement of the objective(s) or question(s) the review addresses.                                                                                                                                                                                                               | Part 1. Paragraph 3             |
| METHODS                       | 1         |                                                                                                                                                                                                                                                                                                      |                                 |
| Eligibility criteria          | 5         | Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.                                                                                                                                                                                          | Part 2. Paragraph 2             |
| Information sources           | 6         | Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.                                                                                            | Part 2. Paragraph 1             |
| Search strategy               | 7         | Present the full search strategies for all databases, registers and websites, including any filters and limits used.                                                                                                                                                                                 | Part 2. Paragraph 1             |
| Selection process             | 8         | Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.                     | Part 2. Paragraph 2             |
| Data collection process       | 9         | Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process. | Part 2. Paragraph 2             |
| Data items                    | 10a       | List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.                        | Part 2. Paragraph 2             |
|                               | 10b       | List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.                                                                                         | Part 2. Paragraph 2             |
| Study risk of bias assessment | 11        | Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.                                    | Part 2. Paragraph 3             |
| Effect measures               | 12        | Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.                                                                                                                                                                  | NA                              |
| Synthesis methods             | 13a       | Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).                                                                                 | Part 2. Paragraph 2             |
|                               | 13b       | Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.                                                                                                                                                | NA                              |
|                               | 13c       | Describe any methods used to tabulate or visually display results of individual studies and syntheses.                                                                                                                                                                                               | NA                              |
|                               | 13d       | Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.                                          | Part 2. Paragraph 2             |



## PRISMA 2020 Checklist

| Section and Topic             | Item<br># | Checklist item                                                                                                                                                                                                                                                                       | Location where item is reported |
|-------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                               | 13e       | Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).                                                                                                                                                 | NA                              |
|                               | 13f       | Describe any sensitivity analyses conducted to assess robustness of the synthesized results.                                                                                                                                                                                         | NA                              |
| Reporting bias assessment     | 14        | Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).                                                                                                                                                              | NA                              |
| Certainty<br>assessment       | 15        | Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.                                                                                                                                                                                | Part 2. Paragraph 3             |
| RESULTS                       | -         |                                                                                                                                                                                                                                                                                      | -                               |
| Study selection               | 16a       | Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.                                                                                         | Part 3.1 & Figure 1             |
|                               | 16b       | Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.                                                                                                                                                          | Part 3.1 & Figure 1             |
| Study<br>characteristics      | 17        | Cite each included study and present its characteristics.                                                                                                                                                                                                                            | Part 3.2-3.8 & Table 1          |
| Risk of bias in studies       | 18        | Present assessments of risk of bias for each included study.                                                                                                                                                                                                                         | Part 3.9 & Supplement table 1-5 |
| Results of individual studies | 19        | For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.                                                     | Part 3.2-3.8 & Table 1&2        |
| Results of                    | 20a       | For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.                                                                                                                                                                               | NA                              |
| syntheses                     | 20b       | Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect. | NA                              |
|                               | 20c       | Present results of all investigations of possible causes of heterogeneity among study results.                                                                                                                                                                                       | NA                              |
|                               | 20d       | Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.                                                                                                                                                                           | NA                              |
| Reporting biases              | 21        | Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.                                                                                                                                                              | NA                              |
| Certainty of<br>evidence      | 22        | Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.                                                                                                                                                                                  | Part 3.9 & Supplement table 1-5 |
| DISCUSSION                    |           |                                                                                                                                                                                                                                                                                      |                                 |
| Discussion                    | 23a       | Provide a general interpretation of the results in the context of other evidence.                                                                                                                                                                                                    | Part 5                          |
|                               | 23b       | Discuss any limitations of the evidence included in the review.                                                                                                                                                                                                                      | Part 4.2                        |
|                               | 23c       | Discuss any limitations of the review processes used.                                                                                                                                                                                                                                | NA                              |
|                               | 23d       | Discuss implications of the results for practice, policy, and future research.                                                                                                                                                                                                       | Part 5                          |
| <b>OTHER INFORMA</b>          | TION      |                                                                                                                                                                                                                                                                                      |                                 |
| Registration and protocol     | 24a       | Provide registration information for the review, including register name and registration number, or state that the review was not registered.                                                                                                                                       | Part 2. Paragraph 2             |
|                               | 24b       | Indicate where the review protocol can be accessed, or state that a protocol was not prepared.                                                                                                                                                                                       | Part 2. Paragraph 2             |
|                               | 24c       | Describe and explain any amendments to information provided at registration or in the protocol.                                                                                                                                                                                      | No                              |
| Support                       | 25        | Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.                                                                                                                                                        | Funding                         |



## PRISMA 2020 Checklist

| Section and Topic                                    | Item<br># | Checklist item                                                                                                                                                                                                                             | Location where item is reported |
|------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Competing interests                                  | 26        | Declare any competing interests of review authors.                                                                                                                                                                                         | Competing interests             |
| Availability of data,<br>code and other<br>materials | 27        | Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review. | Availability of data            |

Abbreviations: NA, not applicable

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71 For more information, visit: http://www.prisma-statement.org/

#### Supplement 2. The detailed literature search strategy for each database

Date: From the earliest accessible publication to Feb 27<sup>th</sup>, 2022.

**Databases searched:** Web of Science (WOS), PubMed, Embase, and the Cochrane Library

**Other resources:** Drugs.com, Google Scholar, UpToDate and the prescribing information of commercial formulations

**Settings:** No restriction on language, publication date or article type. The lists of references will also be screened in case of any missed articles.

#### Search sentence for each database (advanced search):

**WOS:** (TS=levothyroxine OR TS=thyroxine OR TS= L-T4 OR TS=LT4) AND (TS=malabsorption OR TS=interaction)

**PubMed:** (levothyroxine OR thyroxine OR L-T4 OR LT4) AND (malabsorption OR interaction)

**Embase:** (levothyroxine OR thyroxine OR L-T4 OR LT4) AND (malabsorption OR interaction)

**The Cochrane Library:** All text = (levothyroxine OR thyroxine OR L-T4 OR LT4) AND (malabsorption OR interaction)

| Reference                 | Country | Study type      | Participants and concomitant diseases | LT4 formulation and dose <sup>a</sup> | Interfering<br>substances | Effects <sup>b</sup>                          | Possible mechanisms                    |
|---------------------------|---------|-----------------|---------------------------------------|---------------------------------------|---------------------------|-----------------------------------------------|----------------------------------------|
| Medications               |         |                 |                                       |                                       |                           |                                               |                                        |
| Irving, 2015 <sup>1</sup> | UK      | Retrospective,  | 744 from database                     | Form NA, dose NA                      | Calcium                   | TSH were 1.39 at baseline and 1.64 mU/L after | Affecting the absorption of thyroxine  |
|                           |         | pre-post, self- |                                       | but constant                          |                           | interferants, p=0.005                         |                                        |
|                           |         | control         |                                       |                                       |                           |                                               |                                        |
| Schneyer, 1998<br>2       | USA     | Case report     | 3 hypothyroid                         | Tablet, 125-325µg/d                   | Calcium carbonate         | TSH rose to 7.3-13.3 mU/L                     | -                                      |
| Butner, 2000 <sup>3</sup> | USA     | Case report     | 1 hypothyroid after                   | Tablet, 150µg/d                       | Calcium carbonate         | TSH rose to 21.85 IU/mL                       | Chelation with calcium carbonate       |
|                           |         |                 | gastric bypass surgery                |                                       |                           |                                               |                                        |
| Singh, 2000 <sup>4</sup>  | USA     | Prospective,    | 20 hypothyroid                        | Tablet, dose NA                       | Calcium carbonate         | FT4 decreased from 1.34±0.04 to 1.22±0.05     | Binding of LT4 to calcium at low pH    |
|                           |         | pre-post, self- |                                       |                                       |                           | ng/dL, TSH increased from 1.60±0.22 to        |                                        |
|                           |         | control         |                                       |                                       |                           | 2.71±0.43 mU/L, TT4 decreased from            |                                        |
|                           |         |                 |                                       |                                       |                           | 9.21±0.46 to 8.55±0.41 µg/dL                  |                                        |
| Csako, 2001 <sup>5</sup>  | USA     | Case report     | 1 hypothyroid with                    | Form NA, 175µg/d                      | Calcium carbonate         | TSH rose to 41.4 mU/L                         | Binding of LT4 to calcium              |
|                           |         |                 | lupus erythematosus,                  |                                       |                           |                                               |                                        |
|                           |         |                 | celiac disease, after                 |                                       |                           |                                               |                                        |
|                           |         |                 | pancreaticoduodenect                  |                                       |                           |                                               |                                        |
|                           |         |                 | omy                                   |                                       |                           |                                               |                                        |
| Singh, 2001 <sup>6</sup>  | USA     | Randomized,     | 7 euthyroid                           | Tablet, 1000µg                        | Calcium carbonate         | T4-absorption dropped by 25.8%, TT4           | Adsorption of T4 to calcium            |
|                           |         | single-blind,   |                                       | once                                  |                           | increases were 7.04±0.91 vs. 4.36±0.97µg/dL   | carbonate occurred at acidic pH levels |
|                           |         | crossover       |                                       |                                       |                           | with or without calcium, respectively, TT3    |                                        |
|                           |         |                 |                                       |                                       |                           | increases were 12.82±4.35 vs. 4.93±7.12ng/dL, |                                        |
|                           |         |                 |                                       |                                       |                           | FT4 increases were 1.79±0.24 vs.              |                                        |
|                           |         |                 |                                       |                                       |                           | 1.44±0.21ng/dL                                |                                        |

### Supplement 3. Summary of included studies evaluating the effects of drugs or food on the pharmacokinetics and pharmacodynamics of levothyroxine

| Diskin, 2007 7            | USA    | Retrospective,  | 19 hypothyroid     | Tablet, 98.68 ±     | Calcium carbonate | TSH increased to $23.80 \pm 19.50 \text{ mU/L}$     | Binding of LT4 to calcium           |
|---------------------------|--------|-----------------|--------------------|---------------------|-------------------|-----------------------------------------------------|-------------------------------------|
|                           |        | pre-post, self- |                    | 45.24µg/d           |                   |                                                     |                                     |
|                           |        | control         |                    |                     |                   |                                                     |                                     |
| Mazokopakis,              | Greece | Case report     | 1 hypothyroid with | Form NA, 88 µg/d    | Calcium carbonate | FT4 decreased to 0.2 ng/dL, TSH rose to 9.8         | -                                   |
| 2008 8                    |        |                 | osteopenia         |                     |                   | mU/L                                                |                                     |
| Zamfirescu,               | USA    | Prospective,    | 8 euthyroid        | Tablet, 1000µg      | Calcium carbonate | AUC for LT4 alone was 1696±96 (SE) $\mu g\text{-}$  | Binding of LT4 to calcium           |
| 2011 9                    |        | pre-post, self- |                    | once                |                   | min/dL                                              |                                     |
|                           |        | control         |                    |                     |                   | AUC for LT4 plus calcium carbonate was              |                                     |
|                           |        |                 |                    |                     |                   | 1344±160 (SE) µg-min/dL                             |                                     |
| Morini, 2019 10           | Italy  | Retrospective,  | 50 hypothyroid     | Tablet, mean dose   | Calcium carbonate | TSH were 3.33 $\pm$ 1.93 mU/L in LT4 group          | Nonspecific adsorption (complexing) |
|                           |        | pre-post, self- |                    | of 1.43±0.24        |                   | versus $1.93 \pm 0.51$ in LT4+Calcium group         |                                     |
|                           |        | control         |                    | µg/kg/d             |                   |                                                     |                                     |
| Morini, 2019 11           | Italy  | Retrospective,  | 50 hypothyroid     | Tablet, liquid      | Calcium carbonate | TSH decreased in the liquid group $(1.23 \pm 0.49)$ | -                                   |
|                           |        | cohort          |                    | solution and        |                   | vs. $1.80 \pm 0.37$ mU/L, P < 0.01)                 |                                     |
|                           |        |                 |                    | capsule, mean dose  |                   |                                                     |                                     |
|                           |        |                 |                    | of 1.43±0.24        |                   |                                                     |                                     |
|                           |        |                 |                    | µg/kg/d             |                   |                                                     |                                     |
| Diskin, 2007 <sup>7</sup> | USA    | Retrospective,  | 35 hypothyroid     | Tablet, 95.00 $\pm$ | Calcium acetate   | No positive results                                 | -                                   |
|                           |        | pre-post, self- |                    | 83.75µg/d           |                   |                                                     |                                     |
|                           |        | control         |                    |                     |                   |                                                     |                                     |
| Zamfirescu,               | USA    | Prospective,    | 8 euthyroid        | Tablet, 1000µg      | Calcium acetate   | AUC for LT4 alone was 1696±96 (SE) µg-              | Binding of LT4 to calcium           |
| 2011 9                    |        | pre-post, self- |                    | once                |                   | min/dL                                              |                                     |
|                           |        | control         |                    |                     |                   | AUC for LT4 plus calcium acetate was                |                                     |
|                           |        |                 |                    |                     |                   | 1274±137 (SE) µg-min/dL                             |                                     |
| Zamfirescu,               | USA    | Prospective,    | 8 euthyroid        | Tablet, 1000µg      | Calcium citrate   | AUC for LT4 alone was 1696±96 (SE) µg-              | Binding of LT4 to calcium           |
| 2011 9                    |        | pre-post, self- |                    | once                |                   | min/dL                                              |                                     |
|                           |        | control         |                    |                     |                   | AUC for LT4 plus calcium citrate was                |                                     |
|                           |        |                 |                    |                     |                   | 1381±151 (SE) μg-min/dL                             |                                     |

| Benvenga, 2017              | Italy    | Prospective,    | 19 hypothyroid     | Tablet and liquid         | Calcium, iron      | TSH were 7.48 $\pm$ 5.8 mU/L in tablet group and         | Liquid formulation reduces the        |
|-----------------------------|----------|-----------------|--------------------|---------------------------|--------------------|----------------------------------------------------------|---------------------------------------|
| 12                          |          | pre-post, self- |                    | solution, mean dose       |                    | 1.95±1.3 mU/L in liquid solution group                   | binding of LT4 to sequestrants        |
|                             |          | control         |                    | of $1.9\pm0.4~\mu g/kg/d$ |                    |                                                          |                                       |
| Irving, 2015 <sup>1</sup>   | UK       | Retrospective,  | 723 from database  | Form NA, dose NA          | Iron               | TSH were 1.29 at baseline and 1.65 mU/L with             | Affecting the absorption of thyroxine |
|                             |          | pre-post, self- |                    | but constant              |                    | interferants, p<0.001                                    |                                       |
|                             |          | control         |                    |                           |                    |                                                          |                                       |
| Campbell, 1992              | Canada   | Prospective,    | 14 hypothyroid     | Tablet, dose NA           | Ferrous sulfate    | TSH rose from 1.6±0.4 to 5.4±2.8 mU/L                    | Binding of LT4 to iron, proved by in  |
| 13                          |          | pre-post, self- |                    |                           |                    |                                                          | vitro study                           |
|                             |          | control         |                    |                           |                    |                                                          |                                       |
| Shakir, 1997 <sup>14</sup>  | USA      | Case report     | 1 hypothyroid with | Tablet, 150µg/d           | Ferrous sulfate    | TSH rose to 56 mU/L                                      | Binding of LT4 to iron                |
|                             |          |                 | pregnancy          |                           |                    |                                                          |                                       |
| Leger, 1999 <sup>15</sup>   | Canada   | Case report     | 1 hypothyroid with | Form NA, 250µg/d          | Ferrous sulfate    | TSH increased to 243 mU/L, FT4 decreased to              | Binding of LT4 to iron                |
|                             |          |                 | hypertension and   |                           |                    | <0.52 pmol/L                                             |                                       |
|                             |          |                 | congestive heart   |                           |                    |                                                          |                                       |
|                             |          |                 | failure            |                           |                    |                                                          |                                       |
| Vita, 2014 16               | Italy    | Prospective,    | 24 hypothyroid     | Tablet and liquid         | PPIs               | TSH were 1.7 $\pm$ 1.0 mU/L in solution group and        | PPIs increase the gastric pH and      |
|                             |          | pre-post, self- |                    | solution, 1.5µg/kg/d      |                    | 5.4±4.3 mU/L in tablet group                             | impair tablet LT4 dissolution         |
|                             |          | control         |                    |                           |                    |                                                          |                                       |
| Irving, 2015 <sup>1</sup>   | UK       | Retrospective,  | 1491 from database | Form NA, dose NA          | PPIs               | TSH were 1.51 at baseline and 1.69 mU/L with             | Dissolution of thyroxine decreased    |
|                             |          | pre-post, self- |                    | but constant              |                    | interferants, p=0.001                                    | with an increase in pH                |
|                             |          | control         |                    |                           |                    |                                                          |                                       |
| Trifiro, 2015 <sup>17</sup> | Italy    | Retrospective,  | 3787 hypothyroid   | Form NS, Dose NA          | PPIs               | TSH levels increase at the beginning of PPI              | -                                     |
|                             |          | pre-post, self- | from database      |                           |                    | exposure                                                 |                                       |
|                             |          | control         |                    |                           |                    |                                                          |                                       |
| Ananthakrishna              | USA      | Prospective,    | 10 euthyroid       | Tablet, 600µg once        | Esomeprazole       | No positive results onT4, T3 and TSH                     | -                                     |
| n, 2008 <sup>18</sup>       |          | pre-post, self- |                    |                           |                    |                                                          |                                       |
|                             |          | control         |                    |                           |                    |                                                          |                                       |
| Yue, 2015 <sup>19</sup>     | Switzerl | Prospective,    | 32 euthyroid       | Tablet and capsule,       | Esomeprazole (PPI) | $C_{max}$ and $AUC_{0\mbox{-}12}$ decreased by 12.7% and | Soft gel capsules may be less         |
|                             | and      | pre-post, self- |                    | 600µg once                |                    | 14.8% respectively in tablet plus PPI group              | sensitive to the influence of pH      |
|                             |          | control,        |                    |                           |                    | compared to tablet alone,                                | increases than tablets                |

