Table S1. Univariate and multivariate logistic regression analysis for the maintenance dosage and cumulative dose of tigecycline in the total population $(\mathrm{N}=311)$

	Univariate Logistic		Multivariate Logistic	
Variables	OR	\boldsymbol{P}-value	OR	\boldsymbol{P}-value
Treatment Scheme of 100 mg every 12h	$1.00(0.61-1.63)$	0.985	$0.71(0.41-1.22)$	0.218
Cumulative Dose of Tigecycline (g)	$1.60(1.32-2.90)$	0.001	$1.70(1.26-2.35)$	0.001

Table S2. Univariate and multivariate logistic regression analysis for the maintenance dosage and cumulative dose of tigecycline in the primary cohort ($\mathrm{N}=217$)

	Univariate Logistic		Multivariate Logistic	
Variables	OR	\boldsymbol{P}-value	OR	\boldsymbol{P}-value
Treatment Scheme of 100 mg every 12h	$1.15(0.63-2.09)$	0.653	$0.82(0.43-1.56)$	0.540
Cumulative Dose of Tigecycline (g)	$1.96(1.32-2.90)$	0.001	$2.03(1.37-3.13)$	0.001

Table S3. Univariate and multivariate logistic regression analysis for the maintenance dosage and cumulative dose of tigecycline in the validation cohort ($\mathrm{N}=94$)

	Univariate Logistic		Multivariate Logistic	
Variables	OR	\boldsymbol{P}-value	OR	\boldsymbol{P}-value
Treatment Scheme of 100 mg every 12h	$0.74(0.30-1.78)$	0.503	$0.55(0.19-1.47)$	0.238
Cumulative Dose of Tigecycline (g)	$1.21(0.79-1.91)$	0.382	$1.38(0.86-2.33)$	0.195

Table S4. Comparison of model 2 and model 1

Comparison	Chang in AUROC	$\boldsymbol{P}_{\text {AUC }}$	NRI (95\% CI)	$\boldsymbol{P}_{\text {NRI }}$
model 2 vs. model 1	-0.011	0.309	$-0.225(-0.487-0.037)$	0.092

Model 1 is a multivariate logistic regression model adjusted for medication time over 7 days, combined other antibiotics, initial PT, initial INR, initial fibrinogen and eGFR. Model 2 eliminates initial INR based on model 1.

Abbreviation: AUC: Area Under the Receiver Operating Characteristic Curve; NRI: Net Reclassification Improvement; PT, prothrombin time; INR, international normalized ratio; eGFR, estimated glomerular filtration rate.

Table S5. Univariate logistic regression analysis for the risk factors of in-hospital mortality of in the total population $(\mathrm{N}=311)$

	Univariate Logistic Regression		
Variables	OR	OR 95\% CI	P-value
Age (years)	1.03	$1.01-1.05$	0.01
Gender (Male)	1.26	$0.70-2.29$	0.44
BMI (kg/m ${ }^{2}$)	0.85	$0.75-0.96$	0.01
COPD	3.80	$1.12-12.90$	0.03
Hypertension	1.06	$0.57-1.96$	0.86
CHD	3.67	$1.68-8.02$	<0.01
Heart Failure	3.24	$0.99-10.60$	0.05
Diabetes	2.47	$1.29-4.75$	0.01
Active Malignant Tumor	1.05	$0.59-1.86$	0.87
Abdominal Tumor	1.21	$0.66-2.21$	0.54
Medication Time (days)	0.95	$0.90-1.00$	0.05
Medication Time over 7 Days	0.90	$0.50-1.64$	0.74
Cumulative Dose of Tigecycline (g)	0.83	$0.58-1.19$	0.32
ALT (U/L)	1.00	$0.99-1.00$	0.55
AST (U/L)	1.00	$1.00-1.01$	0.11
Creatinine (μ mol/L)	1.00	$1.00-1.01$	0.05
eGFR (ml/min/1.73m ${ }^{2}$)	0.99	$0.98-1.00$	<0.01
Tigecycline-related Coagulopathy	2.51	$1.37-4.60$	<0.01
Bleeding Event	1.50	$0.57-3.96$	0.42
Abbrian: BMI, bady			

Abbreviation: BMI, body mass index; COPD, chronic obstructive pulmonary disease; CHD, coronary heart disease; ALT, alanine aminotransferase; AST, aspartate aminotransferase; eGFR, estimated glomerular filtration rate.

Table S6. Comparison of baseline between the tigecycline-related coagulopathy group and non-coagulopathy group

Variables	Tigecycline-related coagulopathy group $N=161$	Non-coagulopathy group $N=150$	P-value
Age (years)	60.63 ± 15.84	56.71 ± 15.53	0.028
Gender (Male)	105 (65.2\%)	87 (58.0\%)	0.233
BMI (kg/m²)	22.13 [19.36, 24.15]	22.49 [20.11, 24.68]	0.126
COPD	7 (4.3\%)	4 (2.7\%)	0.621
Hypertension	53 (32.9\%)	39 (26.0\%)	0.226
CHD	22 (13.7\%)	9 (6.0\%)	0.039
Heart Failure	7 (4.3\%)	5 (3.3\%)	0.865
Diabetes	36 (22.4\%)	20 (13.3\%)	0.055
Active Malignant Tumor	78 (49.7\%)	81 (55.5\%)	0.371
Abdominal Tumor	52 (32.3\%)	43 (28.7\%)	0.568
Medication Time (days)	11.00 [8.00, 15.00]	8.00 [5.00, 12.00]	<0.001
Medication Time over 7 Days	123 (76.4\%)	83 (55.3\%)	<0.001
Cumulative Dose of Tigecycline (g)	1.30 [1.00, 1.90]	1.02 [0.60, 1.64]	<0.001
ALT (U/L)	49.96 ± 71.59	43.72 ± 47.73	0.396
AST (U/L)	61.26 ± 95.93	44.01 ± 55.92	0.07
Creatinine ($\mu \mathrm{mol} / \mathrm{L}$)	93.50 [66.25, 125.00]	74.50 [58.00, 97.75]	0.004
eGFR ($\mathrm{ml} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$)	80.63 [49.46, 114.48]	104.81 [71.76, 122.36]	<0.001
Bleeding Event	18 (11.5\%)	6 (4.1\%)	0.027

Abbreviation: BMI, body mass index; COPD, chronic obstructive pulmonary disease; CHD, coronary heart disease; ALT, alanine aminotransferase; AST, aspartate aminotransferase; eGFR, estimated glomerular filtration rate.

Figure S1. The proportion of prescription department of patients received tigecycline combination therapy. Others mainly include Department of Stomatology, Department of Urology, Endocrinology Department, Nephrology Department, Department of Thoracic Surgery and Department of Cardiovascular Surgery.

Figure S2. The proportion of pathogen of patients received tigecycline combination therapy. Others are bacteria accounting for less than 1\% mainly including: Neisseria, Aeromonas, Vibrio fluvialis, Bacteroides fragilis and Bacillus firmus.

Figure S3. The proportion of type of infection of patients received tigecycline combination therapy. Abbreviation: cIAI, complicated intra-abdominal infection; SSSI, skin soft tissue infection; CAP: community acquired pneumonia; HAP: hospital acquired pneumonia; VAP: ventilator-associated pneumonia.

Figure S4. The proportion of antibiotics used in combination of patients received tigecycline combination therapy. Others are antibiotics accounting for less than 3% mainly including: Polymyxin, linezolid, teicoplanin, ciprofloxacin, ceftazidime and ceftriaxone.

