Ultrasonic-assisted synthesis of heterocyclic curcumin analogs as Antidiabetic, Antibacterial and Antioxidant Agents combined with *in vitro* and *in silico* studies

Demis Zelelew ¹, Milkyas Endale ^{1*}, Yadessa Melaku ¹, Teshome Geremew², Rajalakshmanan Eswaramoorthy ³, Lemma Teshome Tufa ^{1, 4}, Youngeun Choi ⁵, Jaebeom Lee ⁵

¹Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia; ²Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia; ³Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha University, Chennai 600 077, India; ⁴Research Institute of Materials Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea; ⁵Department of Chemistry, Department of Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea

Correspondence: Milkyas Endale; Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia. E-mail: *milkyas.endale@astu.edu.et, milkyasendale@yahoo.com; demis1921zelelew@gmail.com*

Appendix Ia. ¹H-NMR spectrum (400 MHz, MeOD-d₄) of compound 3

Appendix Ib. ¹³C -NMR spectrum (100 MHz, MeOD-*d*₄) of compound **3**

Appendix Ic. ¹³C –DEPT-135 NMR spectrum (100 MHz, MeOD-d₄) of compound **3**

Appendix IIa. ¹H-NMR spectrum (400 MHz, MeOD-*d*₄) of compound **4**

Appendix IIb. ¹³C -NMR spectrum (100 MHz, MeOD- d_4) of compound 4

Appendix IIc. ¹³C –DEPT-135 NMR spectrum (100 MHz, MeOD-d₄) of compound 4

Appendix IIIa. ¹H-NMR spectrum (400 MHz, MeOD-d₄) of compound 5

Appendix IIIb. ¹³C -NMR spectrum (100 MHz, MeOD-d₄) of compound 5

Appendix IIIc. ¹³C –DEPT-135 NMR spectrum (100 MHz, MeOD-d₄) of compound 5

Appendix IVa. ¹H-NMR spectrum (400 MHz, MeOD-*d*₄) of compound 6

Appendix IVb. ¹³C -NMR spectrum (100 MHz, MeOD-*d*₄) of compound 6

Appendix IVc. ¹³C –DEPT-135 NMR spectrum (100 MHz, MeOD-d4) of compound 6

Appendix Va. ¹H-NMR spectrum (400 MHz, MeOD-*d*₄) of compound 7

Appendix Vb. ¹³C -NMR spectrum (100 MHz, MeOD-d₄) of compound 7

Appendix Vc. ¹³C –DEPT-135 NMR spectrum (100 MHz, MeOD-d₄) of compound 7

Appendix VIa. ¹H-NMR spectrum (400 MHz, DMSO-*d*₆) of compound 8

Appendix VIb. ¹³C -NMR spectrum (100 MHz, DMSO-*d*₆) of compound 8

Appendix VIc. ¹³C –DEPT-135 NMR spectrum (100 MHz, DMSO-*d*₆) of compound 8

Appendix VIIa. ¹H-NMR spectrum (400 MHz, DMSO-*d*₆) of compound 9

Appendix VIIb. ¹³C -NMR spectrum (100 MHz, DMSO-*d*₆) of compound 9

Appendix VIIc. ¹³C –DEPT-135 NMR spectrum (100 MHz, DMSO-*d*₆) of compound 9

Appendix VIIIa. ¹H-NMR spectrum (400 MHz, DMSO-*d*₆) of compound **10**

Appendix VIIIb. ¹³C -NMR spectrum (100 MHz, DMSO-*d*₆) of compound 10

Appendix VIIIc. ¹³C – DEPT-135 NMR spectrum (100 MHz, DMSO-*d*₆) of compound 10

Appendix IXa. ¹H-NMR spectrum (400 MHz, DMSO-*d*₆) of compound **11**

Appendix IXb. ¹³C -NMR spectrum (100 MHz, DMSO-*d*₆) of compound 11

