The potential role of small nucleolar RNAs in cancers

- an evidence map

(Supplementary materials)

Content

Table S1. List of included studies	2
Table S2. Risk signature based on snoRNAs	11
Table S3. Capability of the snoRNAs to discriminate malignant tumor, other disease an	nd healthy
individuals	16
Fig.S1 Trends in articles published from January 2008 to February 2022	21
Fig.S2 Distribution of cancer types	22
Fig.S3 Fractions of articles from each continent from January 2008 to February 2022	23
Fig.S4 Publication of articles on different cancer types in four continents	24
Fig.S5 The relationship between deregulated snoRNAs and cancer cell phenotype	25

Table S1. List of included studies

Author	Cancer	SnoRNA	Title	
Cui C	NSCLC	SNORA65, SNORA7A,	NOP10 predicts lung cancer prognosis and its associated small nucleolar RNAs	
		SNORA7B	drive proliferation and migration	
Liu Z	HCC	SNORA23 SNORA23 inhibits HCC tumorigenesis by impairing the 2'-O-ribose		
			level of 28S rRNA	
Shang X	ccRCC	SNORD63, SNORD96A	SNORD63 and SNORD96A as the non-invasive diagnostic biomarkers for clear	
			cell renal cell carcinoma	
Dong X	NSCLC	SNORD55	Tumor-educated platelet SNORD55 as a potential biomarker for the early	
			diagnosis of non-small cell lung cancer	
Su X	BC	SNORD50A, SNORD50B	The noncoding RNAs SNORD50A and SNORD50B-mediated TRIM21-GMPS	
			interaction promotes the growth of p53 wild-type breast cancers by degrading p53	
He JY	Colon	SNORD16	Small Nucleolar RNA, C/D Box 16 (SNORD16) Acts as a Potential Prognostic	
	cancer		Biomarker in Colon Cancer	
Li C	HCC	SNORD52	The C/D box small nucleolar RNA SNORD52 regulated by Upf1 facilitates	
			Hepatocarcinogenesis by stabilizing CDK1	
Roychowdhury A	Cervical	SNORD97, SNORD3A,	Deregulation of H19 is associated with cervical carcinoma	
	carcinoma	SNORD3C, SNORD3D,		
		SNORA12, SCARNA9		
Guerrieri AN	BC	SNORA67	DKC1 Overexpression Induces a More Aggressive Cellular Behavior and	
			Increases Intrinsic Ribosomal Activity in Immortalized Mammary Gland Cells	

Author	Cancer	SnoRNA	Title					
Zhang L	OC	SNORA72	SNORA72 Activates the Notch1/c-Myc Pathway to Promote Stemness					
			Transformation of Ovarian Cancer Cells					
Mao LH	HCC	SNORD72	LncRNA-LALR1 upregulates small nucleolar RNA SNORD72 to promote growth					
			and invasion of hepatocellular carcinoma					
Xia XR	Glioma	SNORD44	Effects of small nucleolar RNA SNORD44 on the proliferation, apoptosis and					
			invasion of glioma cells					
Ding Y	HCC	SNORD31	Revealing the clinical significance and prognostic value of small nucleolar RNA					
			SNORD31 in hepatocellular carcinoma					
Zhang Z	CRC	SNORA71A	SNORA71A Promotes Colorectal Cancer Cell Proliferation, Migration, and					
			Invasion					
Pauli C	AML	SNORD42A	Site-specific methylation of 18S ribosomal RNA by SNORD42A is required for					
			acute myeloid leukemia cell proliferation					
Wu H	CRC	SNORD12C, SNORD78	Long noncoding RNA ZFAS1 promoting small nucleolar RNA-mediated					
			2'-O-methylation via NOP58 recruitment in colorectal cancer					
Godel M	Osteosarco	SNORD3A, SNORA13,	Small Nucleolar RNAs Determine Resistance to Doxorubicin in Human					
	ma	SNORA28	Osteosarcoma					
Ding Y	HCC	SNORA71A	Identification of snoRNA SNORA71A as a Novel Biomarker in Prognosis of					
			Hepatocellular Carcinoma					
Duan S	BC	SNORA71B	SNORA71B promotes breast cancer cells across blood-brain barrier by inducing					
			epithelial-mesenchymal transition					
Oliveira V	MM	ACA11	The snoRNA target of t(4;14) in multiple myeloma regulates ribosome biogenesis					
McMahon M	SH-HCC	SNORA24	A single H/ACA small nucleolar RNA mediates tumor suppression downstream of					
			oncogenic RAS					
Kitagawa T	PDAC	SNORA74A, SNORA25	Circulating pancreatic cancer exosomal RNAs for detection of pancreatic cancer					