|                          |        | randomized,     |                      |                     |                      | $C_{max}$ and $AUC_{0\mbox{-}12}$ decreased by 16.1% and |                                        |
|--------------------------|--------|-----------------|----------------------|---------------------|----------------------|----------------------------------------------------------|----------------------------------------|
|                          |        | crossover       |                      |                     |                      | 14.8% respectively in tablet group compared to           |                                        |
|                          |        |                 |                      |                     |                      | capsule group                                            |                                        |
| Dietrich, 2006           | German | Randomized,     | 21 euthyroid         | Tablet, 4µg/kg once | Pantoprazole         | No positive results on T4 and TSH                        | -                                      |
| 20                       | у      | crossover,      |                      |                     |                      |                                                          |                                        |
|                          |        | two-arm         |                      |                     |                      |                                                          |                                        |
| Vita, 2014 <sup>21</sup> | Italy  | Case report     | 1 hypothyroid        | Tablet and softgel  | Pantoprazole (PPI)   | TSH decreased from 4.4-6.5 to 2.4 mU/L after             | Soft gel capsule showed more           |
|                          |        |                 |                      | capsule, 150µg/d    |                      | switching to capsule, and rose to 3.2-4.7 $mU/L$         | complete dissolution than the tablet   |
|                          |        |                 |                      | for tablet and      |                      | after switching back.                                    |                                        |
|                          |        |                 |                      | 125µg/d for capsule |                      |                                                          |                                        |
| Centanni, 2006           | Italy  | Retrospective,  | 10 euthyroid with    | Form NA, 1.58       | Omeprazole           | TSH level was 1.70 mU/L in patients with                 | Alkalization                           |
| 22                       |        | cohort          | multinodular goiter  | µg/kg/d             |                      | omeprazole than 0.1 mU/L in those without                |                                        |
|                          |        |                 | and gastroesophageal |                     |                      | omeprazole                                               |                                        |
|                          |        |                 | reflux disease       |                     |                      |                                                          |                                        |
| Abi-Abib, 2014           | Brazil | Prospective,    | 19 hypothyroid       | Tablet, dose NA     | Omeprazole           | No positive results on TSH                               | -                                      |
| 23                       |        | pre-post, self- |                      |                     |                      |                                                          |                                        |
|                          |        | control         |                      |                     |                      |                                                          |                                        |
| Sachmechi,               | USA    | Retrospective   | 92 hypothyroid       | Form NA, 82.8 $\pm$ | Lansoprazole         | TSH increased by $0.69\pm1.9 \text{ mU/L}$               | Increasing metabolic clearance of      |
| 2007 24                  |        | cohort, pre-    |                      | 40.3 µg/d           |                      |                                                          | LT4 (increasing the biliary clearance  |
|                          |        | post, self-     |                      |                     |                      |                                                          | of LT4 through induction of UGT        |
|                          |        | control         |                      |                     |                      |                                                          | enzymes), or reducing gastrointestinal |
|                          |        |                 |                      |                     |                      |                                                          | absorption of LT4 (reduction of        |
|                          |        |                 |                      |                     |                      |                                                          | gastric acidity)                       |
| Vita, 2017 25            | Italy  | Prospective,    | 11 hypothyroid       | Tablet and liquid   | PPIs, calcium, iron, | Mean TSH levels under tablet L-T4 were 4-fold            | Liquid formulation does not need a     |
|                          |        | pre-post, self- |                      | solution, 1.6-1.7   | sevelamer,           | higher than those under liquid L-T4                      | dissolution phase, it is refractory to |
|                          |        | control         |                      | µg/kg/d             | aluminum/magnesiu    |                                                          | sequesters, ethanol may enhance LT4    |
|                          |        |                 |                      |                     | m hydroxide and      |                                                          | absorption by increasing intestinal    |
|                          |        |                 |                      |                     | sodium alginate      |                                                          | blood flow                             |

| Benvenga, 2019           | Italy  | Prospective,    | 20 hypothyroid     | Tablet, liquid        | PPIs, calcium and | TSH in tablet, liquid solution and capsule               | Greater bioavailability of soft gel    |
|--------------------------|--------|-----------------|--------------------|-----------------------|-------------------|----------------------------------------------------------|----------------------------------------|
| 26                       |        | open-labeled,   |                    | solution and soft gel | iron supplements  | groups were 7.53±2.82, 2.74±0.98 2.70±0.79               | capsule when the intestinal absorption |
|                          |        | pre-post        |                    | capsule, dose NA      |                   | mU/L, respectively (p<0.001)                             | of LT4 is challenged by the ingestion  |
|                          |        |                 |                    |                       |                   |                                                          | of certain medications                 |
| Sperber, 1992 27         | USA    | Case report     | 1 hypothyroid      | Form NA, 150µg/d      | Aluminum          | TSH increased to 4.63 mU/L                               | Direct complexing                      |
|                          |        |                 |                    |                       | hydroxide         |                                                          |                                        |
| Liel, 1994 <sup>28</sup> | Israel | Prospective,    | 5 hypothyroid      | Form NA, dose NA      | Aluminum          | TSH rose from 2.62 $\pm$ 0.8 to 7.19 $\pm$ 1.3 mU/L      | Nonspecific adsorption (binding of     |
|                          |        | pre-post, self- |                    |                       | hydroxide         |                                                          | LT4 to aluminum hydroxide), proved     |
|                          |        | control         |                    |                       |                   |                                                          | by <i>in vitro</i> study               |
| Mersebach,               | Denmar | Case report     | 2 hypothyroid      | Tablet, 50-200µg/d    | Aluminum          | A: TSH 64.3 mU/, TT4 50 nmol/L, TT3 0.8                  | Direct complexing, proved by in vitro  |
| 1999 <sup>29</sup>       | k      |                 |                    |                       | hydroxide,        | nmol/L                                                   | study, alkalinization of gastric       |
|                          |        |                 |                    |                       | magnesium oxide   | B: TSH 48.9 mU/, TT4 33 nmol/L, TT3 1.1                  | contents, slowing of gastric emptying  |
|                          |        |                 |                    |                       |                   | nmol/L                                                   |                                        |
| Havrankova,              | Canada | Case report     | 1 hypothyroid      | Form NA, 150-         | Sucralfate        | TSH increased to 76.8 mU/L                               | Binding of LT4 to sucralfate, proved   |
| 1992 <sup>30</sup>       |        |                 |                    | 200µg/d               |                   |                                                          | by <i>in vitro</i> study               |
| Khan, 1993 31            | USA    | Retrospective,  | 10 hypothyroid     | Form NA, Dose NA      | Sucralfate        | No positive results on T4 and TSH                        | -                                      |
|                          |        | pre-post, self- |                    |                       |                   |                                                          |                                        |
|                          |        | control         |                    |                       |                   |                                                          |                                        |
| Campbell, 1994           | USA    | Randomized,     | 9 hypothyroid      | Tablet, mean dose     | Sucralfate        | T4 index decreased (7.4 $\pm$ 0.8 vs. 8.3 $\pm$ 0.6, p = | Binding of L-thyroxine by sucralfate   |
| 32                       |        | single-         |                    | of 133µg/d            |                   | 0.038), TSH increased (4.63 $\pm$ 3.20 vs. 2.69 $\pm$    |                                        |
|                          |        | blinded, two-   |                    |                       |                   | 1.93, p = 0.097)                                         |                                        |
|                          |        | arm             |                    |                       |                   |                                                          |                                        |
| Sherman, 1994            | USA    | Case report     | 1 hypothyroid with | Form NA, 150µg/d      | Sucralfate        | TSH increased to 30.5 mu/L, TT4 decreased to             | Binding of LT4 to sucralfate           |
| 33                       |        |                 | dyspepsia          |                       |                   | 57 nmol/L, T3 resin dropped to 0.21, FT4 index           |                                        |
|                          |        |                 |                    |                       |                   | dropped to 0.9                                           |                                        |
| Sherman, 1994            | USA    | Prospective,    | 5 euthyroid        | Tablet, 1000µg        | Sucralfate        | L-T4 absorption decreased by 57.1% when co-              | Binding of LT4 to sucralfate           |
| 33                       |        | pre-post, self- |                    | once                  |                   | ingested with sucralfate, $T_{max}$ was delay by 2       |                                        |
|                          |        | control         |                    |                       |                   | hours                                                    |                                        |

| Irving, 2015 <sup>1</sup> | UK     | Retrospective,  | 530 from database      | Form NA, dose NA   | H2 antagonist | No positive results on TSH                           | -                                     |
|---------------------------|--------|-----------------|------------------------|--------------------|---------------|------------------------------------------------------|---------------------------------------|
|                           |        | pre-post, self- |                        | but constant       |               |                                                      |                                       |
|                           |        | control         |                        |                    |               |                                                      |                                       |
| Jonderko, 1992            | Poland | Randomized,     | 10 hypothyroid         | Gelatin capsule,   | Cimetidine    | $AUC_{0-240min}$ were $371\pm72$ with cimetidine vs. | Complexion                            |
| 34                        |        | double-blind,   |                        | dose NA but stable |               | 467±82 with placebo                                  |                                       |
|                           |        | crossover       |                        |                    |               |                                                      |                                       |
| Jonderko, 1992            | Poland | Randomized,     | 10 hypothyroid         | Gelatin capsule,   | Ranitidine    | No positive results on AUC                           | Delaying the emptying of stomach      |
| 34                        |        | double-blind,   |                        | dose NA but stable |               |                                                      |                                       |
|                           |        | crossover       |                        |                    |               |                                                      |                                       |
| Ananthakrishna            | USA    | Prospective,    | 10 euthyroid           | Tablet, 600µg once | Famotidine    | No positive results on T4, T3 and TSH                | -                                     |
| n, 2008 <sup>18</sup>     |        | pre-post, self- |                        |                    |               |                                                      |                                       |
|                           |        | control         |                        |                    |               |                                                      |                                       |
| Irving, 2015 <sup>1</sup> | UK     | Retrospective,  | 1944 from database     | Form NA, dose NA   | Statins       | TSH were 1.65 at baseline and 1.44 mU/L after        | -                                     |
|                           |        | pre-post, self- |                        | but constant       |               | interferants, p<0.001                                |                                       |
|                           |        | control         |                        |                    |               |                                                      |                                       |
| Demke, 1989 35            | USA    | Case report     | 1 hypothyroid with     | Tablet, 125µg/d    | Lovastatin    | TSH rose to >100 mU/L                                | Inhibition of LT4 absorption,         |
|                           |        |                 | diabetes mellitus type |                    |               |                                                      | acceleration of LT4 clearance         |
|                           |        |                 | 1                      |                    |               |                                                      |                                       |
| Gormley, 1989             | USA    | Retrospective,  | 22 hypothyroid         | Form NA, dose NA   | Lovastatin    | No positive results before and during lovastatin     | -                                     |
| 36                        |        | pre-post, self- |                        |                    |               | therapy                                              |                                       |
|                           |        | control         |                        |                    |               |                                                      |                                       |
| Abbasinazari,             | Iran   | Prospective,    | 41 hypothyroid with    | Form NA, 50-150    | Simvastatin   | No positive results on TSH and FT4                   | -                                     |
| 2011 37                   |        | pre-post, self- | hypercholestloremia    | μg/d               |               |                                                      |                                       |
|                           |        | control         |                        |                    |               |                                                      |                                       |
| Kisch, 2005 38            | Israel | Case report     | 2 hypothyroid with     | Form NA, 115µg/d   | Simvastatin   | TSH rose to 28.63 and 23.9 mU/L respectively         | Excess formation of CYP3A4 in the     |
|                           |        |                 | hypercholestloremia    |                    |               |                                                      | liver by simvastatin, which           |
|                           |        |                 |                        |                    |               |                                                      | accelerates catabolism of L-thyroxine |
| Ananthakrishna            | USA    | Prospective,    | 10 euthyroid           | Tablet, 600µg once | Ezetimibe     | No positive results onT4, T3 and TSH                 | -                                     |
| n, 2008 <sup>18</sup>     |        | pre-post, self- |                        |                    |               |                                                      |                                       |
|                           |        | control         |                        |                    |               |                                                      |                                       |

| John-Kalarickal,<br>2007 <sup>39</sup> | USA   | Prospective,<br>pre-post, self-<br>control   | 7 euthyroid                                      | Tablet, 1mg once                                   | Ezetimibe                    | No positive results on the AUC of LT4                                                                                                  | Intestinal absorption of levothyroxine<br>is probably NOT mediated by the<br>cholesterol transporter                                 |
|----------------------------------------|-------|----------------------------------------------|--------------------------------------------------|----------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Harmon, 1991<br><sup>40</sup>          | USA   | Case report                                  | 1 hypothyroid<br>with coronary artery<br>disease | Tablet, 125µg/d                                    | Cholestyramine               | TSH rose from 0.17 mU/L to 20.65 mU/L                                                                                                  | Binding of LT4 to cholestyramine irreversibly                                                                                        |
| Northcutt, 1969<br>41                  | USA   | Case report                                  | 2 hypothyroid with<br>hypercholesterolemia       | Tablet, 100 μg/d of<br>LT4 or 60mg/d of<br>thyroid | Cholestyramine               | Urine I-131 decreased by >20%, while stool I-<br>131 increased by >35%                                                                 | Binding of LT4 to cholestyramine                                                                                                     |
| Weitzman, 2009<br>42                   | USA   | Prospective,<br>pre-post, self-<br>control   | 6 euthyroid                                      | Tablet, 1000µg<br>once                             | Colesevelam<br>hydrochloride | AUC were 107.5±45.8 (SE) μg-min/dL for<br>levothyroxine plus colesevelam hydrochloride,<br>and 1692±183.5 (SE) μg-min/dL for LT4 alone | Binding of LT4 to colesevelam<br>hydrochloride                                                                                       |
| Brown, 2010 <sup>43</sup>              | USA   | Prospective,<br>cohort                       | 110 euthyroid                                    | Tablet, 600µg once                                 | Colesevelam                  | AUC <sub>0-48h</sub> decreased to 78.0% compared to LT4 given alone, C <sub>max</sub> decreased to 67.1% compared to LT4 given alone   | Binding of LT4 to colesevelam                                                                                                        |
| Madhava, 2005                          | UK    | Case report                                  | 1 hypothyroid                                    | Form NA, 250 µg/d                                  | Orlistat                     | TSH rose to 73.6 mU/L                                                                                                                  | Binding to Orlistat                                                                                                                  |
| Balapatabendi,<br>2011 <sup>45</sup>   | UK    | Case report                                  | 1 hypothyroid at 13-<br>day-old                  | Crushed tablet, 13-<br>17µg/kg/day                 | Simethicone                  | TSH increased to $>100 \text{ mU/L}$ with simeticone                                                                                   | Direct complexing                                                                                                                    |
| Vigersky, 2006<br>46                   | USA   | Case series                                  | 4 hypothyroid with diabetes type 2               | Form NA,125-224<br>μg/d                            | Metformin                    | TSH decreased in four patients                                                                                                         | Changing the affinity and/or number of thyroid hormone receptors                                                                     |
| Isidro, 2007 47                        | Spain | Prospective,<br>pre-post, self-<br>control   | 8 hypothyroid with diabetes type 2               | Form NS, 1.21 ± 0.13µg/kg/d                        | Metformin                    | TSH: $3.11 \pm 0.50$ at baseline vs. $1.18 \pm 0.36$ mU/L with metformin                                                               | Reducing body weight                                                                                                                 |
| Cappelli, 2009<br>48                   | Italy | Retrospective,<br>pre-post, self-<br>control | 58 hypothyroid with diabetes mellitus            | Form NA, 89.8 ±<br>11.5 μg/d                       | Metformin                    | TSH decreased from $4.52 \pm 0.37$ to $2.93 \pm 0.48$ mU/L                                                                             | Enhancing the inhibitory modulation<br>of thyroid hormones on central TSH<br>secretion, Ameliorating the thyroid<br>function reserve |