Appendix IXc. ¹³C – DEPT-135 NMR spectrum (100 MHz, DMSO-*d*₆) of compound 11

Appendix Xa.¹H-NMR spectrum (400 MHz, DMSO-*d*₆) of compound 12

Appendix Xb.¹³C -NMR spectrum (100 MHz, DMSO-*d*₆) of compound 12

Appendix Xc.¹³C – DEPT-135 NMR spectrum (100 MHz, DMSO-*d*₆) of compound 12

Appendix XIa. ¹H-NMR spectrum (400 MHz, DMSO-*d*₆) of compound 13

Appendix XIb. ¹³C -NMR spectrum (100 MHz, DMSO-d₆) of compound 13

Appendix XIc. ¹³C – DEPT-135 NMR spectrum (100 MHz, DMSO-*d*₆) of compound 13

Appendix XIIa. ¹H-NMR spectrum (400 MHz, DMSO-*d*₆) of compound 14

Appendix XIIb. ¹³C -NMR spectrum (100 MHz, DMSO-*d*₆) of compound 14

Appendix XIIc. ¹³C –DEPT-135 NMR spectrum (100 MHz, DMSO-d₆) of compound 14

Appendix XIIIa. ¹H-NMR spectrum (400 MHz, DMSO-*d*₆) of compound 15

Appendix XIIIb. ¹³C -NMR spectrum (100 MHz, DMSO-*d*₆) of compound 15

Appendix XIIIc. ¹³C –DEPT-135 NMR spectrum (100 MHz, DMSO-*d*₆) of compound 15

Appendix XIVa. ¹H-NMR spectrum (400 MHz, DMSO-*d*₆) of compound 16

Appendix XIVb. ¹³C -NMR spectrum (100 MHz, DMSO-*d*₆) of compound 16

Appendix XIVc. ¹³C –DEPT-135 NMR spectrum (100 MHz, DMSO-d₆) of compound 16

Appendix XV. Synthesized monocarbonyl curcumin analogs derived from dehydrozingerone (3-7)

Appendix XVI. Synthesized of *N*-pyrazolines, **8** and **9**, 4-phenyl-6-styrylpyrimidine-2-ol, **11** and **12**, thiazolo[3,2- α] pyrimidines, **12-14**, and β -substituted imidazoles, **15** and **16**, derived from curcuminoid analogs using ultrasonic irradiation assisted condition

Appendix XVII. *In vitro* antibacterial activity of heterocyclics curcuminoid analogs (**8-16**) against pathological strains expressed as the diameter of inhibition zones in millimeters (unit, mm) based on agar well diffusion assay compared to a positive control (amoxicillin) and negative control (DMSO), results given in µg/mL sample

N.B. Gram-negative bacteria, *Escherichia coli* (ATCC 25922) and *Pseudomonas aeruginosa* (ATCC 27853) and Gram-positive bacteria, *Staphylococcus aureus* (ATCC 25923) and *Streptococcus pyogenes* (ATCC 27853), respectively

Appendix XVIII. Percent inhibition of the synthesized compounds (**8-16**) and the standard drug (ascorbic acid) at the different concentration ranges (namely 12.5, 25.0, 50.0, 100.0, and 200.0 μ g/mL)

Appendix XIX. Bioavailability radar and Boiled- Egg model of the title, **8-16** by the druglikeness criteria (Lipophilicity ($-0.7 < \log P < 5.0$), size (150 g/mol < MW < 500 g/mol), polarity ($20^{\circ}A^{2} < TPSA < 140^{\circ}A^{2}$), insolubility ($-6 < \log S < 0$), unsaturation (0.25 < FractionCsp³<1) and flexibility (0 < Num. rotatable bonds < 9)

Appendix XX. Molecular docking scores and residual amino acid interactions of synthesized compounds (**8-16**) against *E. coli* Gyrase B. (PDB ID: 6F86).