Author	Cancer	SnoRNA	Title		
Li Y	GC	SNORA42,SNORA74A,SNOR	SRPK1 facilitates tumor cell growth via modulating the small nucleolar RNA		
		D10	expression in gastric cancer		
Wang X	GC	U66, ACA47, ACA10, E2,	Identification of Eight Small Nucleolar RNAs as Survival Biomarkers and Their		
		SNORA58, HBII-316, U70, U8	Clinical Significance in Gastric Cancer		
Qin Y	Gallbladder	SNORA21	Overexpression of SNORA21 suppresses tumorgenesis of gallbladder cancer in		
	cancer		vitro and in vivo		
Sun Y	BC	SNORA7B	H/ACA box small nucleolar RNA 7B acts as an oncogene and a potential		
			prognostic biomarker in breast cancer		
Zhu W	OC	SNORA2B, SNORD19,	SNORD89 promotes stemness phenotype of ovarian cancer cells by regulating		
		SNORD116-4, SNORD89	Notch1-c-Myc pathway		
Tang G	NSCLC	SNORA71A	Small Nucleolar RNA 71A Promotes Lung Cancer Cell Proliferation, Migration and		
			Invasion via MAPK/ERK Pathway		
Zhang C	GC	SNORD105B	C/D-Box Snord105b Promotes Tumorigenesis in Gastric Cancer via		
			ALDOA/C-Myc Pathway		
Yi C	PCa	SNORA42	SNORA42 enhances prostate cancer cell viability, migration and EMT and is		
			correlated with prostate cancer poor prognosis		
Liu CX	GC	SNORA21	The SNORA21 expression is upregulated and acts as a novel independent		
			indicator in human gastric cancer prognosis		
Wang H	HCC	snoU2_19	Small nucleolar RNA U2_19 promotes hepatocellular carcinoma progression by		
			regulating Wnt/β-catenin signaling		
Yang Y	OC	SNORD114-10	Preliminary screening and identification of differentially expressed		
			metastasis-related ncRNAs in ovarian cancer		
Cao P	HCC	SNORA18L5	Germline Duplication of SNORA18L5 Increases Risk for HBV-related		
			Hepatocellular Carcinoma by Altering Localization of Ribosomal Proteins and		
			Decreasing Levels of p53		