| Al-Alusi, 2015            | USA      | Prospective,    | 26 euthyroid          | Tablet, 600µg once   | Metformin       | AUC were $3893\pm568$ and $3765\pm588~\mu g/dL\text{-}$  | Decreasing both hypothalamic TRH     |
|---------------------------|----------|-----------------|-----------------------|----------------------|-----------------|----------------------------------------------------------|--------------------------------------|
| 49                        |          | pre-post, self- |                       |                      |                 | min in pre- and post-metformin groups                    | and pituitary TSH secretion          |
|                           |          | control         |                       |                      |                 | respectively, p = 0.09                                   |                                      |
| John-Kalarickal,          | USA      | Prospective,    | 7 euthyroid           | Tablet, 1mg once     | Chromium        | T4 absorption dropped to 83%                             | Binding of LT4 to drug, drug-induced |
| 2007 39                   |          | pre-post, self- |                       |                      | picolinate      |                                                          | alterations in mucosal transport     |
|                           |          | control         |                       |                      |                 |                                                          | processes                            |
| McLean, 1993              | Australi | Case report     | 1 hypothyroid with    | Form NA, 150µg/d     | Cation-exchange | FT4 decreased to 3.5 pmol/L and TSH rose to              | Binding to Resin, proved by in vitro |
| 50                        | а        |                 | renal failure         |                      | resin (sodium   | 139.5 mU/L                                               | study                                |
|                           |          |                 |                       |                      | polystyrene     |                                                          |                                      |
|                           |          |                 |                       |                      | sulphonate)     |                                                          |                                      |
| John-Kalarickal,          | USA      | Prospective,    | 7 euthyroid           | Tablet, 1mg once     | Sevelamer       | T4 absorption dropped to 50.4%                           | Binding of LT4 to drug, drug-induced |
| 2007 39                   |          | pre-post, self- |                       |                      | hydrochloride   |                                                          | alterations in mucosal transport     |
|                           |          | control         |                       |                      |                 |                                                          | processes                            |
| Diskin, 2007 <sup>7</sup> | USA      | Retrospective,  | 13 hypothyroid        | Tablet, 173.08 $\pm$ | Sevelamer       | TSH increased to $20.29 \pm 30.83 \text{ mU/L}$          | Binding of LT4 to phosphate binder   |
|                           |          | pre-post, self- |                       | 25.94µg/d            | hydrochloride   |                                                          |                                      |
|                           |          | control         |                       |                      |                 |                                                          |                                      |
| Iovino, 2014 51           | Italy    | Case report     | 1 hypothyroid with    | Tablet, 150µg/d      | Sevelamer       | TSH rose to 650 IU/ml                                    | Binding of LT4 by phosphate binder   |
|                           |          |                 | chronic renal failure |                      | carbonate       |                                                          |                                      |
| Weitzman, 2009            | USA      | Prospective,    | 6 euthyroid           | Tablet, 1000µg       | Lanthanum       | AUC were 982.5 $\pm$ 172.3 (SE) µg-min/dL for            | Binding of LT4 to lanthanum          |
| 42                        |          | pre-post, self- |                       | once                 | carbonate       | LT4 plus Lanthanum carbonate, and                        | carbonate                            |
|                           |          | control         |                       |                      |                 | 1692±183.5 (SE) µg-min/dL for LT4 alone                  |                                      |
| Bone, 2017 52             | USA      | Randomized,     | 30 euthyroid          | Tablet, 600µg once   | Alendronate     | No positive results on $C_{max}$ and $AUC_{0\mbox{-}48}$ | -                                    |
|                           |          | open-label,     |                       |                      |                 |                                                          |                                      |
|                           |          | crossover       |                       |                      |                 |                                                          |                                      |
| Siraj, 2003 53            | USA      | Case report     | 1 hypothyroid with    | Tablet, 150µg/d      | Raloxifene      | TSH increased to 14.5 $\mu$ U/mL, serum T4 levels        | Inducing malabsorption of LT4        |
|                           |          |                 | osteopenia            |                      |                 | at 1-2 hour after ingestion were lower with              |                                      |
|                           |          |                 |                       |                      |                 | coadministration of raloxifene                           |                                      |
| Garwood, 2006             | USA      | Case report     | 1 hypothyroid with    | Tablet, 50µg/d       | Raloxifene      | TSH rose to 5.14 mU/L                                    | -                                    |
| 54                        |          |                 | osteoporosis          |                      |                 |                                                          |                                      |

| Arafah, 1994 55           | USA    | Retrospective,<br>pre-post, self- | 4 hypothyroid       | Tablet, 62.5-<br>150µg/d | Androgen       | FT4 increased while TSH decreased, T4-<br>binding globulin decreased. | Decreasing serum T4-binding globulin    |
|---------------------------|--------|-----------------------------------|---------------------|--------------------------|----------------|-----------------------------------------------------------------------|-----------------------------------------|
|                           |        | control                           |                     |                          |                |                                                                       |                                         |
| Arafah, 2001 56           | USA    | Prospective,                      | 25 hypothyroid      | Form NA, mean            | Estrogen       | FT4 decreased from 1.7 $\pm$ 0.4 ng/dL to 1.4 $\pm$ 0.3               | Increasing the serum thyroxine-         |
|                           |        | pre-post, self-                   |                     | dose of 114 $\pm$ 34µg/d |                | ng/dL,                                                                | binding globulin concentration          |
|                           |        | control                           |                     |                          |                | TSH rose from $0.9\pm1.1$ to $3.2\pm3.1$ mU/L                         |                                         |
| Irving, 2015 <sup>1</sup> | UK     | Retrospective,                    | 483 from database   | Form NA, dose NA         | Estrogen       | TSH were 1.22 at baseline and 1.37 mU/L after                         | -                                       |
|                           |        | pre-post, self-                   |                     | but constant             |                | interferants, p=0.013                                                 |                                         |
|                           |        | control                           |                     |                          |                |                                                                       |                                         |
| Guarda, 2019 57           | USA    | Case series                       | 5 hypothyroid with  | Form NA, a median        | Mifepristone   | The median increase in levothyroxine                                  | Intestinal malabsorption, decreased     |
|                           | and    |                                   | Cushing disease     | dose of 137µg /d         |                | requirement was 83.3% to maintain a normal                            | residual thyroid function or increased  |
|                           | Chile  |                                   |                     |                          |                | range of FT4                                                          | inactivation of T4 via deiodinases      |
| Irving, 2015 <sup>1</sup> | UK     | Retrospective,                    | 471 from database   | Form NA, dose NA         | Glucocorticoid | No positive results on TSH                                            | -                                       |
|                           |        | pre-post, self-                   |                     | but constant             |                |                                                                       |                                         |
|                           |        | control                           |                     |                          |                |                                                                       |                                         |
| Isley, 1987 58            | USA    | Case report                       | 1 hypothyroid with  | Form NA, dose NA         | Rifampin       | FT4 decreased by ~70%, TSH increased by                               | Increased nondeiodonative and           |
|                           |        |                                   | Turner syndrome and |                          |                | ~100%                                                                 | deiodinative hepatic metabolism,        |
|                           |        |                                   | hypertension        |                          |                |                                                                       | accelerated T4 metabolic clearance      |
| Nolan, 1999 59            | USA    | Case report                       | 1 hypothyroid with  | Form NS, 50 µg/d         | Rifampin       | TSH rose to 9.44 mU/L                                                 | Increasing the clearance of T4,         |
|                           |        |                                   | coronary artery     |                          |                |                                                                       | increasing thyroid-binding globulin     |
|                           |        |                                   | disease and sternal |                          |                |                                                                       |                                         |
|                           |        |                                   | wound infection     |                          |                |                                                                       |                                         |
| Goldberg, 2013            | Canada | Double-blind,                     | 8 euthyroid         | Tablet, 1000µg           | Rifampin       | AUC increased by 25%                                                  | Inhibited hepatic T4 uptake mediated    |
| 60                        |        | randomized,                       |                     | once                     |                |                                                                       | by liver-specific transporters relative |
|                           |        | crossover                         |                     |                          |                |                                                                       | to intestinal T4 transporters           |
|                           |        |                                   |                     |                          |                |                                                                       | Increased net intestinal absorption of  |
|                           |        |                                   |                     |                          |                |                                                                       | L-T4 through inhibition of an           |
|                           |        |                                   |                     |                          |                |                                                                       | intestinal efflux transporter such as P |
|                           |        |                                   |                     |                          |                |                                                                       | glycoprotein                            |

| Cooper, 2005 61            | Norway | Case report     | 2 hypothyroid      | Form NA, 125µg/d    | Ciprofloxacin | A: TSH rose to 44 mU/L, FT4 fell to 4 pmol/L,       | Decreasing the absorption of LT4       |
|----------------------------|--------|-----------------|--------------------|---------------------|---------------|-----------------------------------------------------|----------------------------------------|
|                            |        |                 |                    | for patient A and   |               | FT3 fell to 1.0 pmol/L.                             |                                        |
|                            |        |                 |                    | 150µg/d for patient |               | B: TSH rose to 19 mU/L, FT4 fell to 13              |                                        |
|                            |        |                 |                    | В                   |               | pmol/L.                                             |                                        |
| Goldberg, 2013             | Canada | Double-blind,   | 8 euthyroid        | Tablet, 1000µg      | Ciprofloxacin | AUC decreased by 39%                                | Inhibition of an intestinal T4 uptake  |
| 60                         |        | randomized,     |                    | once                |               |                                                     | transporter                            |
|                            |        | crossover       |                    |                     |               |                                                     |                                        |
| Berger, 2017 <sup>62</sup> | France | Case report     | 2 hypothyroid with | Form NA, 125-       | Ritonavir     | TSH decreased after the discontinuation of          | Inactivate LT4 via induction of        |
|                            |        |                 | HIV                | 165µg/d             |               | ritonavir, with presentation of hyperthyroid        | glucuronidation                        |
|                            |        |                 |                    |                     |               | symptoms                                            |                                        |
| Sahajpal, 2017             | Canada | Case report     | 1 hypothyroid with | Form NA, 75µg/d     | Ritonavir     | TSH rose to 95.11                                   | Inactivate LT4 via induction of        |
| 63                         |        |                 | HIV                |                     |               |                                                     | CYP2B6                                 |
| Lanzafame,                 | Italy  | Case report     | 1 hypothyroid with | Form NA, 0.75       | Indinavir     | TSH decreased to <0.1 mU/L, FT4 increased to        | Inhibition of glucuronosyl transferase |
| 2002 64                    |        |                 | HIV                | mg/die              |               | 57pmol/L, FT3 increased to 33pmol/L                 | activity                               |
| Touzot, 2006 65            | France | Case report     | 1 hypothyroid with | Form NA, 225µg/d    | Lopinavir,    | TSH could be suppressed until the                   | Inactivating LT4 via induction of      |
|                            |        |                 | HIV                |                     | Ritonavir,    | discontinuation of proteinase inhibitors            | glucuronidation                        |
|                            |        |                 |                    |                     | Nelfinavir    |                                                     |                                        |
| Larsen, 1970 66            | USA    | Prospective,    | 5 euthyroid        | Injection, dose NA  | Phenytoin     | T4 decreased to 80% of the pretreatment level       | Competing combination with TBG,        |
|                            |        | pre-post, self- |                    |                     |               | after the ingestion of diphenylhydantoin            | increased thyroxine elimination        |
|                            |        | control         |                    |                     |               |                                                     |                                        |
| Blackshear,                | USA    | Case report     | 1 hypothyroid      | Form NA, 150µg/d    | Phenytoin     | T4 decreased to 3.6 $\mu$ g/dL, TSH increased to 44 | Decreasing protein-binding T4,         |
| 1983 67                    |        |                 |                    |                     |               | mU/L                                                | accelerating T4 clearance              |
| Faber, 1985 <sup>68</sup>  | Denmar | Prospective,    | 6 hypothyroid      | Form NA, mean       | Phenytoin     | TSH increased by 137%, TT4 decreased by             | Reducing the intestinal absorption of  |
|                            | k      | pre-post, self- |                    | dose: 133µg/d       |               | 16%                                                 | T4 and increasing the nondeiodinative  |
|                            |        | control         |                    |                     |               |                                                     | metabolism of T4, proved by in vivo    |
|                            |        |                 |                    |                     |               |                                                     | study                                  |
| Aanderud, 1981             | Norway | Prospective,    | 9 hypothyroid      | Form NA, 100-       | Carbamazepine | T3, T4, FT3 and FT4 decreased after the intake      | Elevating the serum TBG levels         |
| 69                         |        | pre-post, self- |                    | 400µg/d             |               | of carbamazepine with significant difference        |                                        |
|                            |        | control         |                    |                     |               | (p<0.01). TBG increases after the co-ingestion      |                                        |
|                            |        |                 |                    |                     |               | (p=0.01). TSH was not altered.                      |                                        |

| Deluca, 1986 70    | Italy   | Retrospective,  | 5 hypothyroid with    | Form NA, 100-120   | Carbamazepine | TT4 decreased from 12.7 $\pm$ 1.1 to 7.5 $\pm$            | Accelerated T4 metabolic clearance,    |
|--------------------|---------|-----------------|-----------------------|--------------------|---------------|-----------------------------------------------------------|----------------------------------------|
|                    |         | pre-post, self- | epilepsy, age between | $\mu g/m^2/d$      |               | $2.3\mu g/dL$ , FT4 from $15.5 \pm 1.8$ to $10.1 \pm 1.7$ | augmented T4 to T3 conversion rate     |
|                    |         | control         | 4.5 and 11.9 years    |                    |               | pg/mL, T3:T4 ratio rose from 10.3±1.8 to                  | (increased the deiodinative            |
|                    |         |                 |                       |                    |               | 15.4±4.4 ng:µg, TSH rose from 2.8±1.4 to                  | metabolism of T4)                      |
|                    |         |                 |                       |                    |               | 10.0±8.1 mU/L                                             |                                        |
| McCowen,           | USA     | Case series     | 11 hypothyroid with   | Form NA, dose NA   | Sertraline    | TSH increased by 10-50%                                   | Accelerated T4 metabolic clearance     |
| 1997 <sup>71</sup> |         |                 | depression            |                    |               |                                                           |                                        |
| de Carvalho,       | Brazil  | Prospective,    | 28 hypothyroid with   | Form NA, dose NA   | Fluoxetine,   | No positive results on T3, T4 and TSH over the            | Induction of type 1 and type 2         |
| 2009 72            |         | pre-post, self- | major depression      |                    | Sertraline    | 90-day period                                             | deiodinases, increased conversion of   |
|                    |         | control         |                       |                    |               |                                                           | T4 to T3                               |
| Figge, 1990 73     | USA     | Case report     | 2 hypothyroid with    | Tablet, 75-100µg/d | Amiodarone    | FT3 dropped below the normal range, T3/T4                 | Impaired T4-to-T3 conversion,          |
|                    |         |                 | myocardial infarction |                    |               | ratio decreased by 35%, TSH rose to 20-30                 | blocked T3 and T4 bind to pituitary    |
|                    |         |                 |                       |                    |               | mU/L                                                      | receptors                              |
| Lumholtz, 1978     | Denmar  | Prospective,    | 7 hypothyroid         | Form NA, 100-      | Propranolol   | TT3 decreased from 86±14 to 75±14ng/100ml,                | Inhibition of the monodeiodination of  |
| 74                 | k       | pre-post, self- |                       | 250µg/d            |               | rT3 increased from $38\pm10$ to $44\pm14$ ng/100ml        | T4 to T3, inhibition of LT4 intestinal |
|                    |         | control         |                       |                    |               |                                                           | absorption                             |
| Chiu, 1998 75      | USA     | Prospective,    | 8 euthyroid           | Tablet, 600µg once | Calcium       | No positive results on T4 and TSH                         | -                                      |
|                    |         | pre-post, self- |                       |                    | polycarbophil |                                                           |                                        |
|                    |         | control         |                       |                    |               |                                                           |                                        |
| Chiu, 1998 75      | USA     | Prospective,    | 8 euthyroid           | Tablet, 600µg once | Psyllium      | No positive results on T4 and TSH                         | -                                      |
|                    |         | pre-post, self- |                       |                    | hydrophilic   |                                                           |                                        |
|                    |         | control         |                       |                    | mucilloid     |                                                           |                                        |
| Narula, 2004 76    | USA     | Case report     | 1 hypothyroid with    | Form NA, 125µg/d   | Capecitabine  | TSH elevated to 90.1 mU/L with capecitabine               | Accelerating the deiodination of T4 to |
|                    |         |                 | metastatic breast     |                    |               |                                                           | ТЗ.                                    |
|                    |         |                 | cancer                |                    |               |                                                           |                                        |
| de Groot, 2005     | Netherl | Retrospective,  | 8 hypothyroid         | Form NA, 100-      | Imatinib      | TSH increased to 384±228% of the upper limit              | Stimulation of T4 and T3 clearance     |
| 77                 | and     | pre-post, self- |                       | 225µg/d            |               |                                                           | (nondeiodination clearance)            |
|                    |         | control         |                       |                    |               |                                                           |                                        |