Synthesized	Docking scores /Affinity (kcal/mol)	H-bonds	Amino acid residual interactions		
compounds (Ligands)			Hydrophobic/ π -cation/ π -anion/ π -alkyl interactions	Van der Waals interactions	
8	-6.5	Pro-79, Arg-136, Arg-76, Ile-78, Gly-77, Asn-46, Ala-47, Asp-73		Glu-50, Thr-165	
9	-7.6	Arg-76	Asn-46, Thr-165, Ala-47, Glu-50, Pro-79	Gly-77, Val-167, Val-43	
10	-7.5	Arg-76, Arg-136	Glu-50, Pro-79, Ala-47, Asp-73, Asn-46, Ile-78	Asp-49, Val-167, Thr-165	
11	-7.9	Gly-77, Arg-76	Thr-165, Ala-47, Ile-94, Pro-79, Ile-78, Asn-46	Asp-73, Gly-75, Glu-50	
12	-6.4	Arg-76, Arg-136	Ala-47, Thr-165, Val-167, Ile-78, Val-120, Pro-79, Met-95	Asp-73, Val-43, Asn-46, Glu-50, Gly-77	
13	-6.4	Asp-73, Thr-165	Ile-94, Ile-78, Ala-47, Pro-79	Arg-76, Asn-46, Gly-77	
14	-7.6	Gly-77, Thr-165	Ile-78, Glu-50, Ile-94	Val-120, Ala-47, Asn-46, Asp-49	
15	-7.2	Val-167	Arg-76, Asn-46, Ile-78, Ala-47, Thr-165, Pro-79	Met-166, Val-71, Val-43, Asp-73, Arg-136, Gly-77	
16	-6.5		Pro-79, Thr-165, Ala-47, Ile-78, Ile-94	Arg-136, Asp-73	
Amoxicillin	-6.1	Asp-73, Arg-76, Gly-77, Asn-46	Pro-79	Ile-94, Arg-136, Thr-165	

Appendix XXI. Molecular docking scores and residual amino acid interactions of synthesized compounds (8-16) against the N-terminal domain of PqsA (PDB ID: 3T07_RE1).

Synthesized	Synthesized Docking compounds scores (Ligands) \Affinity (kcal/mol)	H-bonds	Amino acid residual interactions		
compounds (Ligands)			Hydrophobic/ π -cation/ π -anion/ π -alkyl interactions	Van der Waals interactions	
8	-5.2	Gly-462, Glu-460	Ile-359, Ala-358, Asn-465, Val-456	Ser-362, Thr-463, Thr-461, Gly-455	
9	-5.8	Ser-383	Gly-270, Arg-386, Val-356	Thr-387, Leu-269, Lys-390, Asn-357, Glu-352, Ser-354	
10	-5.6	Glu-460, Gly-462, Thr- 463	Val-456, Leu-355, Ala-358, Met- 467, Ile-359	Thr-461, Asn-465, Ser-362	
11	-5.3	Thr-463, Gly-462, Glu- 460	Leu-355, Ala-358, Ile-359, Val-456	Asn-465, Thr-461	
12	-5.8	Asn-465, Val-456, Gly- 462, Thr-463	Ile-359, Ala-358, Pro-457, Leu-355		
13	-5.6	Val-456, Asn-465	Ile-359, Ala-358, Thr-463, Glu-460	Pro-457, Gly-462, Leu-355	
14	-5.5	Asn-465, Val-456	Ala-358, Ile-359, Pro-457	Gly-462, Thr-463, Glu-460	
15	-5.1	Ser-362, Asn-465	Leu-355, Met-467, Ile-359, Ala-358	Ser-354, Thr-353	
16	-5.3	Gly-462, Glu-460	Val-456, Asn-465, Ile-359, Ala-358, Met-467	Ser-362, Leu-355, Thr-461, Thr-463	
Amoxicillin	-4.9	Thr-464, Thr-463, Leu- 355, Ala-358	Ile-359	Ser-362, Ile-361	

