Supplementary materials

Compound 7b

Compound 4c

Compound 5k

Compound 6

Compound 5a
Figure S1. Show the 3D interactions between (1AN5) and the studied compounds ($\mathbf{7 b}, \mathbf{4 c}, \mathbf{5 k}, \mathbf{6}$, and 5a, respectively).

Compound 3

Compound 7c

Compound 5f

Compound 5b

Compound 5g
Figure S2. Show the 3D interactions between (1AN5) and the studied compounds ($\mathbf{3}, \mathbf{7 c}, \mathbf{5 f}, \mathbf{5 b}$, and $\mathbf{5 g}$, respectively).

Interactions

\square	Pi-Sulfur
\square	Pi-Pi Stacked
\square	Pi-Alkyl

Compound 7b

Interactions

Conventional Hydrogen Bond
Carbon Hydrogen Bond
Pi-Pi Stacked
\square Alkyl

Interactions

Pi-Pi T-shaped
Pi-Sigma \square Pi-Alkyl

Compound 5k

Interactions

Interactions
\square Conventional Hydrogen Bond Pi-Sigma

Compound 5a

Figure S3. Show the 2D interactions between (1AN5) and the studied compounds (7b, 4c, 5k, 6, and 5a, respectively).

Interactions
Conventional Hydrogen Bond
Pi-Sigma
$\square \mathrm{Pi}$-Sulfur

Interactions

Pi-Pi T-shaped
Alkyl
Pi-Alkyl

Compound 7c

Interactions

\square Conventional Hydrogen Bond
Pi-Anion
Pi-Sigma

Compound 5f

Interactions

\square	Pi-Lone Pair
\square	Pi-Pi T-shaped
\square	Pi-Alkyl

Compound 5b

Interactions

Conventional Hydrogen Bond

\square Pi-Pi T-shaped	
\square	Alkyl
\square	Pi-Alkyl

Pi-Sigma
Pi-Pi Stacked

Compound 5g

Figure S4. Show the 2D interactions between (1AN5) and the studied compounds (3, 7c, 5f, 5b, and 5g, respectively).

Figure $\mathrm{S} 5 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 b}$

4c

Figure S . ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4 c

Figure $\mathrm{ST} .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 a}$

Figure $\mathrm{SB} .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 a}$

Figure S . ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 c}$

Figure S10. ${ }^{13}$ C NMR spectrum of compound 5 c

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 k}$

Figure $\mathrm{S} 12 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 k}$

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 e}$

Figure S14. ${ }^{13}$ C NMR spectrum of compound 5e

Figure $\mathrm{S} 15 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 b}$

Figure S16. ${ }^{13}$ C NMR spectrum of compound $\mathbf{5 b}$

Figure $\mathrm{S} 17 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 j}$

Figure S18. ${ }^{13}$ C NMR spectrum of compound $\mathbf{5 j}$

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 6

Figure $\mathrm{S} 20 .{ }^{1} \mathrm{H}$ NMR spectrum of compound 7 a

Figure S21. ${ }^{13}$ C NMR spectrum of compound 7a

Figure $\mathrm{S} 22 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{7 b}$

Figure S23. ${ }^{13}$ C NMR spectrum of compound 7b

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{7 c}$

Figure S25. ${ }^{13}$ C NMR spectrum of compound 7c

4	R
a	phenyl
b	$4-N, N$-dimethylphenyl
c	$3,4,5$-trimethoxyphenyl
d	4-nitrophenyl

Scheme 1. Reagents conditions: (i) Ethylchloroacetate, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, reflux, 12h, 87%; (ii) $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$, reflux, $5 \mathrm{~h}, 90 \%$; (iii) RCHO, $\mathrm{EtOH}, \mathrm{AcOH}$, reflux, 15h, for 4a: 87%; for 4b: 88%; for 4c: 90%; for $\mathbf{4 d}$: 90%.

Synthesis of arylidene derivatives 4a-d

5	\mathbf{R}^{\prime}	\mathbf{R}^{\prime}
a	phenyl	1-naphthyl
b	phenyl	2-nitrophenyl
c	phenyl	4-methylphenyl
d	4-(dimethylamino)phenyl	1-naphthyl
e	4-(dimethylamino)phenyl	2-nitrophenyl
f	4-(dimethylamino)phenyl	4-methylphenyl
g	3,4,5-trimethoxyphenyl	1-naphthyl
h	3,4,5-trimethoxyphenyl	2-nitrophenyl
i	3,4,5-trimethoxyphenyl	4-methylphenyl
j	4-nitropheneyl	1-naphthyl
k	4-nitropheneyl	2-nitrophenyl
l	4-nitropheneyl	4-methylphenyl

Scheme 2. Reagents conditions: (i) HClO_{4}, MeCN , r.t, 20 h, for $\mathbf{5 a}$: 75%; for $\mathbf{5 b}$: $\mathbf{7 5 \%}$; for $\mathbf{5 c}$: $\mathbf{7 7 \%}$; for $\mathbf{5 d}$: $\mathbf{8 2 \%}$; for $\mathbf{5 e}$: 80%; for $\mathbf{5 f}$: 80%; for $\mathbf{5 g}$: $\mathbf{8 5 \%}$; for $\mathbf{5 h}$: $\mathbf{8 5 \%}$; for $\mathbf{5 i}$; $\mathbf{8 0 \%}$; for $\mathbf{5 j}$: 86%; for $\mathbf{5 k}$: 88%; for $\mathbf{5 1}$: $\mathbf{9 2 \%}$.

Synthesis of α-aminophosphonates 5a-I

Scheme 3. Reagents conditions: (i) HCOOH , reflux, $14 \mathrm{~h}, 90 \%$; (ii) $\mathrm{R}^{\prime} \mathrm{NH}_{2}$, $(\mathrm{PhO})_{3} \mathrm{P}, \mathrm{HClO}_{4}, \mathrm{MeCN}, 24 \mathrm{~h}$, for $7 \mathbf{7 a}: 85 \%$; for $\mathbf{7 b}: 87 \%$; for $\mathbf{7 c}: 88 \%$.