Author	Cancer	SnoRNA	Title			
Zhou F	Leukaemia	SNORD14D, SNORD34,	AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce			
		SNORD35A, SNORD43,	self-renewal and leukaemia			
		SNORD53, SNORD104				
Li G	HCC	SNORA47	Small nucleolar RNA 47 promotes tumorigenesis by regulating EMT markers in			
			hepatocellular carcinoma			
Savelyeva AV	NSCLC	U1, U5, U6	Variety of RNAs in Peripheral Blood Cells, Plasma, and Plasma Fractions			
Siprashvili Z	Melanoma,	SNORD50A, SNORD50B	The noncoding RNAs SNORD50A and SNORD50B bind K-Ras and are			
	NSCLC		recurrently deleted in human cancer			
Su Y	NSCLC	SNORD66, SNORD78	Small non-coding RNA biomarkers in sputum for lung cancer diagnosis			
Crea F	PCa	SNORA55	Integrated analysis of the prostate cancer small-nucleolar transcriptome reveals			
			SNORA55 as a driver of prostate cancer progression			
Xu G	HCC	SNORD113-1	Small nucleolar RNA 113-1 suppresses tumorigenesis in hepatocellular			
			carcinoma			
Mannoor K	NSCLC	SNORA3, SNORA42	Small nucleolar RNA signatures of lung tumor-initiating cells			
Chu L	MM	ACA11	Multiple myeloma-associated chromosomal translocation activates orphan			
			snoRNAACA11 to suppress oxidative stress			
Valleron W	Acute	SNORD114-1	Specific small nucleolar RNA expression profiles in acute leukemia			
	leukemia					
Valleron W	PTCL	U3, HBII-239, U59B, U90,	Small nucleolar RNA expression profiling identifies potential prognostic markers			
		HBII-438A, U80	in peripheral T-cell lymphoma			
HE Gee	BC、HNSCC	RNU44, RNU43, RNU48,	The small-nucleolar RNAs commonly used for microRNA normalisation correlate			
		RNU6B	with tumour pathology and prognosis			
Liao J	NSCLC	SNORD33, SNORD66,	Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer			
		SNORD76				
Dong XY	BC	snoRNA U50	Implication of snoRNA U50 in human breast cancer.			

Author	Cancer	SnoRNA		Title
Dong XY	PCa	snoRNA U50		SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation
				associated with clinically significant prostate cancer.
Wu L	HCC	ACA11		Small nucleolar RNA ACA11 promotes proliferation, migration and invasion in
				hepatocellular carcinoma by targeting the PI3K/AKT signaling pathway.
Ma P	HCC	SNORD78		Up-regulation of small nucleolar RNA 78 is correlated with aggressive phenotype
				and poor prognosis of hepatocellular carcinoma
Fang X		SNORD126		SNORD126 promotes HCC and CRC cell growth by activating the PI3K-AKT
				pathway through FGFR2
Gao L	NSCLC	SNORA47,	SNORA68,	Genome-wide small nucleolar RNA expression analysis of lung cancer by
		SNORA78,	SNORA21,	next-generation deep sequencing
		SNORD28, SNOR	D66	
Su J	NSCLC	SNORA80E,	SNORD33,	Analysis of small nucleolar RNAs in sputum for lung cancer diagnosis
		SNORD66, SNOR	D78	
Langhendries JL	NSCLC、 BC	U3、U8		The human box C/D snoRNAs U3 and U8 are required for pre-rRNA processing
				and tumorigenesis
Blenkiron C	BC	SNORD29,	SNORD34,	Links between the oncoprotein YB-1 and small non-coding RNAs in breast cancer
		SNORD68, SNOR	D33	
Su H	BC	-		Elevated snoRNA biogenesis is essential in breast cancer
Patterson DG	BC	snoRNA-93		Human snoRNA-93 is processed into a microRNA-like RNA that promotes breast
				cancer cell invasion
Mei YP	NSCLC	SNORA42		Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis
Xu B	Glioblastom	SNORD47		SNORD47, a box C/D snoRNA, suppresses tumorigenesis in glioblastoma
	а			
Okugawa Y	CRC	SNORA42		Clinical significance of SNORA42 as an oncogene and a prognostic biomarker in
				colorectal cancer