Synthesized	Docking		Amino acid residual interactions			
compounds (Ligands)	scores /Affinity (kcal/mol)	H-bonds	Hydrophobic/ π -cation/ π -anion/ π -alkyl interactions	Van der Waals interactions		
8	-3.8	Ser-126	Cys-127, His-57	Glu-60, Gly-128, Asn-129, Pro-120		
9	-4.5	Cys-127, Glu-60	His-57, His-61	Gly-128, Asn-129, Pro-120, Ser-126, Gly-121		
10	-5.3	Glu-60	Ala-64, His-61, His-57	Gly-121, Ser-126, Gly-128, Asn-129		
11	-5.6		Ser-126, His-61, Pro-79, Leu-56, His-57	Gly-128, Asn-129, Thr-53		
12	-1.6		Ala-64, His-61, His-57, Leu-56, Cys- 127, Pro-79, Ser-126, Gly-121	Pro-120, Glu-60, Thr-122, Thr-123		
13	-2.1	Ser-126, Asn-129	Ala-64, Cys-127, Gly-121, Pro-79, Leu-56, His-57, His-61, Glu-60, Cys- 77	Arg-68, Gly-128, Asp-132, Thr-53		
14	-2.3	Asn-129	Ser-126, His-61, His-57, Glu-60, Ala-64, Cys-127	Gly-128, Pro-120, Gly-121		
15	-3.1		Cys-127, Ala-64, His-57	Asn-129, Gly-128, Pro-120, Gly-121, Arg-68, Cys-77, Glu-60		
16	-5.1		Pro-79, Glu-60, Ala-64, His-61, Pro- 120, His-57	Ser-126, Gly-128, Gly-121, Asn-129		
Amoxicillin	-2.9	His-61, Glu-60	His-57, Cys-127, Gly-121	Ser-126, Gly-128, Asn-129		

Appendix XXII. Molecular docking studies of synthesized compounds (8-16) against S. aureus Pyruvate Kinase (PDB ID: 4XCH).

Synthesized	esized Docking ounds scores nds) /Affinity (kcal/mol)	H-bonds	Amino acid residual interactions		
compounds (Ligands)			Hydrophobic/ π -cation/ π -anion/ π -alkyl interactions	Van der Waals interactions	
8	-7.6	Thr-304	Asp-299, Gly-300, Ser-280, Gly-279, Ile-301, Ala-278, Phe-209	Thr-323, Pro-281, His-394, Asp- 382, Gly-302, Arg-397	
9	-8.1	Thr-304	Glu-305, Ala-303, Ser-280, Pro-281, Gly-279, Ile-301	Thr-164, Tyr-211, Gly-300, Gly- 210, Arg-397	
10	-7.6		His-308, Gly-307, Ala-303, Asp-382, Arg-397, His-394, Pro-281, Gly-302, Ala-278, Phe-209, Tyr-211	Thr-164, Thr-304, Gly-210, Gly- 279	
11	-8.6	Thr-304, Tyr-211, Asp- 382	Pro-281, His-394, Ser-280, Ile-301, Gly-279, Arg-397	Gly-210, Phe-209, Thr-323, Asp-299, Gly-300, Gly-302, His-308	
12	-5.7	Gly-307	Asp-382, Arg-397, Gly-279, Ile-301, Tyr-211, Ala-278, Val-309, His-308, Phe-209, Gly-210, Gly-302	Ala-303, Thr-304, Gly-300	
13	-4.6	Thr-380, Arg-372, Arg- 397	Glu-305, Ala-303, Gly-302, Phe-209, Tvr-211, Ala-278, His-308, Ile-301	Ser-380, Tyr-378, Thr-164, Val- 309	
14	-7.0	Tyr-378, Glu-305	Thr-164, Thr-304, Ala-303, His-308, Phe-209, Glv-302, Ala-278, Arg-397	Thr-380, Arg-372, Gly-210, Gly- 307, Tyr-211	
15	-8.8	Thr-304, Val-309	Ala-303, Arg-397, Ile-301, Gly-210, His-308, Gly-302	Thr-164, Arg-372, Thr-380, Tyr- 378, Asp-382, Ser-280, Gly-279, Tyr-211	
16	-9.1	Val-309	His-308, Gly-302, Asp-382, Ala-303, Ile-301, Gly-279, Asp-299, Ala-278, Gly-300, His-394, Phe-209	Thr-304, Thr-164, Arg-397, Thr- 380, Ser-280, Asp-299, Ala-278, Gly-300, His-394, Phe-209	
Amoxicillin	-7.9	Glu-305, Asp-299, Thr- 323, Gly-302, Gly-279	Ser-280, Pro-281, Ile-301, Asp-382	Thr-304, Gly-300, Leu-282, Arg- 397, Thr-380, Tyr-378	

Appendix XXIII. Molecular docking studies of synthesized compounds (8-16) against LuxS of S. pyogenes (PDB ID: 50E3_RE2).