| Abdulrahman,              | Netherl  | Prospective,    | 21 hypothyroid after | Form NA,            | Sorafenib           | LT4 dose increased from 2.48±0.67 to                            | Increasing deiodinase type 3 activity.                  |
|---------------------------|----------|-----------------|----------------------|---------------------|---------------------|-----------------------------------------------------------------|---------------------------------------------------------|
| 2010 78                   | ands     | pre-post, self- | thyroidectomy        | 2.48±0.67µg/kg/day  |                     | 2.71±0.61µg/kg/day, T3 increased from                           |                                                         |
|                           |          | control         |                      |                     |                     | 1.90±0.33 to 1.60±0.34 nmol/L, T3/T4×100                        |                                                         |
|                           |          |                 |                      |                     |                     | decreased from 1.28±0.00 to 1.05±0.00                           |                                                         |
|                           |          |                 |                      |                     |                     | (p<0.001), T3/rT3 decreased from 2.74±0.50 to                   |                                                         |
|                           |          |                 |                      |                     |                     | 2.16±0.53, (p<0.001), T4/rT3 decreased from                     |                                                         |
|                           |          |                 |                      |                     |                     | 220±27 to 205±32 (p=0.036)                                      |                                                         |
| Schlumberger,             | Internat | Prospective,    | 91 hypothyroid with  | Form NA, dose NA    | Motesanib           | Hypothyroidism and/or elevated TSH was                          | Inhibition of thyroid peroxidase                        |
| 2009 79                   | ional    | pre-post, self- | medullary thyroid    |                     |                     | observed in 37 patients (41%)                                   |                                                         |
|                           |          | control         | cancer               |                     |                     |                                                                 |                                                         |
| Irving, 2015 <sup>1</sup> | UK       | Retrospective,  | 96 from database     | Form NA, dose NA    | Disease modifying   | No positive results on TSH                                      | -                                                       |
|                           |          | pre-post, self- |                      | but constant        | antirheumatic drugs |                                                                 |                                                         |
|                           |          | control         |                      |                     |                     |                                                                 |                                                         |
| Antúnez, 2011             | Argenti  | Prospective,    | 28 hypothyroid       | Tablet, >1.70       | Vitamin C           | TSH decreased by 69.79±22.19%                                   | $VtC \rightarrow gastric pH \downarrow \rightarrow LT4$ |
| 80                        | na       | pre-post, self- |                      | µg/kg/d             |                     |                                                                 | absorption↑                                             |
|                           |          | control         |                      |                     |                     |                                                                 |                                                         |
| Jubiz, 2014 81            | Colomb   | Prospective,    | 31 hypothyroid with  | Form NA, median     | Vitamin C           | TSH decreased from 10.5 to 4.2 mU/L, FT4                        | Increased solubility of L-T4 in the                     |
|                           | ia       | pre-post, self- | gastrointestinal     | dose of 100µg/d     |                     | rose from 1.1 to 1.3 ng/dL                                      | stomach                                                 |
|                           |          | control         | diseases             |                     |                     |                                                                 |                                                         |
| Food and beverag          | jes      |                 |                      |                     |                     |                                                                 |                                                         |
| Lamson, 2004 82           | USA      | Randomized,     | 48 euthyroid         | Tablet, 600µg once  | Food                | $C_{max}$ decreased by 40-49%, T4 $\mathrm{AUC}_{0\text{-}48h}$ | -                                                       |
|                           |          | open-label,     |                      |                     |                     | decreased by 38-40%                                             |                                                         |
|                           |          | crossover       |                      |                     |                     |                                                                 |                                                         |
| Wenzel, 1977 83           | German   | Prospective,    | 13 euthyroid         | Tablet, 100µg once  | Food (lactose and   | Lactose: LT4 absorption was 79.9±6.4%                           | -                                                       |
|                           | у        | pre-post, self- |                      |                     | corn starch)        | without food and $59.0\pm9.0\%$ with food                       |                                                         |
|                           |          | control         |                      |                     |                     | Corn starch: LT4 absorption was 78.6±8.6%                       |                                                         |
|                           |          |                 |                      |                     |                     | without food and 68.2±10.4% with food                           |                                                         |
| Dickerson, 2010           | USA      | Retrospective,  | 13 hypothyroid       | Form NA, 1.36 $\pm$ | Food (continuous    | TSH increased significantly after 8 days of                     | Binding of LT4 to enteral nutrition                     |
| 84                        |          | cohort          |                      | 0.77µg/kg/d         | enteral feeding)    | continuous enteral feeding                                      | formula                                                 |

| Pirola, 2014 85  | Italy  | Prospective,    | 20 euthyroid    | Tablet and solution, | Food (via enteral | No positive results on FT3, FT4 and TSH               | -                                       |
|------------------|--------|-----------------|-----------------|----------------------|-------------------|-------------------------------------------------------|-----------------------------------------|
|                  |        | cohort          |                 | 1.6µg/kg/d           | feeding tube)     |                                                       |                                         |
| Bach-Huynh,      | USA    | Randomized,     | 65 hypothyroid  | Form NA, mean        | Breakfast         | TSH was higher when taking with breakfast             | -                                       |
| 2009 86          |        | open-label,     |                 | dose of 128µg/d      |                   | (2.93 $\pm$ 0.45 vs 1.06 $\pm$ 0.46 mU/L), LT4 was    |                                         |
|                  |        | crossover       |                 |                      |                   | lower when taking with breakfast (1.24 $\pm$ 0.04     |                                         |
|                  |        |                 |                 |                      |                   | vs. $1.35 \pm 0.04 \text{ ng/dL}$ )                   |                                         |
| Silva Perez,     | Brazil | Randomized,     | 42 hypothyroid  | Tablet, 1.35 $\pm$   | Breakfast         | TSH were 2.89 $\pm$ 2.82 with breakfast and 1.9 $\pm$ | -                                       |
| 2013 87          |        | open-label,     |                 | 0.48µg/kg/d          |                   | 1.76 when fasting, $p = 0.028$                        |                                         |
|                  |        | crossover       |                 |                      |                   |                                                       |                                         |
| Cappelli, 2014   | Italy  | Retrospective,  | 54 hypothyroid  | Liquid solution,     | Breakfast         | No positive results                                   | -                                       |
| 88               |        | cohort          |                 | dose NA              |                   |                                                       |                                         |
| Cappelli, 2016   | Italy  | Prospective,    | 60 hypothyroid  | Tablet, capsule and  | Breakfast         | FT3: capsule 2.5 (2.4-3.1), solution 2.7 (2.4-        | The absorption of softgel capsule and   |
| 89               |        | pre-post, self- |                 | solution, dose NA    |                   | 3.3) pg/mL, p < 0.05                                  | solution is not impaired by             |
|                  |        | control         |                 |                      |                   | FT4: capsule 9.9 (8.0-13), solution 10.6 (8.6-        | concomitant food.                       |
|                  |        |                 |                 |                      |                   | 13.8) pg/mL, p < 0.0001                               |                                         |
| Cappelli, 2016   | Italy  | Randomized,     | 77 hypothyroid  | Solution, dose NA    | Breakfast         | No positive results on TSH, FT3 and FT4               | -                                       |
| 90               |        | double-blind,   |                 |                      |                   |                                                       |                                         |
|                  |        | placebo-        |                 |                      |                   |                                                       |                                         |
|                  |        | controlled,     |                 |                      |                   |                                                       |                                         |
|                  |        | crossover       |                 |                      |                   |                                                       |                                         |
| Marina, 2016 91  | Italy  | Retrospective,  | 14 hypothyroid  | Solution and tablet, | Breakfast         | No positive results observed when liquid LT4 is       | -                                       |
|                  |        | cohort          |                 | 200µg/d              |                   | ingested with food                                    |                                         |
| Morelli, 2016 92 | Italy  | Prospective,    | 61 hypothyroid  | Solution, dose NA    | Breakfast         | No positive results on TSH and quality of life        | The absorption of the liquid            |
|                  |        | crossover       |                 |                      |                   |                                                       | formulation not affected by food and    |
|                  |        |                 |                 |                      |                   |                                                       | are refractory to the altered pH of the |
|                  |        |                 |                 |                      |                   |                                                       | gastric environment                     |
| Pirola, 2018 93  | Italy  | Retrospective,  | 761 hypothyroid | Solution, dose NA    | Breakfast         | No positive results                                   | -                                       |
|                  |        | cohort          |                 |                      |                   |                                                       |                                         |
| Cappelli, 2020   | Italy  | Case report     | 1 hypothyroid   | Liquid solution,     | Lunch             | No positive results                                   | -                                       |
| 94               |        |                 |                 | 75µg/d               |                   |                                                       |                                         |

| Pinchera, 1965<br>95 | Italy  | Case report     | 1 hypothyroid infant  | T3 preparation,      | Soy formula     | Fecal excretion of I-131 on milk diet is 31.6%,      | Inhibition on intestinal absorption, |
|----------------------|--------|-----------------|-----------------------|----------------------|-----------------|------------------------------------------------------|--------------------------------------|
| 95                   |        |                 |                       | desiccated thyroid   |                 | while 51% on soy feeding.                            | intestinal hurry and changes in      |
|                      |        |                 |                       | and T4 solution, 30- |                 |                                                      | intestinal flora                     |
|                      |        |                 |                       | 60mg/d for           |                 |                                                      |                                      |
|                      |        |                 |                       | desiccated thyroid   |                 |                                                      |                                      |
| Conrad, 2004 96      | USA    | Retrospective,  | 8 hypothyroid infants | Form NA, median      | Soy formula     | TSH were 42.6 and 6.6 mU/L in soy diet group         | Malabsorption and increased fecal    |
|                      |        | cohort          |                       | dose of 3.3µg/kg/d   |                 | and non-soy diet group respectively.                 | loss of levothyroxine                |
| Fruzza, 2012 97      | USA    | Case report     | 2 hypothyroid infants | Form NA,             | Soy formula     | Patient A: T4 decreased to 2.6 $\mu$ g/dL, TSH rose  | Malabsorption and increased fecal    |
|                      |        |                 |                       | 15µg/kg/d for        |                 | to 248 mU/L                                          | loss of levothyroxine                |
|                      |        |                 |                       | patient A, 6µg/kg/d  |                 | Patient B: FT4 decrease to <0.4µg/dL, TSH            |                                      |
|                      |        |                 |                       | for patient B        |                 | rose to 248 mU/L                                     |                                      |
| Bell, 2001 98        | USA    | Case report     | 1 hypothyroid         | Form NA, dose NA     | Soy protein     | TSH rose beyond the upper limit of the normal        | NA                                   |
|                      |        |                 |                       |                      | supplement      | range                                                |                                      |
| Persiani, 2016 99    | Italy  | Randomized,     | 12 hypothyroid        | Form NA, 25–125      | Soy isoflavones | No positive results on $C_{max}$ , AUC, $T_{max}$    | -                                    |
|                      |        | crossover,      | postmenopausal        | μg/d                 |                 |                                                      |                                      |
|                      |        | open-labeled    |                       |                      |                 |                                                      |                                      |
| Liel, 1996 100       | Israel | Case series     | 13 hypothyroid        | Form NA, 50-         | Fiber           | TSH increased in every case                          | Adsorption, proved by in vitro study |
|                      |        |                 |                       | 470µg/d              |                 |                                                      |                                      |
| Benvenga, 2008       | Italy  | Case report     | 8 hypothyroid         | Form NA, 1.4-        | Coffee          | LT4 uptake decreased by 36%, T <sub>max</sub> was    | Binding to LT4 to certain substances |
| 101                  |        |                 |                       | 3.2µg/kg/d           |                 | delayed by 50 mins                                   | in coffee                            |
| Benvenga, 2008       | Italy  | Prospective,    | 8 hypothyroid and 10  | Tablet, 200µg once   | Coffee          | Average T4 increments dropped by 19-36%,             | Binding to LT4 to certain substances |
| 101                  |        | pre-post, self- | euthyroid             |                      |                 | total LT4 uptake dropped by 27-36%, $T_{\text{max}}$ | in coffee                            |
|                      |        | control         |                       |                      |                 | delayed by 43 mins                                   |                                      |
| Vita, 2013 102       | Italy  | Prospective,    | 8 hypothyroid         | Tablet and capsule,  | Coffee          | TSH decreased from 5.8-22.4 to 0.06-0.16             | -                                    |
|                      |        | pre-post, self- |                       | 1.5-2.8µg/kg/d       |                 | mU/L after switching to capsules                     |                                      |
|                      |        | control         |                       |                      |                 |                                                      |                                      |
| Wegrzyn, 2016        | USA    | Case report     | 1 hypothyroid         | Tablet, 175µg/d      | Coffee          | TSH rose to 8.270 mU/L                               | Lipid sequestration of L-T4 by coffe |

| Chon, 2018 104   | USA     | Prospective,    | 10 euthyroid          | Tablet, 1000µg     | Milk             | T4 absorption were $67.3 \pm 12.1\%$ in LT4+milk          | Nonspecific adsorption (complexing)    |
|------------------|---------|-----------------|-----------------------|--------------------|------------------|-----------------------------------------------------------|----------------------------------------|
|                  |         | pre-post, self- |                       | once               |                  | group and $73.5\pm17.0\%$ in LT4 group                    |                                        |
|                  |         | control         |                       |                    |                  |                                                           |                                        |
| Lilja, 2005 105  | Finland | Randomized,     | 10 euthyroid          | Tablet, 600µg once | Grapefruit juice | C <sub>max</sub> of T4 decreased from 66.4 nmol/L to 59.4 | Inhibition of uptake transporters in   |
|                  |         | open-label,     |                       |                    |                  | nmol/L, AUC <sub>0-4</sub> decreased by 13% (p < 0.05),   | the intestinal wall                    |
|                  |         | crossover       |                       |                    |                  | from 195 nmol/L/h to 169 nmol/L/h, LT4                    |                                        |
|                  |         |                 |                       |                    |                  | absoption decreased from $511\pm87.7$ to $457\pm$         |                                        |
|                  |         |                 |                       |                    |                  | 59.9µg                                                    |                                        |
| Deiana, 2012 106 | Italy   | Case report     | 1 hypothyroid         | Form NA, 1.6       | Papaya fruit     | TSH rose to 25 mU/L                                       | Reduction of gastric acid secretion by |
|                  |         |                 |                       | µg/kg/d            |                  |                                                           | papain, binding of LT4 to fibers in    |
|                  |         |                 |                       |                    |                  |                                                           | papaya                                 |
| Mahapatro,       | India   | Case report     | 1 hypothyroid at two- | Form NA, 50 µg/d   | Dentifrice       | TSH rose to 42 mU/L                                       | Binding of LT4 to some substances in   |
| 2019 107         |         |                 | year-old              |                    |                  |                                                           | toothpaste                             |

<sup>a</sup> The initial doses before co-administration are documented here. Some patients had dose adjustment after the therapy of interfering drugs. Although the LT4 formulations in many articles are not reported, we could assume with reason that tablets are the predominant formulations, since liquid solution and capsules were firstly introduced to Italian market in 2011.