Author	Cancer	SnoRNA		Title
Yoshida K	CRC	SNORA21		SNORA21-an oncogenic small nucleolar RNA, with a prognostic biomarker
				potential in human colorectal cancer
Yang X	CRC	SNORA15,	SNORA41,	SnoRNAs are involved in the progression of ulcerative colitis and colorectal
		SNORD33		cancer
Chen L	Glioblastom	SNORD76		SNORD76, a box C/D snoRNA, acts as a tumor suppressor in glioblastoma
	а			
Wu L	HCC	SNORD76		Clinical significance of C/D box small nucleolar RNA U76 as an oncogene and a
				prognostic biomarker in hepatocellular carcinoma.
Martens-Uzunov	PCa	SNORD78		C/D-box snoRNA-derived RNA production is associated with malignant
a ES				transformation and metastatic progression in prostate cancer
Cui L	PDAC	SNORA23		Small nucleolar noncoding RNA SNORA23, up-regulated in human pancreatic
				ductal adenocarcinoma, regulates expression of spectrin repeat-containing
				nuclear envelope 2 to promote growth and metastasis of xenograft tumors in
				mice.
Zou AE	HNSCC	SNORD35B		Transcriptome sequencing uncovers novel long noncoding and small nucleolar
				RNAs dysregulated in head and neck squamous cell carcinoma
Krell J	CRC	U44,U47		Growth arrest-specific transcript 5 associated snoRNA levels are related to p53
				expression and DNA damage in colorectal cancer.
Yuan S	CRC	SNORD44		An oncolytic adenovirus expressing SNORD44 and GAS5 exhibits antitumor
				effect in colorectal cancer cells
Teittinen KJ	Leukemic	-		Expression of small nucleolar RNAs in leukemic cells
Ronchetti D	CLL	SNORA74A, S	NORD116-18,	Small nucleolar RNAs as new biomarkers in chronic lymphocytic leukemia
		SNORD56		

Author	Cancer	SnoRNA	Title					
Berquet L	CLL	SNORA12, SNORA22, SNORA2	Small nucleolar RNA expression profiles refine the prognostic impact of IGHV					
		7,SNORA56,SNORA70,SNOR	mutational status on treatment-free survival in chronic lymphocytic leukaemia					
		D1A,SNORD,SNORD105B,SC						
		ARNA8,SNORA80						
Boone DN	BC	SNORA17, SNORA43	SNHG7 is a IncRNA oncogene controlled by Insulin-like Growth Factor signaling					
			through a negative feedback loop to tightly regulate proliferation					
Schulten HJ	BC	SNORA1,SNORA2A,SNORA9,	Comprehensive molecular biomarker identification in breast cancer brain					
		SNORA10,SNORA22,SNORA2	metastases					
		4,SNORA30,SNORA37,SNOR						
		A38,SNORA52,SNORA71A,SN						
		ORA71B,SNORA71C,SNORD1						
		3P2,SNORD15A,SNORD34,S						
		NORD35A,SNORD41,SNORD						
		53,SCARNA22						
Krishnan P	BC	SNORD46, SNORD89	Profiling of small nucleolar RNAs by next generation sequencing:Potential new					
			players for breast cancer prognosis					
Gong J	NSCLC、BC	SNORD46	A pan-cancer analysis of the expression and clinical relevance of small nucleolar					
			RNAs in human cancer					
Yu F	BC	SNORD28, SNORD25	p53 represses the oncogenic Sno-MiR-28 derived from a SnoRNA					
Zhao Y	Renal clear	SNORA2, SNORD12B,	Expression signature of six-snoRNA serves as novel non-invasive biomarker for					
	cell	SNORA59B, SNORA70B,	diagnosis and prognosis prediction of renal clear cell carcinoma					
	carcinoma	SNORD93, SNORD116-2						
Kothari C	BC	SNORD115,SNORD114	Identification of a gene signature for different stages of breast cancer					
			development that could be used for early diagnosis and specific therapy					