Appendix XXIV. Molecular docking studies of most active synthesized compounds (8, 11, and 16) against Penicillin binding proteins (PBPs) (PDB ID: 1VQQ).

Synthesized compounds	Docking scores/Affinity (kcal/mol)	H-bonds	Amino acid residual interactions		
(Ligands)			Hydrophobic/ π -cation/ π -anion/ π -alkyl interactions	Van der Waals interactions	
8	-6.7	Arg-241, Ser-240	Asp-295, Asp-275, Val-277	Lys-148, Glu-294, Lys-273, Val- 256, Met-372, Try-373	
11	-7.5	Ser-240	His-293, Val-277, Asp-295, Ala- 276, Lys-273	Met-372, Glu-239, Ser-149, Lys- 148, Glu-294	
16	-6.9	Ser-149	His-293, Glu-150, Val-277, Thr- 165, Pro-258, Met-372	Asp-295, Arg-241, Thr-165, Ser- 240, Val-256, Gly-257, Tyr-373	
Amoxicillin	-7.2	Lys-148, Asp-275	Val-277, His-293, Arg-241, Arg- 151	Ala-276, Ser-149, Asn-164, Gly- 166, Thr-165, Ser-240	

Appendix XXV. Molecular docking studies of most active synthesized compounds (8, 11, and 16) against β -lactamases (PDB ID: 1IYS).

Synthesized compounds (Ligands)	Docking scores/Affinity (kcal/mol)	H-bonds	Amino acid residual interactions	
		-	Hydrophobic/π-cation/ π-anion/ π-alkyl interactions	Van der Waals interactions
8	-6.9	Tyr-105, Asn-104, Asn-170	Asn-132	Trr-129, Thr-215, Ser-218, Thr-126, Ala-219, Ser-130, Asn-132, Ser-132, Glu-166, Ser-70
11	-8.3	Ser-70	Tyr-105, Asp-240, Pro-167	Asn-132, Ser-237, Thy-168, Thr- 171, Asn-104, Asn-170, Glu-166, Ser-130
16	-7.7	Arg-276, Thr-216, Ser- 70, Lys-73	Gly-236, Tyr-105	Asn-132, Ser-130, Gly-236, Asn- 104, Ser-237, Asn-170, Thr-235, Gly-236
Amoxicillin	-7.9	Thr-235, Ser-130, Ser- 237, Asn-132, Glu- 166, Asn-170, Thr-216	Arg-276, Tyr-105	Asn-104, Lys-234

Synthesized	Docking	H-bonds	Amino acid residual interactions		
(Ligands)	(kcal/mol)			T 7 TT 7 T • , , , •	
			Hydrophobic/ π -cation/ π -anion/ π -alkyl interactions	Van der Waals interactions	
8	-5.6	Thr-147	Leu-116	Arg-127, Asn-76, Arg-124, Phe-120, Thr-44, Ile-119	
9	-5.4	Thr-147	Leu-116, Thr-44, Phe-120	Arg-127, Phe-43	
10	-5.4	Ile-119, Gly-46	Leu-116, Thr-147, Pro-45	Thr-44, Ala-147	
11	-5.5		Phe-120, Ile-119, Ala-42, Pro-45	Phe-43, Thr-44, Leu-149, Gly-46, Arg-127 Thr-147 Leu-116	
12	-4.9	Thr-147, Gly-46, Ile- 119	Leu-116, Phe-43, Pro-45	Arg-127, Gly-148, Asp-145, Thr-44	
13	-4.6	Thr-147, Gly-46	Ile-119, Pro-45, Phe-120, Thr-44	Arg-127, Phe-43	
14	-5.6	Thr-147, Arg-127, Ile- 119	Ala-42, Pro-45	Gly-148, Gly-46, Thr-44	
15	-4.8	Thr-44, Gly-46, Arg- 127, Cys-47, Thr-147	Pro-45, Leu-116, Asp-145		
16	-4.9	Ile-119, Thr-44	Thr-147, Leu-116, Pro-45, Ala- 42, Phe-120, Pro-40, Cys-47	Asp-145, Arg-124, Gly-46, Arg-127	
Amox	-5.4	Thr-147, Arg-127, Gly-46	Ile-119, Phe-120, Pro-45	Thr-44, Cys-47, Leu-149	
Vit C	-5.8	Thr-44, Arg-127, Thr- 147, Gly-46, Cys-47		Leu-149, Pro-40	