<sup>b</sup> Only the results of significant difference or exceeding the normal ranges are reported here. The normal range of TSH in most studies is defined as 0.5-4.5 mU/L. Values are present as mean  $\pm$  standard deviation. Abbreviation: NA, not available, C<sub>max</sub>, maximum serum concentration, T<sub>max</sub>, amount of time at peak serum concentration, AUC, area under the curve (of pharmacokinetic chart), PPI, proton pump inhibitor, SE, standard error, HIV, human immunodeficiency virus

## Supplement 4. Quality assessment of included studies

| Reference                       | Study type                                                              | Interferants          | Q | Q      | Q | Q | Q | Q | Q | Q      | Q | Q10 | Q11 | Q12 | Q13 | Q14 | Ratin |
|---------------------------------|-------------------------------------------------------------------------|-----------------------|---|--------|---|---|---|---|---|--------|---|-----|-----|-----|-----|-----|-------|
|                                 |                                                                         |                       | 1 | 2      | 3 | 4 | 5 | 6 | 7 | 8      | 9 |     |     |     |     |     | g     |
| Singh, 2001<br>6                | Randomized,<br>single-blind,<br>crossover                               | Calcium<br>carbonate  | Y | Y      | N | Y | N | Y | Y | N<br>A | Y | Y   | Y   | NR  | Y   | Y   | Good  |
| Yue, 2015                       | Prospective,<br>pre-post, self-<br>control,<br>randomized,<br>crossover | Esomeprazole<br>(PPI) | Y | N<br>R | N | N | N | Y | Y | Y      | Y | Y   | Y   | NR  | Y   | Y   | Fair  |
| Dietrich,<br>2006 <sup>20</sup> | Randomized,<br>crossover, two-<br>arm                                   | Pantoprazole          | Y | Y      | N | N | N | Y | Y | Y      | Y | Y   | Y   | NR  | Y   | Y   | Fair  |
| Campbell,<br>1994 <sup>32</sup> | Randomized,<br>single-blinded,<br>two-arm                               | Sucralfate            | Y | N<br>R | Y | Y | Y | Y | Y | Y      | Y | Y   | Y   | NR  | Y   | Y   | Good  |
| Jonderko,<br>1992 <sup>34</sup> | Randomized,<br>double-blind,<br>crossover                               | Cimetidine            | Y | N<br>R | Y | Y | Y | Y | Y | Y      | Y | Y   | Y   | NR  | Y   | Y   | Good  |
| Jonderko,<br>1992 <sup>34</sup> | Randomized,<br>double-blind,<br>crossover                               | Ranitidine            | Y | N<br>R | Y | Y | Y | Y | Y | Y      | Y | Y   | Y   | NR  | Y   | Y   | Good  |

Supplementary Table 1. Quality assessment of included interventional studies.

| Bone, 2017 52                         | Randomized,<br>open-label,<br>crossover                              | Alendronate     | Y | N<br>R | N | N | N | Y | Y | Y | Y | Y | Y | NR | Y | Y | Fair |
|---------------------------------------|----------------------------------------------------------------------|-----------------|---|--------|---|---|---|---|---|---|---|---|---|----|---|---|------|
| Goldberg, 2013 <sup>60</sup>          | Double-blind,<br>randomized,<br>crossover                            | Rifampin        | Y | N<br>R | Y | Y | Y | Y | Y | Y | Y | Y | Y | NR | Y | Y | Good |
| Goldberg, 2013 <sup>60</sup>          | Double-blind,<br>randomized,<br>crossover                            | Ciprofloxacin   | Y | N<br>R | Y | Y | Y | Y | Y | Y | Y | Y | Y | NR | Y | Y | Good |
| Lamson,<br>2004 <sup>82</sup>         | Randomized,<br>open-label,<br>crossover                              | Food            | Y | N<br>R | N | N | N | Y | Y | Y | Y | Y | Y | NR | Y | Y | Fair |
| Bach-<br>Huynh,<br>2009 <sup>86</sup> | Randomized,<br>open-label,<br>crossover                              | Breakfast       | Y | N<br>R | N | N | N | Y | Y | Y | Y | Y | Y | NR | Y | Y | Fair |
| Silva Perez,<br>2013 <sup>87</sup>    | Randomized,<br>open-label,<br>crossover                              | Breakfast       | Y | N<br>R | N | N | N | Y | Y | Y | Y | Y | Y | NR | Y | Y | Fair |
| Cappelli,<br>2016 <sup>90</sup>       | Randomized,<br>double-blind,<br>placebo-<br>controlled,<br>crossover | Breakfast       | Y | N<br>R | Y | Y | Y | Y | Y | Y | Y | Y | Y | NR | Y | Y | Good |
| Persiani,<br>2016 99                  | Randomized,<br>crossover,<br>open-labeled                            | Soy isoflavones | Y | Y      | N | N | N | Y | Y | Y | Y | Y | Y | NR | Y | Y | Fair |

| Lilja, 2005 | Randomized, | Grapefruit juice | Y | Ν | Ν | Ν | N | Y | Y | Y | Y | Y | Y | NR | Y | Y | Fair |
|-------------|-------------|------------------|---|---|---|---|---|---|---|---|---|---|---|----|---|---|------|
| 105         | open-label, |                  |   | R |   |   |   |   |   |   |   |   |   |    |   |   |      |
|             | crossover   |                  |   |   |   |   |   |   |   |   |   |   |   |    |   |   |      |

Abbreviations: Y, yes; N, no; NA, not applicable; NR, not reported

Questions of NHLBI Quality Assessment of Controlled Intervention Studies:

1. Was the study described as randomized, a randomized trial, a randomized clinical trial, or an RCT?

2. Was the method of randomization adequate (i.e., use of randomly generated assignment)?

3. Was the treatment allocation concealed (so that assignments could not be predicted)?

4. Were study participants and providers blinded to treatment group assignment?

5. Were the people assessing the outcomes blinded to the participants' group assignments?

6. Were the groups similar at baseline on important characteristics that could affect outcomes (e.g., demographics, risk factors, co-morbid conditions)?

7. Was the overall drop-out rate from the study at endpoint 20% or lower of the number allocated to treatment?

8. Was the differential drop-out rate (between treatment groups) at endpoint 15 percentage points or lower?

9. Was there high adherence to the intervention protocols for each treatment group?

10. Were other interventions avoided or similar in the groups (e.g., similar background treatments)?

11. Were outcomes assessed using valid and reliable measures, implemented consistently across all study participants?

12. Did the authors report that the sample size was sufficiently large to be able to detect a difference in the main outcome between groups with at least 80% power?

13. Were outcomes reported or subgroups analyzed prespecified (i.e., identified before analyses were conducted)?

14. Were all randomized participants analyzed in the group to which they were originally assigned, i.e., did they use an intention-to-treat analysis?

| Reference                       | Study type                                                              | Interferants          | D1/1a         | DS             | D2            | D3       | D4       | D5            |
|---------------------------------|-------------------------------------------------------------------------|-----------------------|---------------|----------------|---------------|----------|----------|---------------|
| Singh, 2001<br>6                | Randomized,<br>single-blind,<br>crossover                               | Calcium<br>carbonate  | Low risk      | Low risk       | Low risk      | Low risk | Low risk | Some concerns |
| Yue, 2015                       | Prospective,<br>pre-post, self-<br>control,<br>randomized,<br>crossover | Esomeprazole<br>(PPI) | Some concerns | Some concerns  | Low risk      | Low risk | Low risk | Some concerns |
| Dietrich,<br>2006 <sup>20</sup> | Randomized,<br>crossover, two-<br>arm                                   | Pantoprazole          | Low risk      | Low risk       | High risk     | Low risk | Low risk | Some concerns |
| Campbell, 1994 <sup>32</sup>    | Randomized,<br>single-blinded,<br>two-arm                               | Sucralfate            | Low risk      | Not applicable | Low risk      | Low risk | Low risk | Some concerns |
| Jonderko,<br>1992 <sup>34</sup> | Randomized,<br>double-blind,<br>crossover                               | Cimetidine            | Low risk      | Some concerns  | Low risk      | Low risk | Low risk | Some concerns |
| Jonderko,<br>1992 <sup>34</sup> | Randomized,<br>double-blind,<br>crossover                               | Ranitidine            | Low risk      | Some concerns  | Low risk      | Low risk | Low risk | Some concerns |
| Bone, 2017<br>52                | Randomized,<br>open-label,<br>crossover                                 | Alendronate           | Low risk      | Low risk       | Some concerns | Low risk | Low risk | Some concerns |

Supplementary Table 2. Quality assessment of included interventional randomized studies.

| Goldberg, 2013 <sup>60</sup>          | Double-blind,<br>randomized,<br>crossover                            | Rifampin            | Low risk | Low risk      | Some concerns | Low risk | Low risk | Some concerns |
|---------------------------------------|----------------------------------------------------------------------|---------------------|----------|---------------|---------------|----------|----------|---------------|
| Goldberg, 2013 <sup>60</sup>          | Double-blind,<br>randomized,<br>crossover                            | Ciprofloxacin       | Low risk | Low risk      | Some concerns | Low risk | Low risk | Some concerns |
| Lamson,<br>2004 <sup>82</sup>         | Randomized,<br>open-label,<br>crossover                              | Food                | Low risk | Some concerns | High risk     | Low risk | Low risk | Some concerns |
| Bach-<br>Huynh,<br>2009 <sup>86</sup> | Randomized,<br>open-label,<br>crossover                              | Breakfast           | Low risk | Low risk      | Low risk      | Low risk | Low risk | Some concerns |
| Silva Perez,<br>2013 <sup>87</sup>    | Randomized,<br>open-label,<br>crossover                              | Breakfast           | Low risk | Low risk      | Some concerns | Low risk | Low risk | Some concerns |
| Cappelli,<br>2016 <sup>90</sup>       | Randomized,<br>double-blind,<br>placebo-<br>controlled,<br>crossover | Breakfast           | Low risk | Low risk      | Low risk      | Low risk | Low risk | Low risk      |
| Persiani,<br>2016 <sup>99</sup>       | Randomized,<br>crossover,<br>open-labeled                            | Soy<br>isoflavones  | Low risk | High risk     | Some concerns | Low risk | Low risk | Some concerns |
| Lilja, 2005<br><sup>105</sup>         | Randomized,<br>open-label,<br>crossover                              | Grapefruit<br>juice | Low risk | Low risk      | High risk     | Low risk | Low risk | Some concerns |

These 15 randomized clinical trials were assessed with the Revised Cochrane risk-of-bias tool for randomized crossover trials (RoB 2) <sup>108</sup>.

#### Domains:

1/1a: Risk of bias arising from the randomization process

S: Risk of bias arising from period and carryover effects

2: Risk of bias due to deviations from the intended interventions

3: Risk of bias due to missing outcome data

4: Risk of bias in measurement of the outcome

5: Risk of bias in selection of the reported result

| Reference                        | Study type                                 | Interferants         | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q11 | Q12 | Ratin<br>g |
|----------------------------------|--------------------------------------------|----------------------|----|----|----|----|----|----|----|----|----|-----|-----|-----|------------|
| Singh, 2000<br>4                 | Prospective,<br>pre-post, self-<br>control | Calcium<br>carbonate | Y  | Y  | Y  | N  | NR | Y  | Y  | N  | Y  | Y   | Y   | NA  | Good       |
| Zamfirescu,<br>2011 <sup>9</sup> | Prospective,<br>pre-post, self-<br>control | Calcium<br>carbonate | Y  | Y  | Ν  | N  | NR | Y  | Y  | Ν  | Y  | Y   | N   | NA  | Fair       |
| Zamfirescu,<br>2011 <sup>9</sup> | Prospective,<br>pre-post, self-<br>control | Calcium acetate      | Y  | Y  | Ν  | N  | NR | Y  | Y  | N  | Y  | Y   | N   | NA  | Fair       |
| Zamfirescu,<br>2011 <sup>9</sup> | Prospective,<br>pre-post, self-<br>control | Calcium citrate      | Y  | Y  | N  | N  | NR | Y  | Y  | N  | Y  | Y   | N   | NA  | Fair       |
| Benvenga,<br>2017 <sup>12</sup>  | Prospective,<br>pre-post, self-<br>control | Calcium, iron        | Y  | Y  | Y  | N  | NR | Y  | Y  | N  | Y  | Y   | Y   | NA  | Good       |
| Campbell, 1992 <sup>13</sup>     | Prospective,<br>pre-post, self-<br>control | Ferrous sulfate      | Y  | Y  | Y  | N  | NR | Y  | Y  | N  | Y  | Y   | Y   | NA  | Good       |
| Vita, 2014<br>16                 | Prospective,<br>pre-post, self-<br>control | PPIs                 | Y  | Y  | Y  | N  | NR | N  | Y  | N  | Y  | Y   | Y   | NA  | Fair       |
| Ananthakris<br>hnan, 2008        | Prospective,<br>pre-post, self-<br>control | Esomeprazole         | Y  | Y  | N  | N  | NR | Y  | Y  | N  | Y  | Y   | N   | NA  | Fair       |

Supplementary Table 3. Quality assessment of included pre-post studies.

| Abi-Abib,<br>2014 <sup>23</sup>      | Prospective,<br>pre-post, self-<br>control | Omeprazole                                                                                       | Y | Y | Y | N | NR | Y | Y | N | Y | Y | Y | NA | Good |
|--------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------|---|---|---|---|----|---|---|---|---|---|---|----|------|
| Vita, 2017<br>25                     | Prospective,<br>pre-post, self-<br>control | PPIs, calcium,<br>iron, sevelamer,<br>aluminum/magne<br>sium hydroxide<br>and sodium<br>alginate | Y | Y | Y | N | NR | N | Y | N | Y | Y | Y | NA | Fair |
| Benvenga,<br>2019 <sup>26</sup>      | Prospective,<br>open-labeled,<br>pre-post  | PPIs, calcium and iron supplements                                                               | Y | Y | Y | N | NR | N | Y | N | Y | Y | Y | NA | Fair |
| Liel, 1994<br>28                     | Prospective,<br>pre-post, self-<br>control | Aluminum<br>hydroxide                                                                            | Y | Y | Y | N | NR | Y | Y | N | Y | Y | N | NA | Fair |
| Sherman,<br>1994 <sup>33</sup>       | Prospective,<br>pre-post, self-<br>control | Sucralfate                                                                                       | Y | Y | N | N | NR | Y | Y | N | Y | Y | N | NA | Fair |
| Ananthakris<br>hnan, 2008            | Prospective,<br>pre-post, self-<br>control | Famotidine                                                                                       | Y | Y | N | N | NR | Y | Y | N | Y | Y | N | NA | Fair |
| Abbasinaza<br>ri, 2011 <sup>37</sup> | Prospective,<br>pre-post, self-<br>control | Simvastatin                                                                                      | Y | Y | Y | Y | NR | Y | Y | N | Y | Y | N | NA | Good |
| Ananthakris<br>hnan, 2008            | Prospective,<br>pre-post, self-<br>control | Ezetimibe                                                                                        | Y | Y | N | N | NR | Y | Y | N | Y | Y | N | NA | Fair |

| John-<br>Kalarickal,                       | Prospective,<br>pre-post, self-            | Ezetimibe                    | Y | Y | N | N | NR | Y | Y | N | Y  | Y | Ν | NA | Fair |
|--------------------------------------------|--------------------------------------------|------------------------------|---|---|---|---|----|---|---|---|----|---|---|----|------|
| 2007 <sup>39</sup>                         | control                                    |                              |   |   |   |   |    |   |   |   |    |   |   |    |      |
| Weitzman,<br>2009 <sup>42</sup>            | Prospective,<br>pre-post, self-<br>control | Colesevelam<br>hydrochloride | Y | Y | N | N | NR | Y | Y | N | Y  | Y | N | NA | Fair |
| Isidro, 2007<br>47                         | Prospective,<br>pre-post, self-<br>control | Metformin                    | Y | N | Y | N | NR | N | Y | N | NR | Y | N | NA | Poor |
| Al-Alusi,<br>2015 <sup>49</sup>            | Prospective,<br>pre-post, self-<br>control | Metformin                    | Y | Y | N | N | NR | Y | Y | N | Y  | Y | N | NA | Fair |
| John-<br>Kalarickal,<br>2007 <sup>39</sup> | Prospective,<br>pre-post, self-<br>control | Chromium<br>picolinate       | Y | Y | N | N | NR | Y | Y | N | Y  | Y | N | NA | Fair |
| John-<br>Kalarickal,<br>2007 <sup>39</sup> | Prospective,<br>pre-post, self-<br>control | Sevelamer<br>hydrochloride   | Y | Y | N | N | NR | Y | Y | N | Y  | Y | N | NA | Fair |
| Weitzman,<br>2009 <sup>42</sup>            | Prospective,<br>pre-post, self-<br>control | Lanthanum<br>carbonate       | Y | Y | N | N | NR | Y | Y | N | Y  | Y | N | NA | Fair |
| Arafah,<br>2001 <sup>56</sup>              | Prospective,<br>pre-post, self-<br>control | Estrogen                     | Y | Y | Y | N | NR | Y | Y | N | Y  | Y | Y | NA | Good |
| Larsen,<br>1970 <sup>66</sup>              | Prospective,<br>pre-post, self-<br>control | Phenytoin                    | Y | Y | N | N | NR | Y | Y | N | Y  | Y | Y | NA | Fair |