Author	Cancer	SnoRNA	Title
Liu Y	CRC	SNORD1C	Overexpression of small nucleolar RNA SNORD1C is associated with
			unfavorable outcome in colorectal cancer
Zheng D	NSCLC	SNORD78	Small nucleolar RNA 78 promotes the tumorigenesis in non-small cell lung cancer
Li H	GBM	SNORD76	SnoRNA SNORD76 is downregulated in glioblastoma and inhibits cell
			proliferation through cyclinD1 and p21
Shan Y	ESCC	SNORA42	SNORA42 promotes oesophageal squamous cell carcinoma development
			through triggering the DHX9/p65 axis
Qiao S	HCC	snoRA23	snoRNA23 enhances the progression of hepatocellular carcinoma via regulation
			of the Wnt/?-catenin pathway
Hu T	BC	SNORA71A	Small nucleolar RNA SNORA71A promotes epithelial-mesenchymal transition by
			maintaining ROCK2 mRNA stability in breast cancer
Li JN	BC	U50A (SNORD50A)	Expression of SnoRNA U50A Is Associated with Better Prognosis and Prolonged
			Mitosis in Breast Cancer
Wang G	HCC	SNORA42	Small nucleolar RNA 42 promotes the growth of hepatocellular carcinoma through
			the p53 signaling pathway
Liang J	HCC	SNORD17	Non-coding small nucleolar RNA SNORD17 promotes the progression of
			hepatocellular carcinoma through a positive feedback loop upon p53 inactivation
Ding Y	HCC	SNORA52	Downregulation of snoRNA SNORA52 and Its Clinical Significance in
			Hepatocellular Carcinoma
Appaiah HN	BC	U6	Persistent upregulation of U6:SNORD44 small RNA ratio in the serum of breast
			cancer patients
Pacilli A	CRC	SNORD50A	SnoRNA U50 Levels Are Regulated by Cell Proliferation and rRNA Transcription
Xu L	CRC	snord12B	Distinct Profiles for Mitochondrial t-RNAs and Small Nucleolar RNAs in Locally
			Invasive and Metastatic Colorectal Cancer

Author	Cancer	SnoRNA	Title			
Langhendries	LUAD, BC	U3、U8	The human box C/D snoRNAs U3 and U8 are required for prer-RNA processing			
J-L			and tumorigenesis			
Fang X	HCC,CRC	SNORD126	SNORD126 promotes HCC and CRC cell growth by activating the PI3K-AKT			
			pathway through FGFR2			
Bagheri A	NSCLC	SNORD37	Altered miR-223 expression in sputum for diagnosis of non-small cell lung cancer			
Tian B	ESCC	SNORD12B	Oncogenic SNORD12B activates the AKT-mTOR-4EBP1 signaling in esophageal			
			squamous cell carcinoma via nucleus partitioning of PP-1 $lpha$			
Chen X	HCC	SNORD105	An SNP reducing SNORD105 and PPAN expression decreases the risk			
			hepatocellular carcinoma in a Chinese population			
Xu W	HCC	SNORD126	SnoRD126 promotes the proliferation of hepatocellular carcinoma cells through			
			transcriptional regulation of FGFR2 activation in combination with hnRNPK			
Wang K	NSCLC	SNORD83A	Plasma SNORD83A as a potential biomarker for early diagnosis of non-small-cell			
			lung cancer			
Faucher-Giguère	OC	SNORA81, SNORA19	, High-grade ovarian cancer associated H/ACA snoRNAs promote cancer cell			
L		SNORA56	proliferation and survival			
Wan R	LUAD	SNORD14A,SNORD59A,	Discovery of tumor immune infiltration-related snoRNAs for predicting tumor			
		SNORD99,SNORD100,	immune microenvironment status and prognosis in lung adenocarcinoma			
		SNORD63, SNORD19				

Abbreviations: NSCLC = non-small cell lung cancer, HCC = hepatocellular carcinoma, SH-HCC = resembles human steatohepatitic HCC, ccRCC = clear cell renal cell carcinoma, BC = Breast cancer, OC = ovarian cancer, PCa = Prostate cancer, GC = Gastric cancer, MM = Multiple myeloma, PTCL = Peripheral T-cell lymphoma, HNSCC = Head and neck squamous cell carcinoma, CRC = Colorectal cancer, PDAC = Pancreatic ductal adenocarcinom, CLL = Chronic lymphocytic leukemia, AML = Acute myeloid leukemia, ESCC = Esophageal Squamous Cell Carcinoma LUAD = Lung adenocarcinoma.

Table S2. Risk signature based on snoRNAs.