Appendix XXVI. Molecular docking studies of synthesized compounds (8-16) against Human peroxiredoxin 5 (PDB ID: 1HD2_M1).

Appendix XXVII. Molecular docking studies of most active synthesized compounds (8, 11, and 16) against α -amylase enzyme (PDB ID: 4w93).

Synthesized compounds	Docking scores/Affinity	H-bonds	Amino acid residual interactions		
(Ligands)	(KCal/MOI)		Hydrophobic/ π -cation/ π -anion/ π -alkyl interactions	Van der Waals interactions	
8	-8.4	Glu-233	His-201, Trp-59, Trp-58, Ile-235	Arg-195, Ala-198, Lys-200, Tyr- 151, Tyr-62, Gln-63	
11	-7.4	His-299	Arg-195, Asp-197, His-201, Ile- 235, Lys-200, Tyr-62, Leu-165	Typ-59, Gln-63, His-101, Tyr-151, Ala-198, Glu-233	
16	-8.2	Glu-233	His-299, Typ-62, Ala-198, Leu- 162	Tyr-58, Asp-300, Asn-298, Leu-165, Thr-163	
Acarbose	-7.5	Asp-300, Ile-235, Trp- 59, Glu-240	Ala-198, Leu-162	Gly-00, His-305, Trp-58, Ala-307, Leu-237, Leu-165, His-101, Asp- 197	

Appendix XXVIIIa. 3D (right) and 2D (left) representations of the binding interactions of **8** against *E. coli* DNA Gyrase B (PDB ID: 6f86)

Appendix XXVIIIb. 3D (right) and 2D (left) representations of the binding interactions of **9** against *E. coli* DNA Gyrase B (PDB ID: 6f86)

Appendix XXVIIIc. 3D (right) and 2D (left) representations of the binding interactions of **10** against *E. coli* DNA Gyrase B (PDB ID: 6f86)

Appendix XXVIIId. 3D (right) and 2D (left) representations of the binding interactions of **11** against *E. coli* DNA Gyrase B (PDB ID: 6f86)

Appendix XXVIIIe. 3D (right) and 2D (left) representations of the binding interactions of **12** against *E. coli* DNA Gyrase B (PDB ID: 6f86)

Appendix XXVIIIf. 3D (right) and 2D (left) representations of the binding interactions of **13** against *E. coli* DNA Gyrase B (PDB ID: 6f86).

Appendix XXVIIIg. 3D (right) and 2D (left) representations of the binding interactions of **14** against *E. coli* DNA Gyrase B (PDB ID: 6f86).

Appendix XXVIIIh. 3D (right) and 2D (left) representations of the binding interactions of **15** against *E. coli* DNA Gyrase B (PDB ID: 6f86).

Appendix XXVIIIi. 3D (right) and 2D (left) representations of the binding interactions of **16** against *E. coli* DNA Gyrase B (PDB ID: 6f86).

Appendix XXVIIIj. 3D (right) and 2D (left) representations of the binding interactions of **amoxicillin** against *E. coli* DNA Gyrase B (PDB ID: 6f86).

Appendix XXIXa. 3D (right) and 2D (left) representations of the binding interactions of **8** against N-terminal domain of PqsA (PDB ID: 50e3).

Appendix XXIXb. 3D (right) and 2D (left) representations of the binding interactions **9** of against N-terminal domain of PqsA (PDB ID: 50e3).