| Faber, 1985<br>68                     | Prospective,<br>pre-post, self-<br>control | Phenytoin                            | Y | Y | Y | N | NR | Y | Y | N | Y | Y | N  | NA | Fair |
|---------------------------------------|--------------------------------------------|--------------------------------------|---|---|---|---|----|---|---|---|---|---|----|----|------|
| Aanderud,<br>1981 <sup>69</sup>       | Prospective,<br>pre-post, self-<br>control | Carbamazepine                        | Y | Y | Y | N | NR | Y | Y | N | Y | Y | N  | NA | Fair |
| de<br>Carvalho,<br>2009 <sup>72</sup> | Prospective,<br>pre-post, self-<br>control | Fluoxetine,<br>Sertraline            | Y | Y | Y | N | NR | Y | Y | N | Y | Y | N  | NA | Fair |
| Lumholtz,<br>1978 <sup>74</sup>       | Prospective,<br>pre-post, self-<br>control | Propranolol                          | Y | Y | Y | N | NR | Y | Y | N | Y | Y | N  | NA | Fair |
| Chiu, 1998<br><sup>75</sup>           | Prospective,<br>pre-post, self-<br>control | Calcium<br>polycarbophil             | Y | Y | N | N | NR | Y | Y | N | Y | Y | N  | NA | Fair |
| Chiu, 1998<br><sup>75</sup>           | Prospective,<br>pre-post, self-<br>control | Psyllium<br>hydrophilic<br>mucilloid | Y | Y | N | N | NR | Y | Y | N | Y | Y | N  | NA | Fair |
| Abdulrahm<br>an, 2010 <sup>78</sup>   | Prospective,<br>pre-post, self-<br>control | Sorafenib                            | Y | Y | Y | N | NR | Y | Y | Y | N | Y | Y  | NA | Fair |
| Schlumberg<br>er, 2009 <sup>79</sup>  | Prospective,<br>pre-post, self-<br>control | Motesanib                            | N | Y | Y | N | NR | Y | N | Y | Y | Y | NR | NA | Poor |
| Antúnez,<br>2011 <sup>80</sup>        | Prospective,<br>pre-post, self-<br>control | Vitamin C                            | Y | Y | Y | N | NR | Y | Y | N | Y | Y | N  | NA | Fair |

| Jubiz, 2014<br><sup>81</sup>     | Prospective,<br>pre-post, self-<br>control   | Vitamin C                      | Y | Y | Y | N | NR | Y | Y | N | Y  | Y | N  | NA | Fair |
|----------------------------------|----------------------------------------------|--------------------------------|---|---|---|---|----|---|---|---|----|---|----|----|------|
| Wenzel,<br>1977 <sup>83</sup>    | Prospective,<br>pre-post, self-<br>control   | Food (lactose and corn starch) | Y | Y | N | N | NR | Y | Y | N | Y  | Y | N  | NA | Fair |
| Cappelli,<br>2016 <sup>89</sup>  | Prospective,<br>pre-post, self-<br>control   | Breakfast                      | Y | Y | Y | Y | NR | Y | Y | N | Y  | Y | Y  | NA | Good |
| Benvenga,<br>2008 <sup>101</sup> | Prospective,<br>pre-post, self-<br>control   | Coffee                         | Y | Y | N | N | NR | Y | Y | N | Y  | Y | N  | NA | Fair |
| Vita, 2013<br>102                | Prospective,<br>pre-post, self-<br>control   | Coffee                         | Y | Y | Y | N | NR | Y | Y | N | Y  | Y | N  | NA | Fair |
| Chon, 2018<br>104                | Prospective,<br>pre-post, self-<br>control   | Milk                           | Y | Y | N | N | NR | Y | Y | N | Y  | Y | N  | NA | Fair |
| Irving, 2015                     | Retrospective,<br>pre-post, self-<br>control | Calcium                        | Y | Y | Y | Y | NR | N | N | N | NA | Y | NR | NA | Fair |
| Diskin,<br>2007 <sup>7</sup>     | Retrospective,<br>pre-post, self-<br>control | Calcium<br>carbonate           | Y | Y | Y | Y | NR | N | N | N | NA | Y | NR | NA | Fair |
| Morini,<br>2019 <sup>10</sup>    | Retrospective,<br>pre-post, self-<br>control | Calcium<br>carbonate           | Y | Y | Y | Y | NR | N | N | N | NA | Y | N  | NA | Fair |

| Diskin,<br>2007 <sup>7</sup>     | Retrospective,<br>pre-post, self-<br>control            | Calcium acetate | Y | Y | Y | Y | NR | N | N | N | NA | Y | NR | NA | Fair |
|----------------------------------|---------------------------------------------------------|-----------------|---|---|---|---|----|---|---|---|----|---|----|----|------|
| Irving, 2015                     | Retrospective,<br>pre-post, self-<br>control            | Iron            | Y | Y | Y | Y | NR | N | N | N | NA | Y | NR | NA | Fair |
| Irving, 2015                     | Retrospective,<br>pre-post, self-<br>control            | PPIs            | Y | Y | Y | Y | NR | N | N | N | NA | Y | NR | NA | Fair |
| Trifiro,<br>2015 <sup>17</sup>   | Retrospective,<br>pre-post, self-<br>control            | PPIs            | Y | Y | Y | Y | NR | N | N | N | NA | Y | NR | NA | Fair |
| Sachmechi,<br>2007 <sup>24</sup> | Retrospective<br>cohort, pre-<br>post, self-<br>control | Lansoprazole    | Y | Y | Y | Y | NR | N | N | N | NA | Y | NR | NA | Fair |
| Khan, 1993<br>31                 | Retrospective,<br>pre-post, self-<br>control            | Sucralfate      | Y | N | Y | N | NR | N | N | N | NA | Y | N  | NA | Poor |
| Irving, 2015                     | Retrospective,<br>pre-post, self-<br>control            | H2 antagonist   | Y | Y | Y | Y | NR | N | N | N | NA | Y | NR | NA | Fair |
| Irving, 2015                     | Retrospective,<br>pre-post, self-<br>control            | Statins         | Y | Y | Y | Y | NR | N | N | N | NA | Y | NR | NA | Fair |
| Gormley, 1989 <sup>36</sup>      | Retrospective,<br>pre-post, self-<br>control            | Lovastatin      | Y | N | Y | N | NR | N | N | N | NA | Y | N  | NA | Poor |

| Cappelli,<br>2009 <sup>48</sup> | Retrospective,<br>pre-post, self-<br>control | Metformin                                      | Y | Y | Y | N | NR | N | N | N | NA | Y | N  | NA | Fair |
|---------------------------------|----------------------------------------------|------------------------------------------------|---|---|---|---|----|---|---|---|----|---|----|----|------|
| Diskin,<br>2007 <sup>7</sup>    | Retrospective,<br>pre-post, self-<br>control | Sevelamer<br>hydrochloride                     | Y | Y | Y | Y | NR | N | N | N | NA | Y | NR | NA | Fair |
| Arafah,<br>1994 <sup>55</sup>   | Retrospective,<br>pre-post, self-<br>control | Androgen                                       | Y | Y | Y | N | NR | N | N | N | NA | Y | N  | NA | Poor |
| Irving, 2015                    | Retrospective,<br>pre-post, self-<br>control | Estrogen                                       | Y | Y | Y | Y | NR | N | N | N | NA | Y | NR | NA | Fair |
| Irving, 2015                    | Retrospective,<br>pre-post, self-<br>control | Glucocorticoid                                 | Y | Y | Y | Y | NR | N | N | N | NA | Y | NR | NA | Fair |
| Deluca,<br>1986 <sup>70</sup>   | Retrospective,<br>pre-post, self-<br>control | Carbamazepine                                  | Y | Y | Y | Y | NR | N | N | N | NA | Y | N  | NA | Fair |
| de Groot,<br>2005 <sup>77</sup> | Retrospective,<br>pre-post, self-<br>control | Imatinib                                       | Y | Y | Y | Y | NR | N | N | N | NA | Y | N  | NA | Fair |
| Irving, 2015                    | Retrospective,<br>pre-post, self-<br>control | Disease<br>modifying<br>antirheumatic<br>drugs | Y | Y | Y | Y | NR | N | N | N | NA | Y | NR | NA | Fair |

Abbreviations: Y, yes; N, no; NA, not applicable; NR, not reported

Questions of NHLBI Quality Assessment Tool for Before-After (Pre-Post) Studies With No Control Group:

1. Was the study question or objective clearly stated?

2. Were eligibility/selection criteria for the study population prespecified and clearly described?

3. Were the participants in the study representative of those who would be eligible for the test/service/intervention in the general or clinical population of interest?

4. Were all eligible participants that met the prespecified entry criteria enrolled?

5. Was the sample size sufficiently large to provide confidence in the findings?

6. Was the test/service/intervention clearly described and delivered consistently across the study population?

7. Were the outcome measures prespecified, clearly defined, valid, reliable, and assessed consistently across all study participants?

8. Were the people assessing the outcomes blinded to the participants' exposures/interventions?

9. Was the loss to follow-up after baseline 20% or less? Were those lost to follow-up accounted for in the analysis?

10. Did the statistical methods examine changes in outcome measures from before to after the intervention? Were statistical tests done that provided p values for the pre-to-post changes?

11. Were outcome measures of interest taken multiple times before the intervention and multiple times after the intervention (i.e., did they use an interrupted time-series design)?

12. If the intervention was conducted at a group level (e.g., a whole hospital, a community, etc.) did the statistical analysis take into account the use of individual-level data to determine effects at the group level?

| Reference                        | Study type                           | Interferants                         | Q | Q | Q | Q      | Q | Q | Q | Q | Q9 | Q10 | Q11 | Q12 | Q13 | Q14 | Ratin |
|----------------------------------|--------------------------------------|--------------------------------------|---|---|---|--------|---|---|---|---|----|-----|-----|-----|-----|-----|-------|
|                                  |                                      |                                      | 1 | 2 | 3 | 4      | 5 | 6 | 7 | 8 |    |     |     |     |     |     | g     |
| Brown,<br>2010 <sup>43</sup>     | Prospective,<br>cohort               | Colesevelam                          | Y | Ν | Ν | N<br>R | Ν | Y | Y | Y | Y  | NA  | Y   | Y   | Ν   | NR  | Fair  |
| Pirola, 2014<br>85               | Prospective,<br>cohort               | Food (via enteral feeding tube)      | Y | Y | N | Y      | N | Y | Y | N | Y  | NA  | Y   | Y   | Y   | Y   | Good  |
| Morelli,<br>2016 <sup>92</sup>   | Prospective,<br>cohort,<br>crossover | Breakfast                            | Y | Y | N | Y      | N | Y | Y | N | Y  | Y   | Y   | Y   | Y   | Y   | Good  |
| Morini,<br>2019 <sup>11</sup>    | Retrospective, cohort                | Calcium<br>carbonate                 | Y | Y | Y | Y      | N | N | Y | N | Y  | N   | Y   | N   | Y   | NR  | Fair  |
| Centanni,<br>2006 <sup>22</sup>  | Retrospective, cohort                | Omeprazole                           | Y | Y | Y | Y      | N | N | Y | N | Y  | N   | Y   | N   | Y   | Y   | Fair  |
| Dickerson,<br>2010 <sup>84</sup> | Retrospective, cohort                | Food (continuous<br>enteral feeding) | Y | Y | Y | Y      | N | N | Y | N | Y  | Ν   | Y   | N   | Y   | Y   | Fair  |
| Cappelli, 2014 <sup>88</sup>     | Retrospective, cohort                | Breakfast                            | Y | Y | Y | Y      | N | N | Y | N | Y  | Ν   | Y   | Y   | Y   | Y   | Good  |
| Marina,<br>2016 <sup>91</sup>    | Retrospective, cohort                | Breakfast                            | Y | N | N | Y      | N | N | Y | N | Y  | N   | Y   | Y   | Y   | Y   | Fair  |
| Pirola, 2018                     | Retrospective, cohort                | Breakfast                            | Y | Y | Y | Y      | N | N | Y | N | Y  | N   | Y   | N   | Y   | N   | Fair  |
| Conrad,<br>2004 <sup>96</sup>    | Retrospective, cohort                | Soy formula                          | Y | Y | Y | Y      | N | N | Y | Ν | Y  | N   | Y   | Y   | Y   | N   | Fair  |

Supplementary Table 4. Quality assessment of included observational cohort studies.

Abbreviations: Y, yes; N, no; NA, not applicable; NR, not reported

Questions of NHLBI Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies:

1. Was the research question or objective in this paper clearly stated?

2. Was the study population clearly specified and defined?

3. Was the participation rate of eligible persons at least 50%?

4. Were all the subjects selected or recruited from the same or similar populations (including the same time period)? Were inclusion and exclusion criteria for being in the study prespecified and applied uniformly to all participants?

5. Was a sample size justification, power description, or variance and effect estimates provided?

6. For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured?

7. Was the timeframe sufficient so that one could reasonably expect to see an association between exposure and outcome if it existed?

8. For exposures that can vary in amount or level, did the study examine different levels of the exposure as related to the outcome (e.g., categories of exposure, or exposure measured as continuous variable)?

9. Were the exposure measures (independent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?

10. Was the exposure(s) assessed more than once over time?

11. Were the outcome measures (dependent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?

12. Were the outcome assessors blinded to the exposure status of participants?

13. Was loss to follow-up after baseline 20% or less?

14. Were key potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) and outcome(s)?

| Reference                      | Study type  | Interferants | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 |
|--------------------------------|-------------|--------------|----|----|----|----|----|----|----|----|----|
| Vigersky, 2006 <sup>46</sup>   | Case series | Metformin    | Y  | Ν  | Y  | Ν  | Y  | Y  | Y  | Ν  | Y  |
| Guarda,<br>2019 <sup>57</sup>  | Case series | Mifepristone | Y  | Y  | Y  | Y  | Y  | Y  | Y  | Ν  | Y  |
| McCowen,<br>1997 <sup>71</sup> | Case series | Sertraline   | Y  | N  | Y  | Y  | Y  | Y  | Y  | N  | Y  |
| Liel, 1996                     | Case series | Fiber        | Y  | Y  | Y  | Ν  | Y  | Y  | Y  | Y  | Y  |

Supplementary Table 5. Quality assessment of included case series.

Abbreviations: Y, yes; N, no

Questions of NHLBI Quality Assessment Tool for Case Series Studies:

- 1. Was the study question or objective clearly stated?
- 2. Was the study population clearly and fully described, including a case definition?

3. Were the cases consecutive?

- 4. Were the subjects comparable?
- 5. Was the intervention clearly described?
- 6. Were the outcome measures clearly defined, valid, reliable, and implemented consistently across all study participants?
- 7. Was the length of follow-up adequate?
- 8. Were the statistical methods well-described?
- 9. Were the results well-described?

| Reference                          | Study type  | Interferants                              | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 |
|------------------------------------|-------------|-------------------------------------------|----|----|----|----|----|----|----|----|
| Schneyer,<br>1998 <sup>2</sup>     | Case report | Calcium<br>carbonate                      | N  | N  | Y  | Y  | Y  | Y  | N  | Y  |
| Butner,<br>2000 <sup>3</sup>       | Case report | Calcium<br>carbonate                      | Y  | Y  | Y  | Y  | Y  | Y  | N  | Y  |
| Csako,<br>2001 <sup>5</sup>        | Case report | Calcium<br>carbonate                      | Y  | Y  | Y  | Y  | Y  | Y  | N  | Y  |
| Mazokopak<br>is, 2008 <sup>8</sup> | Case report | Calcium<br>carbonate                      | Y  | Y  | Y  | Y  | Y  | Y  | N  | Y  |
| Shakir,<br>1997 <sup>14</sup>      | Case report | Ferrous sulfate                           | Y  | Y  | Y  | Y  | Y  | Y  | N  | Y  |
| Leger, 1999                        | Case report | Ferrous sulfate                           | Y  | Y  | Y  | Y  | Y  | Y  | N  | Y  |
| Vita, 2014                         | Case report | Pantoprazole<br>(PPI)                     | Y  | Y  | Y  | Y  | Y  | Y  | N  | Y  |
| Sperber,<br>1992 <sup>27</sup>     | Case report | Aluminum<br>hydroxide                     | Y  | N  | Y  | Y  | Y  | Y  | N  | Y  |
| Mersebach,<br>1999 <sup>29</sup>   | Case report | Aluminum<br>hydroxide,<br>magnesium oxide | Y  | Y  | Y  | Y  | Y  | Y  | N  | Y  |
| Havrankova<br>, 1992 <sup>30</sup> | Case report | Sucralfate                                | Y  | N  | Y  | Y  | Y  | Y  | N  | Y  |
| Sherman,<br>1994 <sup>33</sup>     | Case report | Sucralfate                                | Y  | Y  | Y  | Y  | Y  | Y  | N  | Y  |

Supplementary Table 6. Quality assessment of included case reports.