Author	Cancer	Risk formula	Expression data	Clinical	HR (95%CI, P value)	AUC
			of snoRNAs	validation		
Gao	NSCLC	(411.959 * expression of	Next-generation	training set	-	1 year: 0.701
L[1]*		snoRA78) + (2.34241 * expression of	deep sequencing	of 77		3 year: 0.721
		snoRA47) - (0.30167 * expression of	in 12 NSCLC	cases;		5 year: 0.744
		snoRA68) - 0.7693.	tissues	testing set		7 year: 0.759
				of 49 cases		
Wang	Gastric	(0.0496 * expression of U66) + (-0.0191 *	SNORic	-	3.43 (1.93–6.09,	0.828
X[2]*	cancer	expression of ACA47) + (0.0363 *			P=2.72e-05)	
		expression of ACA10) + (-0.1711 *				
		expression of E2) + (0.0650 * expression				
		of SNORA58) + (0.0953 * expression of				
		HBII-316) + (-0.4749 * U70) + (-0.2352 *				
		expression of U8).				
Zhao	Renal clear	(-0.2791 * expression of SNORA2) +	TCGA	64 clinical	-	-
Y[3]*	cell	(-0.2461 * expression of SNORD116-2) +		tissue		
	carcinoma	(-0.1322 * expression of SNORA59B) +		cases; 50		
		(0.2680 * expression of SNORD93) +		serum		
		(0.2330 * expression of SNORD12B) +		samples		
		(0.4199 * expression of SNORA70B).				

Author	Cancer	Risk formula	Expression data	Clinical	HR (95%Cl, P value)	AUC
			of snoRNAs	validation		
Cao	Bladder	(0.01794 * expression of SNORD113-9) +	SNORic	-	Training cohort:	1 year: 0.702
R[4]#	cancer	(0.02659 * expression of U3) + (0.00104			2.14 (1.48–3.08, P <	3 year: 0.664
		* expression of U49A) + (0.0002 *			0.0001)	5 year: 0.710
		expression of SNORD114-1) + (- 0.0031 *			Testing cohort:	
		expression of SNORD19B)			2.03 (1.19–3.47, P <	
					0.0001)	
Huang	Colon	(0.263 * expression of SNORD14E) +	TCGA	-	7.489 (1.567-35.793, P=	-
L[5]#	adenocarcin	(-0.079 * expression of SNORD67)			0.012)	
	oma					
Liu J[6]#	Sarcoma	(-0.1803 * expression of U3) + (0.1826 *	TCGA	-	2.378 (1.560-3.625, P $<$	1 year: 0.727
		expression of SNORA73B) + (0.2846 *			0.001)	
		expression of SNORD46) + (0.1613 *				
		expression of SNORA26)				
Yi Q[7]#	Uveal	(-1.602 * ACA17) + (0.803 * ACA45) +	SNORic	-	-	-
	melanoma	(0.603 * HBII-276) + (1.348 * SNORD12)				
Yang	Hepatocellul	(0.0655 * expression of SNORA24) +	SNORic	-	2.778 (1.904-4.051, P $<$	0.731
H[8]#	ar carcinoma	(0.0991 * expression of SNORA7) +			0.001)	
		(0.1196 * expression of SNORA63) +				
		(0.2590 * expression of U3_chr8-2) +				
		(0.2464 * expression of U3_chr9) +				
		(0.0613 * expression of SNOR19B) +				
		(0.1653 * expression of hTR) + (0.0830 *				
		expression of SNORD36C) + (0.0964 *				
		expression of U44)				