Appendix XXIXc. 3D (right) and 2D (left) representations of the binding interactions **10** of against N-terminal domain of PqsA (PDB ID: 50e3).

Appendix XXIXd. 3D (right) and 2D (left) representations of the binding interactions of **11** against N-terminal domain of PqsA (PDB ID: 50e3).

Appendix XXIXe. 3D (right) and 2D (left) representations of the binding interactions of 12 against N-terminal domain of PqsA (PDB ID: 50e3).

Appendix XXIXf. 3D (right) and 2D (left) representations of the binding interactions of **13** against N-terminal domain of PqsA (PDB ID: 50e3).

Appendix XXIXg. 3D (right) and 2D (left) representations of the binding interactions of **14** against N-terminal domain of PqsA (PDB ID: 50e3).

Appendix XXIXh. 3D (right) and 2D (left) representations of the binding interactions of **15** against N-terminal domain of PqsA (PDB ID: 50e3).

Appendix XXIXi. 3D (right) and 2D (left) representations of the binding interactions of **16** against N-terminal domain of PqsA (PDB ID: 50e3).

Appendix XXIXj. 3D (right) and 2D (left) representations of the binding interactions of **amoxicillin** against N-terminal domain of PqsA (PDB ID: 50e3).

Appendix XXXa. 3D (right) and 2D (left) representations of the binding interactions of **8** against *S. aureus* Pyruvate Kinase (PDB ID: 3t07).

Appendix XXXb. 3D (right) and 2D (left) representations of the binding interactions of **9** against *S. aureus* Pyruvate Kinase (PDB ID: 3t07).

Appendix XXXc. 3D (right) and 2D (left) representations of the binding interactions of **10** against *S. aureus* Pyruvate Kinase in complex (PDB ID: 3t07).

Appendix XXXd. 3D (right) and 2D (left) representations of the binding interactions of **11** against *S. aureus* Pyruvate Kinase (PDB ID: 3t07).

Appendix XXXe. 3D (right) and 2D (left) representations of the binding interactions of **12** against *S. aureus* Pyruvate Kinase (PDB ID: 3t07).

Appendix XXXf. 3D (right) and 2D (left) representations of the binding interactions of **13** against *S. aureus* Pyruvate Kinase (PDB ID: 3t07).

Appendix XXXg. 3D (right) and 2D (left) representations of the binding interactions of 14 against *S. aureus* Pyruvate Kinase (PDB ID: 3t07).

Appendix XXXh. 3D (right) and 2D (left) representations of the binding interactions of **15** against *S. aureus* Pyruvate Kinase (PDB ID: 3t07).

Appendix XXXi. 3D (right) and 2D (left) representations of the binding interactions of **16** against *S. aureus* Pyruvate Kinase (PDB ID: 3t07).

Appendix XXXj. 3D (right) and 2D (left) representations of the binding interactions of **amoxicillin** against *S. aureus* Pyruvate Kinase (PDB ID: 3t07).

Appendix XXXIa. 3D (right) and 2D (left) representations of the binding interactions of **8** against against LuxS of *S. pyogenes* (PDB ID: 4xch)

Appendix XXXIb. 3D (right) and 2D (left) representations of the binding interactions of **9** against LuxS of *S. pyogenes* (PDB ID: 4xch)

Appendix XXXIc. 3D (right) and 2D (left) representations of the binding interactions of **10** against LuxS of *S. pyogenes* (PDB ID: 4xch)

Appendix XXXId. 3D (right) and 2D (left) representations of the binding interactions of **11** against LuxS of *S. pyogenes* (PDB ID: 4xch)

Appendix XXXIe. 3D (right) and 2D (left) representations of the binding interactions of **12** against LuxS of *S. pyogenes* (PDB ID: 4xch)

Appendix XXXIf. 3D (right) and 2D (left) representations of the binding interactions of **13** against LuxS of *S. pyogenes* (PDB ID: 4xch)

Appendix XXXIg. 3D (right) and 2D (left) representations of the binding interactions of 14 against LuxS of *S. pyogenes* (PDB ID: 4xch)