| Demke,<br>1989 <sup>35</sup>          | Case report | Lovastatin                                                     | Y | Y | Y | Y | Y | Y | N | Y |
|---------------------------------------|-------------|----------------------------------------------------------------|---|---|---|---|---|---|---|---|
| Kisch, 2005<br>38                     | Case report | Simvastatin                                                    | Y | N | Y | Y | Y | Y | N | Y |
| Harmon,<br>1991 <sup>40</sup>         | Case report | Cholestyramine                                                 | Y | N | Y | Y | Y | Y | N | Y |
| Northcutt,<br>1969 <sup>41</sup>      | Case report | Cholestyramine                                                 | Y | N | Y | Y | Y | Y | N | Y |
| Madhava,<br>2005 <sup>44</sup>        | Case report | Orlistat                                                       | Y | Y | Y | Y | Y | Y | N | Y |
| Balapataben<br>di, 2011 <sup>45</sup> | Case report | Simethicone                                                    | Y | Y | Y | Y | Y | Y | N | Y |
| McLean,<br>1993 <sup>50</sup>         | Case report | Cation-exchange<br>resin (sodium<br>polystyrene<br>sulphonate) | N | Y | Y | Y | Y | Y | N | Y |
| Iovino,<br>2014 <sup>51</sup>         | Case report | Sevelamer<br>carbonate                                         | Y | Y | Y | Y | Y | Y | N | Y |
| Siraj, 2003                           | Case report | Raloxifene                                                     | Y | Y | Y | Y | Y | Y | N | Y |
| Garwood,<br>2006 <sup>54</sup>        | Case report | Raloxifene                                                     | Y | Y | Y | Y | Y | Y | N | Y |
| Isley, 1987<br>58                     | Case report | Rifampin                                                       | Y | Y | Y | Y | Y | Y | N | Y |
| Nolan, 1999<br><sup>59</sup>          | Case report | Rifampin                                                       | Y | Y | Y | Y | Y | Y | N | Y |

| Cooper,<br>2005 <sup>61</sup>     | Case report | Ciprofloxacin                          | Y | N | Y | Y | Y | Y | N | Y |
|-----------------------------------|-------------|----------------------------------------|---|---|---|---|---|---|---|---|
| Berger,<br>2017 <sup>62</sup>     | Case report | Ritonavir                              | Y | Y | Y | Y | Y | N | Ν | Y |
| Sahajpal,<br>2017 <sup>63</sup>   | Case report | Ritonavir                              | Y | Y | Y | Y | Y | Y | Ν | Y |
| Lanzafame,<br>2002 <sup>64</sup>  | Case report | Indinavir                              | Y | Y | Y | Y | Y | Y | N | Y |
| Touzot,<br>2006 <sup>65</sup>     | Case report | Lopinavir,<br>Ritonavir,<br>Nelfinavir | Y | Y | Y | Y | Y | Y | N | Y |
| Blackshear,<br>1983 <sup>67</sup> | Case report | Phenytoin                              | Y | Y | Y | Y | Y | Y | N | Y |
| Figge, 1990                       | Case report | Amiodarone                             | Y | Y | Y | Y | Y | Y | N | Y |
| Narula,<br>2004 <sup>76</sup>     | Case report | Capecitabine                           | Y | Y | Y | Y | Y | Y | N | Y |
| Cappelli,<br>2020 <sup>94</sup>   | Case report | Lunch                                  | Y | Y | Y | Y | Y | Y | N | Y |
| Pinchera,<br>1965 95              | Case report | Soy formula                            | Y | Y | Y | Y | Y | Y | N | Y |
| Fruzza,<br>2012 <sup>97</sup>     | Case report | Soy formula                            | Y | Y | Y | Y | Y | Y | N | Y |
| Bell, 2001<br>98                  | Case report | Soy protein<br>supplement              | Y | Y | Y | Y | Y | Y | N | Y |
| Benvenga,<br>2008 <sup>101</sup>  | Case report | Coffee                                 | N | N | Y | Y | Y | Y | N | Y |

| Wegrzyn, 2016 <sup>103</sup>   | Case report | Coffee       | Y | N | Y | Y | Y | Y | N | Y |
|--------------------------------|-------------|--------------|---|---|---|---|---|---|---|---|
| Deiana,<br>2012 <sup>106</sup> | Case report | Papaya fruit | Y | Y | Y | Y | Y | Y | Ν | Y |
| Mahapatro, 2019 <sup>107</sup> | Case report | Dentifrice   | Y | Y | Y | Y | Y | Y | N | Y |

Abbreviations: Y, yes; N, no

Questions of JBI Critical Appraisal Checklist for Case Rerports.

1. Were patient's demographic characteristics clearly described?

2. Was the patient's history clearly described and presented as a timeline?

3. Was the current clinical condition of the patient on presentation clearly described?

4. Were diagnostic tests or assessment methods and the results clearly described?

5. Was the intervention(s) or treatment procedure(s) clearly described?

6. Was the post-intervention clinical condition clearly described?

7. Were adverse events (harms) or unanticipated events identified and described?

8. Does the case report provide takeaway lessons?

## Reference

1. Irving SA, Vadiveloo T, Leese GP. Drugs that interact with levothyroxine: an observational study from the Thyroid Epidemiology, Audit and Research Study (TEARS). *Clinical Endocrinology*. Jan 2015;82(1):136-141. doi:10.1111/cen.12559

 Schneyer CR. Calcium carbonate and reduction of levothyroxine efficacy. *Jama*. Mar 11 1998;279(10):750. doi:10.1001/jama.279.10.750-b

3. Butner LE, Fulco PP, Feldman G. Calcium carbonate-induced hypothyroidism. *Annals of Internal Medicine*. Apr 4 2000;132(7):595. doi:10.7326/0003-4819-132-7-200004040-00026

4. Singh N, Singh PN, Hershman JM. Effect of calcium carbonate on the absorption of levothyroxine. *Jama*. Jun 7 2000;283(21):2822-2825. doi:10.1001/jama.283.21.2822

5. Csako G, McGriff NJ, Rotman-Pikielny P, Sarlis NJ, Pucino F. Exaggerated levothyroxine malabsorption due to calcium carbonate supplementation in gastrointestinal disorders. *Annals of Pharmacotherapy*. Dec 2001;35(12):1578-1583. doi:10.1345/aph.1A031

6. Singh N, Weisler SL, Hershman JM. The acute effect of calcium carbonate on the intestinal absorption of levothyroxine. *Thyroid*. Oct 2001;11(10):967-971. doi:10.1089/105072501753211046

7. Diskin CJ, Stokes TJ, Dansby LM, Radcliff L, Carter TB. Effect of phosphate binders upon TSH and L-thyroxine dose in patients on thyroid replacement. *International urology and nephrology*. 2007;39(2):599-602. doi:10.1007/s11255-006-9166-6

8. Mazokopakis EE, Giannakopoulos TG, Starakis IK. Interaction between levothyroxine and calcium carbonate. *Canadian Family Physician*. Jan 2008;54(1):39.

9. Zamfirescu I, Carlson HE. Absorption of Levothyroxine When Coadministered with Various Calcium Formulations. *Thyroid*. May 2011;21(5):483-486. doi:10.1089/thy.2010.0296

10. Morini E, Catalano A, Lasco A, Morabito N, Benvenga S. l-thyroxine malabsorption due to calcium carbonate impairs blood pressure, total cholesterolemia, and fasting glycemia. *Endocrine*. May 2019;64(2):284-292. doi:10.1007/s12020-018-1798-7

11. Morini E, Catalano A, Lasco A, Morabito N, Benvenga S. In thyroxine-replaced hypothyroid postmenopausal women under simultaneous calcium supplementation, switch to oral liquid or softgel capsule l-thyroxine ensures lower serum TSH levels and favorable effects on blood pressure, total cholesterolemia and glycemia. *Endocrine*. Sep 2019;65(3):569-579. doi:10.1007/s12020-019-01908-x

12. Benvenga S, Di Bari F, Vita R. Undertreated hypothyroidism due to calcium or iron supplementation corrected by oral liquid levothyroxine. *Endocrine*. Apr 2017;56(1):138-145. doi:10.1007/s12020-017-1244-2

13. Campbell NRC, Hasinoff BB, Stalts H, Rao B, Wong NCW. Ferrous sulfate reduces thyroxine efficacy in patients with hypothyroidism. *Annals of Internal Medicine*. Dec 1992;117(12):1010-1013. doi:10.7326/0003-4819-117-12-1010

14. Shakir KMM, Chute JP, Aprill BS, Lazarus AA. Ferrous sulfate-induced increase in requirement for thyroxine in a patient with primary hypothyroidism. *Southern Medical Journal*. Jun 1997;90(6):637-639. doi:10.1097/00007611-199706000-00011

15. Leger CS, Ooi TC. Ferrous fumarate-induced malabsorption of thyroxine. Endocrinologist. Nov-Dec

## 1999;9(6):493-495. doi:10.1097/00019616-199911000-00011

16. Vita R, Saraceno G, Trimarchi F, Benvenga S. Switching Levothyroxine From the Tablet to the Oral Solution Formulation Corrects the Impaired Absorption of Levothyroxine Induced by Proton-Pump Inhibitors. *Journal of Clinical Endocrinology & Metabolism*. Dec 2014;99(12):4481-4486. doi:10.1210/jc.2014-2684

17. Trifiro G, Parrino F, Sultana J, et al. Drug Interactions with Levothyroxine Therapy in Patients with Hypothyroidism: Observational Study in General Practice. *Clinical Drug Investigation*. Mar 2015;35(3):187-195. doi:10.1007/s40261-015-0271-0

18. Ananthakrishnan S, Braverman LE, Levin RM, Magnani B, Pearce EN. The effect of famotidine, esomeprazole, and ezetimibe on levothyroxine absorption. *Thyroid*. May 2008;18(5):493-498. doi:10.1089/thy.2007.0381

19. Yue CS, Benvenga S, Scarsi C, Loprete L, Ducharme MP. When Bioequivalence in Healthy Volunteers May not Translate to Bioequivalence in Patients: Differential Effects of Increased Gastric pH on the Pharmacokinetics of Levothyroxine Capsules and Tablets. *Journal of Pharmacy and Pharmaceutical Sciences*. 2015 2015;18(5):844-855. doi:10.18433/j36p5m

20. Dietrich JW, Gieselbrecht K, Holl RW, Boehm BO. Absorption kinetics of levothyroxine is not altered by proton-pump inhibitor therapy. *Hormone and Metabolic Research*. Jan 2006;38(1):57-59. doi:10.1055/s-2006-924980

21. Vita R, Benvenga S. Tablet levothyroxine (L-T4) malabsorption induced by proton pump inhibitor: a problem that was solved by switching to L-T4 in soft gel capsule. *Endocrine Practice*. Mar 2014;20(3):E38-E41. doi:10.4158/ep13316.Cr

22. Centanni M, Gargano L, Canettieri G, et al. Thyroxine in goiter, Helicobacter pylori infection, and chronic gastritis. *New England Journal of Medicine*. Apr 27 2006;354(17):1787-1795. doi:10.1056/NEJMoa043903

23. Abi-Abib RdC, Vaisman M. Is it necessary to increase the dose of levothyroxine in patients with hypothyroidism who use omeprazole? *Arquivos Brasileiros De Endocrinologia E Metabologia*. Oct 2014;58(7):731-736. doi:10.1590/0004-2730000002997

24. Sachmechi I, Reich DM, Aninyei M, Wibowo F, Gupta G, Kim PJ. Effect of proton pump inhibitors on serum thyroid-stimulating hormone level in euthyroid patients treated with levothyroxine for hypothyroidism. *Endocrine practice*. 2007 2007;13(4):345-349. doi:10.4158/EP.13.4.345

25. Vita R, Di Bari F, Benvenga S. Oral liquid levothyroxine solves the problem of tablet levothyroxine malabsorption due to concomitant intake of multiple drugs. *Expert Opinion on Drug Delivery*. Apr 2017;14(4):467-472. doi:10.1080/17425247.2017.1290604

26. Benvenga S. Liquid and softgel capsules of 1-thyroxine results lower serum thyrotropin levels more than tablet formulations in hypothyroid patients. *Journal of Clinical and Translational Endocrinology*. Dec 2019;18:100204. 100204. doi:10.1016/j.jcte.2019.100204

27. Sperber AD, Liel Y. Evidence for Interference With the Intestinal Absorption of Levothyroxine Sodium by Aluminum Hydroxide. *Archives of Internal Medicine*. Jan 1992;152(1):183-184. doi:10.1001/archinte.152.1.183

28. Liel Y, Sperber AD, Shany S. Nonspecific Intestinal Adsorption of Levothyroxine by Aluminum Hydroxide. *American Journal of Medicine*. Oct 1994;97(4):363-365. doi:10.1016/0002-9343(94)90303-4

29. Mersebach H, Rasmussen AK, Kirkegaard L, Feldt-Rasmussen U. Intestinal adsorption of levothyroxine by antacids and laxatives: Case stories and in vitro experiments. *Pharmacology & Toxicology*. Mar 1999;84(3):107-

109. doi:10.1111/j.1600-0773.1999.tb00883.x

30. Havrankova J, Lahaie R. Levothyroxine Binding by Sucralfate. *Annals of Internal Medicine*. Sep 1 1992;117(5):445-446. doi:10.7326/0003-4819-117-5-445\_3

Khan F, Jeanniton E, Renedo M. Does sucralfate impede levothyroxine therapy? *Annals of internal medicine*.
Feb 15 1993;118(4):317. doi:10.7326/0003-4819-118-4-199302150-00027

32. Campbell BA, Bantle JP, Schmidt BA. Sucralfate and the Absorption of L-Thyroxine. *Annals of Internal Medicine*. Jul 15 1994;121(2):152. doi:10.7326/0003-4819-121-2-199407150-00024

33. Sherman SI, Tielens ET, Ladenson PW. Sucralfate Causes Malabsorption of L-Thyroxine. *American Journal of Medicine*. Jun 1994;96(6):531-535. doi:10.1016/0002-9343(94)90093-0

34. Jonderko G, Jonderko K, Marcisz C, Kotulska A. Effect of cimetidine and ranitidine on absorption of [125I]levothyroxine administered orally. *Acta pharmacologica Sinica*. Sep 1992;13(5):391-394.

35. Demke DM. Drug-Interaction Between Thyroxine And Lovastatin. *New England Journal of Medicine*. Nov 9 1989;321(19):1341-1342.

36. Gormley GJ, Tobert JA. Drug-Interaction Between Thyroxine And Lovastatin - Reply. *New England Journal of Medicine*. Nov 9 1989;321(19):1342.

37. Abbasinazari M, Nakhjavani M, Gogani S. The effects of simvastatin on the serum concentrations of thyroid stimulating hormone and free thyroxine in hypothyroid patients treated with levothyroxine. *Iranian journal of medical sciences*. 2011-Jun 2011;36(2):80-83.

38. Kisch E, Segall HS. Interaction between simvastatin and L-thyroxine. *Annals of Internal Medicine*. Oct 4 2005;143(7):547. doi:10.7326/0003-4819-143-7-200510040-00025

39. John-Kalarickal J, Pearlman G, Carlson HE. New medications which decrease levothyroxine absorption. *Thyroid*. Aug 2007;17(8):763-765. doi:10.1089/thy.2007.0060

40. Harmon SM, Seifert CF. Levothyroxine-Cholestyramine Interaction Reemphasized. *Annals of Internal Medicine*. Oct 1991;115(8):658-659. doi:10.7326/0003-4819-115-8-658\_2

41. Northcutt RC, Stiel JN, Hollifield JW, Stant EG, Jr. The influence of cholestyramine on thyroxine absorption. *Jama*. 1969-Jun-09 1969;208(10):1857-1861.