Author	Cancer	Risk formula	Expression data	Clinical	HR (95%CI, P value)	AUC
			of snoRNAs	validation		
He	Bladder	(-0.168 * expression of SNORD114-11) +	SNORic	-	2.5 (1.828–3.420, P<0.001)	0.719
RQ[9]#	carcinoma	(0.201 * expression of SNORD114-14) -				
		(0.229 * expression of SNORD114-15) +				
		(0.543 * expression of SNORD114-9) -				
		(0.198 * expression of SNORA55) -				
		(0.192 * expression of SNORA60) -				
		(0.167 * expression of SNORD88A) -				
		(0.314 * expression of SNORD69) -				
		(0.226 * expression of SNORD20) +				
		(0.432 * expression of U49A) - (0.335 *				
		expression of SNORD51) + (0.514 *				
		expression of U74)				
Xing	HNSCC	SNORD114 - 17, SNORA36B,	UCSC Xena,	-	2.41 (1.8–3.21, P<0.0001)	1 year: 0.674
L[10]#		SNORD78, U3(chr2), U3(chr17)	CGHub			3 year: 0.704
		(The authors did not provide specific				5 year: 0.66
		details of the signature.)				
Zhang	Lung	(0.1293 * expression of snoU109) +	TCGA	-	1.476 (1.096–1.987,	1 year: 0.61
L[11]#	adenocarcin	(0.1046 * expression of SNORA5A) + (-			P=0.0064)	5 year: 0.618
	oma	0.2012 * expression of SNORA70) + (-				9 year: 0.666
		0.1005 * expression of SNORD104) + (-				
		0.1155 * expression of U3)				

Author	Cancer	Risk formula	Expression data	Clinical	HR (95%Cl, P value)	AUC
			of snoRNAs	validation		
Wan	Lung	SNORD14A, SNORD59A, SNORD99,	GEO, TCGA,	-	TCGA-LUAD: 4.605 (3.259 -	3 year: 0.83
R[12]	adenocarcin	SNORD100, SNORD63, SNORD19	CCLE project		6.508,P<0.001);	5 year: 0.82
	oma	(The authors did not provide specific			GSE81089: 2.044 (1.134 -	
		details of the signature.)			3.684, P=0.017)	

* Included studies.

Supplementary studies, bioinformatics articles without subsequent validation by wet lab methods.

Abbreviations: HR = Hazard ratio; CI = Confidence interval; AUC = Area under curve; NSCLC = Non - small cell lung cancer; SNORic = snoRNA in cancers; TCGA = The cancer genome atlas; HNSCC = Head and neck squamous cell carcinoma; CGHub = the Cancer Genomics Hub GEO = Gene Expression Omnibus, CCLE = Cancer Cell Line Encyclopedia.

References

1. Gao, L., et al., Genome-wide small nucleolar RNA expression analysis of lung cancer by next-generation deep sequencing. Int J Cancer, 2015. 136(6): p. E623-9.

2. Wang, X., et al., Identification of Eight Small Nucleolar RNAs as Survival Biomarkers and Their Clinical Significance in Gastric Cancer. Front Oncol, 2019. 9: p. 788.

3. Zhao, Y., et al., Expression signature of six-snoRNA serves as novel non-invasive biomarker for diagnosis and prognosis prediction of renal clear cell carcinoma. J Cell Mol Med, 2020. 24(3): p. 2215-2228.

4. Cao, R., et al., Small nucleolar RNAs signature (SNORS) identified clinical outcome and prognosis of bladder cancer (BLCA). Cancer Cell Int, 2020. 20: p. 299.

5. Huang, L., et al., Prognostic value of small nucleolar RNAs (snoRNAs) for colon adenocarcinoma based on RNA sequencing data. Pathology Research and Practice, 2020. 216(6).

6. Liu, J., et al., Identification of potential prognostic small nucleolar RNA biomarkers for predicting overall survival in patients with sarcoma. Cancer Med, 2020. 9(19): p. 7018-7033.

7. Yi, Q. and W.J. Zou, A novel four- snoRNA signature for predicting the survival of patients with uveal melanoma. Mol Med Rep, 2019. 19(2): p.

1294-1301.

8. Yang, H., et al., Genomic analysis of small nucleolar RNAs identifies distinct molecular and prognostic signature in hepatocellular carcinoma. Oncol Rep, 2018. 40(6): p. 3346-3358.