Appendix XXXIh. 3D (right) and 2D (left) representations of the binding interactions of **15** against LuxS of *S. pyogenes* (PDB ID: 4xch)

Appendix XXXIi. 3D (right) and 2D (left) representations of the binding interactions of **16** against LuxS of *S. pyogenes* (PDB ID: 4xch)

Appendix XXXIj. 3D (right) and 2D (left) representations of the binding interactions of **amoxicillin** against LuxS of *S. pyogenes* (PDB ID: 4xch)

Appendix XXXIIa. 3D (right) and 2D (left) representations of the binding interactions of **8** against Penicillin binding proteins (PBPs) (PDB ID: 1VQQ).

Appendix XXXIIb. 3D (right) and 2D (left) representations of the binding interactions of **11** against Penicillin binding proteins (PBPs) (PDB ID: 1VQQ).

Appendix XXXIIc. 3D (right) and 2D (left) representations of the binding interactions of **16** against Penicillin binding proteins (PBPs) (PDB ID: 1VQQ).

Appendix XXXIId. 3D (right) and 2D (left) representations of the binding interactions of **amoxicillin** against Penicillin binding proteins (PBPs) (PDB ID: 1VQQ).

Appendix XXXIIIa. 3D (right) and 2D (left) representations of the binding interactions of 8 against β -lactamases (PDB ID: 1IYS)

Appendix XXXIIIb. 3D (right) and 2D (left) representations of the binding interactions of 11 against β -lactamases (PDB ID: 1IYS)

Appendix XXXIIIc. 3D (right) and 2D (left) representations of the binding interactions of 16 against β -lactamases (PDB ID: 1IYS)

Appendix XXXIIId. 3D (right) and 2D (left) representations of the binding interactions of **amoxicillin** against β -lactamases (PDB ID: 1IYS)

Appendix XXXIVa. 3D (right) and 2D (left) representations of the binding interactions of **8** against Human peroxiredoxin 5 (PDB ID: 1hd2).

Appendix XXXIVb. 3D (right) and 2D (left) representations of the binding interactions of **9** against Human peroxiredoxin 5 (PDB ID: 1hd2).

Appendix XXXIVc. 3D (right) and 2D (left) representations of the binding interactions of **10** against Human peroxiredoxin 5 (PDB ID: 1hd2).

Appendix XXXIVd. 3D (right) and 2D (left) representations of the binding interactions of **11** against Human peroxiredoxin 5 (PDB ID: 1hd2).

Appendix XXXIVe. 3D (right) and 2D (left) representations of the binding interactions of **12** against Human peroxiredoxin 5 (PDB ID: 1hd2).

Appendix XXXIVf. 3D (right) and 2D (left) representations of the binding interactions of **13** against Human peroxiredoxin 5 (PDB ID: 1hd2).

Appendix XXXIVg. 3D (right) and 2D (left) representations of the binding interactions of **14** against Human peroxiredoxin 5 (PDB ID: 1hd2).

Appendix XXXIVh. 3D (right) and 2D (left) representations of the binding interactions of **15** against Human peroxiredoxin 5 (PDB ID: 1hd2).

Appendix XXXIVi. 3D (right) and 2D (left) representations of the binding interactions of **16** against Human peroxiredoxin 5 (PDB ID: 1hd2).

Appendix XXXIVj. 3D (right) and 2D (left) representations of the binding interactions of vitamin C against Human peroxiredoxin 5 (PDB ID: 1hd2).

Appendix XXXVa. 3D (right) and 2D (left) representations of the binding interactions of **8** against α -amylase enzyme (PDB ID: 4w93)

Appendix XXXVb. 3D (right) and 2D (left) representations of the binding interactions of 11 against α -amylase enzyme (PDB ID: 4w93)

Appendix XXXVc. 3D (right) and 2D (left) representations of the binding interactions of 16 against α -amylase enzyme (PDB ID: 4w93)

Appendix XXXVd. 3D (right) and 2D (left) representations of the binding interactions of **acarbose** against α -amylase enzyme (PDB ID: 4w93)