42. Weitzman SP, Ginsburg KC, Carlson HE. Colesevelam Hydrochloride and Lanthanum Carbonate Interfere with the Absorption of Levothyroxine. *Thyroid*. Jan 2009;19(1):77-79. doi:10.1089/thy.2008.0312

43. Brown KS, Armstrong IC, Wang A, et al. Effect of the Bile Acid Sequestrant Colesevelam on the Pharmacokinetics of Pioglitazone, Repaglinide, Estrogen Estradiol, Norethindrone, Levothyroxine, and Glyburide. *Journal of Clinical Pharmacology*. May 2010;50(5):554-565. doi:10.1177/0091270009349378

44. Madhava K, Hartley A. Hypothyroidism in thyroid carcinoma follow-up: Orlistat may inhibit the absorption of thyroxine. *Clinical Oncology*. Sep 2005;17(6):492. doi:10.1016/j.clon.2005.05.001

45. Balapatabendi M, Harris D, Shenoy SD. Drug interaction of levothyroxine with infant colic drops. *Archives of Disease in Childhood*. Sep 2011;96(9):888-889. doi:10.1136/archdischild-2011-300333

46. Vigersky RA, Filmore-Nassar A, Glass AR. Thyrotropin suppression by metformin. *Journal of Clinical Endocrinology & Metabolism.* Jan 2006;91(1):225-227. doi:10.1210/jc.2005-1210

47. Isidro ML, Penin MA, Nemina R, Cordido F. Metformin reduces thyrotropin levels in obese, diabetic women with primary hypothyroidism on thyroxine replacement therapy. *Endocrine*. Aug 2007;32(1):79-82. doi:10.1007/s12020-007-9012-3

48. Cappelli C, Rotondi M, Pirola I, et al. TSH-Lowering Effect of Metformin in Type 2 Diabetic Patients Differences between euthyrold, untreated hypothyroid, and euthyrold on L-T4 therapy patients. *Diabetes Care*. Sep 2009;32(9):1589-1590. doi:10.2337/dc09-0273

49. Al-Alusi MA, Du L, Li N, et al. Metformin Does Not Suppress Serum Thyrotropin by Increasing Levothyroxine Absorption. *Thyroid*. Oct 2015;25(10):1080-1084. doi:10.1089/thy.2015.0211

50. McLean M, Kirkwood I, Epstein M, Jones B, Hall C. Cation-exchange resin and inhibition of intestinal absorption of thyroxine. *Lancet*. May 15 1993;341(8855):1286. doi:10.1016/0140-6736(93)91195-r

51. Iovino M, Iovine N, Petrosino A, et al. Sevelamer Carbonate Markedly Reduces Levothyroxine Absorption. *Endocrine Metabolic & Immune Disorders-Drug Targets*. 2014 2014;14(3):206-209. doi:10.2174/1871530314666140902151804

52. Bone HG, Walter MA, Hurley ME, Epstein S. Pharmacokinetics of coadministration of levothyroxine sodium and alendronate sodium new effervescent formulation. *Osteoporosis international*. May 2017;28(5):1745-1752. doi:10.1007/s00198-017-3941-3

53. Siraj ES, Gupta MK, Reddy SK. Raloxifene causing malabsorption of levothyroxine. *Archives of Internal Medicine*. Jun 9 2003;163(11):1367-1370. doi:10.1001/archinte.163.11.1367

54. Garwood CL, Van Schepen KA, McDonough RP, Sullivan AL. Increased thyroid-stimulating hormone levels associated with concomitant administration of levothyroxine and raloxifene. *Pharmacotherapy*. Jun 2006;26(6):881-885. doi:10.1592/phco.26.6.881

55. Arafah BM. Decreased Levothyroxine Requirement in Women with Hypothyroidism during Androgen Therapy for Breast Cancer. *Annals of Internal Medicine*. Aug 15 1994;121(4):247-251. doi:10.7326/0003-4819-121-4-199408150-00002

56. Arafah BM. Increased need for thyroxine in women with hypothyroidism during estrogen therapy. *New England Journal of Medicine*. Jun 7 2001;344(23):1743-1749. doi:10.1056/nejm200106073442302

57. Guarda FJ, Findling J, Yuen KCJ, Fleseriu M, Nachtigall LB. Mifepristone Increases Thyroid Hormone Requirements in Patients With Central Hypothyroidism: A Multicenter Study. *Journal of the Endocrine Society*. Sep 2019;3(9):1707-1714. doi:10.1210/js.2019-00188

58. Isley WL. Effect of Rifampin Therapy on Thyroid Function Tests in a Hypothyroid Patient on Replacement L-Thyroxine. *Annals of Internal Medicine*. Oct 1987;107(4):517-518. doi:10.7326/0003-4819-107-4-517

59. Nolan SR, Self TH, Norwood JM. Interaction between rifampin and levothyroxine. *Southern Medical Journal*. May 1999;92(5):529-531. doi:10.1097/00007611-199905000-00018

60. Goldberg AS, Tirona RG, Asher LJ, Kim RB, Van Uum SHM. Ciprofloxacin and Rifampin Have Opposite Effects on Levothyroxine Absorption. *Thyroid*. Nov 1 2013;23(11):1374-1378. doi:10.1089/thy.2013.0014

61. Cooper JG, Harboe K, Frost SK, Skadberg O. Ciprofloxacin interacts with thyroid replacement therapy. *British Medical Journal*. Apr 30 2005;330(7498):1002. doi:10.1136/bmj.330.7498.1002

62. Berger J-L, Nguyen Y, Lebrun D, et al. Early neuropsychological adverse events after switching from PI/r to dolutegravir could be related to hyperthyroidism in patients under levothyroxine. *Antiviral Therapy*. 2017 2017;22(3):271-272. doi:10.3851/imp3107

63. Sahajpal R, Ahmed RA, Hughes CA, Foisy MM. Probable interaction between levothyroxine and ritonavir: Case report and literature review. *American Journal of Health-System Pharmacy*. Apr 15 2017;74(8):587-592. doi:10.2146/ajhp160200

64. Lanzafame M, Trevenzoli M, Faggian F, et al. Interaction between levothyroxine and indinavir in a patient with HIV infection. *Infection*. Jan 2002;30(1):54-55. doi:10.1007/s15010-002-2092-3

65. Touzot M, Le Beller C, Touzot F, Louet AL-l, Piketty C. Dramatic interaction between levothyroxine and lopinavir/ritonavir in a HIV-infected patient. *Aids*. May 12 2006;20(8):1210-1212. doi:10.1097/01.aids.0000226969.96880.3c

66. Larsen PR, Atkinson AJ, Jr., Wellman HN, Goldsmith RE. The effect of diphenylhydantoin on thyroxine metabolism in man. *The Journal of clinical investigation*. 1970-Jun 1970;49(6):1266-1279. doi:10.1172/jci106339

67. Blackshear JL, Schultz AL, Napier JS, Stuart DD. Thyroxine Replacement Requirements In Hypothyroid Patients Receiving Phenytoin. *Annals of Internal Medicine*. 1983 1983;99(3):341-342. doi:10.7326/0003-4819-99-3-341

68. Faber J, Lumholtz IB, Kirkegaard C, et al. The Effects of Phenytoin (Diphenylhydantoin) on the Extrathyroidal Turnover of Thyroxine, 3,5,3'-Triiodothyronine, 3,3',5'-Triiodothyronine, and 3',5'-Diiodothyronine in Man. *Journal of Clinical Endocrinology & Metabolism*. 1985 1985;61(6):1093-1099. doi:10.1210/jcem-61-6-1093

69. Aanderud S, Myking OL, Strandjord RE. The Influence Of Carbamazepine On Thyroid-Hormones And Thyroxine Binding Globulin In Hypothyroid Patients Substituted With Thyroxine. *Clinical Endocrinology*. 1981 1981;15(3):247-252. doi:10.1111/j.1365-2265.1981.tb00662.x

70. Deluca F, Arrigo T, Pandullo E, Siracusano MF, Benvenga S, Trimarchi F. Changes in thyroid function tests induced by 2 month carbamazepine treatment in L-thyroxine-substituted hypothyroid children. *European Journal of Pediatrics*. Apr 1986;145(1-2):77-79. doi:10.1007/bf00441860

71. McCowen KC, Garber JR, Spark R. Elevated serum thyrotropin in thyroxine-treated patients with hypothyroidism given sertraline. *New England Journal of Medicine*. Oct 2 1997;337(14):1010-1011.

72. de Carvalho GA, Bahls S-C, Boeving A, Graf H. Effects of Selective Serotonin Reuptake Inhibitors on Thyroid Function in Depressed Patients with Primary Hypothyroidism or Normal Thyroid Function. *Thyroid*. Jul 2009;19(7):691-697. doi:10.1089/thy.2008.0261

73. Figge J, Dluhy RG. Amiodarone-Induced Elevation of Thyroid Stimulating Hormone in Patients Receiving Levothyroxine for Primary Hypothyroidism. *Annals of Internal Medicine*. Oct 1 1990;113(7):553-555. doi:10.7326/0003-4819-113-7-553

74. Lumholtz IB, Siersbaek-Nielsen K, Faber J, Kirkegaard C, Friis T. Effect of propranolol on extrathyroidal metabolism of thyroxine and 3,3',5-triiodothyronine evaluated by noncompartmental kinetics. *The Journal of clinical endocrinology and metabolism*. Sep 1978;47(3):587-589. doi:10.1210/jcem-47-3-587

75. Chiu AC, Sherman SI. Effects of pharmacological fiber supplements on levothyroxine absorption. *Thyroid*. Aug 1998;8(8):667-671. doi:10.1089/thy.1998.8.667

76. Narula HS, Carlson HE. Capecitabine-induced abnormalities in thyroid function tests. *American Journal of Medicine*. Jun 15 2004;116(12):855-856. doi:10.1016/j.amjmed.2004.02.025

77. de Groot JWB, Zonnenberg BA, Plukker JTM, van Der Graaf WTA, Links TP. Imatinib induces hypothyroidism in patients receiving levothyroxinc. *Clinical Pharmacology & Therapeutics*. Oct 2005;78(4):433-438. doi:10.1016/j.clpt.2005.06.010

78. Abdulrahman RM, Verloop H, Hoftijzer H, et al. Sorafenib-Induced Hypothyroidism Is Associated with

Increased Type 3 Deiodination. *Journal of Clinical Endocrinology & Metabolism*. Aug 2010;95(8):3758-3762. doi:10.1210/jc.2009-2507

79. Schlumberger MJ, Elisei R, Bastholt L, et al. Phase II Study of Safety and Efficacy of Motesanib in Patients With Progressive or Symptomatic, Advanced or Metastatic Medullary Thyroid Cancer. *Journal of Clinical Oncology*. Aug 10 2009;27(23):3794-3801. doi:10.1200/jco.2008.18.7815

80. Antúnez PB, Licht SD. Vitamin C improves the apparent absorption of levothyroxine in a subset of patients receiving this hormone for primary hypothyroidism. La vitamina C mejora la absorción aparente de levotiroxina en ciertos pacientes que reciben esta hormona por hipotiroidismo primario. *Revista argentina de endocrinología y metabolismo*. 2011-03 2011;48(1):16-24.

81. Jubiz W, Ramirez M. Effect of Vitamin C on the Absorption of Levothyroxine in Patients With Hypothyroidism and Gastritis. *Journal of Clinical Endocrinology & Metabolism*. Jun 2014;99(6):E1031-E1034. doi:10.1210/jc.2013-4360

 Lamson MJ, Pamplin CL, Rolleri RL, Klein I. Quantitation of a Substantial Reduction in Levothyroxine (T4) Absorption by Food. *Thyroid*. 2004;14(10):873-876. doi:10.1089/thy.2004.14.873

83. Wenzel KW, Kirschsieper HE. Aspects of the absorption of oral L-thyroxine in normal man. *Metabolism: clinical and experimental*. 1977-Jan 1977;26(1):1-8. doi:10.1016/0026-0495(77)90121-4

 Dickerson RN, Maish GO, III, Minard G, Brown RO. Clinical Relevancy of the Levothyroxine-Continuous Enteral Nutrition Interaction. *Nutrition in Clinical Practice*. Dec 2010;25(6):646-652. doi:10.1177/0884533610385701

85. Pirola I, Daffini L, Gandossi E, et al. Comparison between liquid and tablet levothyroxine formulations in patients treated through enteral feeding tube. *Journal of Endocrinological Investigation*. Jun 2014;37(6):583-587. doi:10.1007/s40618-014-0082-9

86. Bach-Huynh T-G, Nayak B, Loh J, Soldin S, Jonklaas J. Timing of Levothyroxine Administration Affects Serum Thyrotropin Concentration. *Journal of Clinical Endocrinology & Metabolism*. Oct 2009;94(10):3905-3912. doi:10.1210/jc.2009-0860

87. Silva Perez CL, Araki FS, Graf H, de Carvalho GA. Serum Thyrotropin Levels Following Levothyroxine Administration at Breakfast. *Thyroid*. Jul 2013;23(7):779-784. doi:10.1089/thy.2012.0435

88. Cappelli C, Pirola I, Gandossi E, Formenti A, Castellano M. Oral liquid levothyroxine treatment at breakfast: a mistake? *European Journal of Endocrinology*. Jan 2014;170(1):95-99. doi:10.1530/eje-13-0693

89. Cappelli C, Pirola I, Gandossi E, et al. Thyroid Hormone Profile in Patients Ingesting Soft Gel Capsule or Liquid Levothyroxine Formulations with Breakfast. *International Journal of Endocrinology*. 2016 2016;2016:9043450. 9043450. doi:10.1155/2016/9043450

90. Cappelli C, Pirola I, Daffini L, et al. A Double-Blind Placebo-Controlled Trial of Liquid Thyroxine Ingested at Breakfast: Results of the TICO Study. *Thyroid*. Feb 1 2016;26(2):197-202. doi:10.1089/thy.2015.0422

91. Marina M, Ceda GP, Aloe R, Gnocchi C, Ceresini G. Circulating concentrations of free thyroxine after an oral intake of liquid LT4 taken either during fasting conditions or at breakfast. *Acta bio-medica : Atenei Parmensis*. 2016 Jan 2016;87(3):247-252.

92. Morelli S, Reboldi G, Moretti S, Menicali E, Avenia N, Puxeddu E. Timing of breakfast does not influence therapeutic efficacy of liquid levothyroxine formulation. *Endocrine*. Jun 2016;52(3):571-578. doi:10.1007/s12020-015-0788-2

93. Pirola I, Gandossi E, Brancato D, et al. TSH evaluation in hypothyroid patients assuming liquid levothyroxine at breakfast or 30min before breakfast. *Journal of Endocrinological Investigation*. Nov 2018;41(11):1301-1306. doi:10.1007/s40618-018-0867-3

94. Cappelli C, Pirola I, Castellano M. Liquid Levothyroxine Formulation Taken during Lunch in Italy: A Case Report and Review of the Literature. *Case Reports in Endocrinology*. Sep 7 2020;2020:8858887. 8858887. doi:10.1155/2020/8858887

95. Pinchera A, Macgillivray MH, Crawford JD, Freeman AG. Thyroid Refractoriness In An Athyreotic Cretin Fed Soybean Formula. *The New England journal of medicine*. 1965-Jul-08 1965;273:83-87. doi:10.1056/nejm196507082730205

96. Conrad SC, Chiu H, Silverman BL. Soy formula complicates management of congenital hypothyroidism. *Archives of Disease in Childhood.* Jan 1 2004;89(1):37-40. doi:10.1136/adc.2002.009365

97. Fruzza AG, Demeterco-Berggren C, Jones KL. Unawareness of the Effects of Soy Intake on the Management of Congenital Hypothyroidism. *Pediatrics*. Sep 2012;130(3):E699-E702. doi:10.1542/peds.2011-3350

98. Bell DS, Ovalle F. Use of soy protein supplement and resultant need for increased dose of levothyroxine. *Endocrine practice*. 2001 2001;7(3):193-194. doi:10.4158/EP.7.3.193

99. Persiani S, Sala F, Manzotti C, et al. Evaluation of Levothyroxine Bioavailability after Oral Administration of a Fixed Combination of Soy Isoflavones in Post-menopausal Female Volunteers. *Drug Research*. Mar 2016;66(3):136-140. doi:10.1055/s-0035-1555784

100. Liel Y, HarmanBoehm I, Shany S. Evidence for a clinically important adverse effect of fiber-enriched diet on the bioavailability of levothyroxine in adult hypothyroid patients. *Journal of Clinical Endocrinology & Metabolism.* Feb 1996;81(2):857-859. doi:10.1210/jc.81.2.857

101. Benvenga S, Bartolone L, Pappalardo MA, et al. Altered intestinal absorption of L-thyroxine caused by coffee. *Thyroid*. Mar 2008;18(3):293-301. doi:10.1089/thy.2007.0222

102. Vita R, Saraceno G, Trimarchi F, Benvenga S. A novel formulation of L-thyroxine (L-T4) reduces the problem of L-T4 malabsorption by coffee observed with traditional tablet formulations. *Endocrine*. Feb 2013;43(1):154-160. doi:10.1007/s12020-012-9772-2

103. Wegrzyn NM. Malabsorption of L-T4 Due to Drip Coffee: A Case Report Using Predictors of Causation. *Journal of the Academy of Nutrition and Dietetics*. Jul 2016;116(7):1073-1076. doi:10.1016/j.jand.2016.02.016

104. Chon DA, Reisman T, Weinreb JE, Hershman JM, Leung AM. Concurrent Milk Ingestion Decreases Absorption of Levothyroxine. *Thyroid*. Apr 2018;28(4):454-457. doi:10.1089/thy.2017.0428

105. Lilja JJ, Laitinen K, Neuvonen PJ. Effects of grapefruit juice on the absorption of levothyroxine. *British Journal of Clinical Pharmacology*. Sep 2005;60(3):337-341. doi:10.1111/j.1365-2125.2005.02433.x

106. Deiana L, Marini S, Mariotti S. Ingestion of large amounts of papaya fruit and impaired effectiveness of levothyroxine therapy. *Endocrine Practice*. Jan-Feb 2012;18(1):98-100. doi:10.4158/ep11233.Co

107. Mahapatro S, Satapathy AK. Dentifrice Reducing Levothyroxine Efficacy in Children. *Indian Journal of Pediatrics*. Nov 2019;86(11):1062. doi:10.1007/s12098-019-02987-4

108. Sterne JAC, Savovic J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. Article. *British Medical Journal*. Aug 28 2019;366:14898. 14898. doi:10.1136/bmj.14898