9. He, R.Q., et al., Small Nucleolar RNAs (snoRNAs)-Based Risk Score Classifier Predicts Overall Survival in Bladder Carcinoma. Med Sci Monit, 2020. 26: p. e926273.

10. Xing L ., et al., Expression scoring of a small - nucleolar - RNA signature identified by machine learning serves as a prognostic predictor for head and neck cancer. J Cell Physiol. 2020;235: 8071 - 8084.

11. Zhang L., et al., Identification of a novel snoRNA expression signature associated with overall survival in patients with lung adenocarcinoma: A comprehensive analysis based on RNA sequencing dataset. Math Biosci Eng. 2021 Sep 10;18(6):7837-7860.

12. Wan R., et al., Discovery of tumor immune infiltration-related snoRNAs for predicting tumor immune microenvironment status and prognosis in lung adenocarcinoma. Comput Struct Biotechnol J. 2021 Nov 25;19:6386-6399.

Table 55. Capability of the showing to also minute manghant tamor, other alsoase and healthy manuala
--

Author	Tumor	Specimen	snoRNA	AUC; 95% CI	Sensitivity	Specificity	Remark
Shang X[1]	ccRCC	plasma	SNORD63	0.5161	95%	27.30%	
			SNORD96A	0.8909	90%	80%	
			combination	0.9205	80.00%	97.50%	
		US	SNORD63	0.7055	47.90%	86.70%	
			SNORD96A	0.6788	53.10%	77.30%	
			combination	0.71	43.70%	89.30%	
	early ccRCC	plasma	SNORD63	0.6144	95%	39.10%	
			SNORD96A	0.9359	95%	87%	
			combination	0.937	82.60%	97.50%	
		US	SNORD63	0.6884	47.90%	82.10%	
			SNORD96A	0.6701	53.10%	79.50%	
			combination	0.6944	92.30%	39.60%	
Dong X[2]	NSCLC	plasma	TEP SNORD55	0.803	79.30%	68.30%	
	early NSCLC	plasma	SNORD55	0.784	91.20%	49.70%	
			TEP SNORD55 and CEA	0.828	66.30%	90.00%	
	LUAD	plasma	TEP SNORD55	0.791	77.90%	68.30%	
	early LUAD	plasma	TEP SNORD55	0.759	89.70%	49.70%	
	LUSC	plasma	TEP SNORD55	0.826	72.40%	77.70%	
	early LUSC	plasma	TEP SNORD55	0.854	68.40%	93.10%	
He JY[3]	CC	tissues	SNORD16	0.7 (0.53-0.86)			

Author	Tumor	Specimen	snoRNA		AUC; 95% CI	Sensitivity	Specificity	Remark
Kitagawa T[4]	PDAC	serum	SNORA74A		0.909 (0.807–1.000)			
			SNORA25		0.903 (0.795–1.000)			
			SNORA22		0.883 (0.774–0.993)			
			SNORA14B		0.875 (0.759–0.990)			
			SNORD22		0.862 (0.750–0.973)			
Su Y[5]	NSCLC	sputum	SNORDs-66,78		0.86	73.91%	83.64%	
			miRs-21,31,210	and	0.94	89.13%	89.09%	
			SNORDRDs-66,78					
Liao J[6]	NSCLC	plasma	SNORD33		0.8233	72.97%	86.36%	1
			SNORD66		0.8139	75.68%	77.27%	
			SNORD76		0.8064	70.27%	90.91%	
			combination		0.89	83.78%	95.45%	
			SNORD33		0.82	72.97%	84.62%	2
			SNORD66		0.7903	72.97%	80.77%	
			SNORD76		0.8149	70.27%	88.46%	
			combination		0.88	81.08%	96.15%	
Gao L[7]	NSCLC	tissues	SNORA12		0.7456	75%	70%	
			SNORA64		0.9025	80%	75%	
			SNORA68		0.8325	75%	90%	
			SNORA70		0.8925	70%	85%	
			SNORA71A		0.8850	80%	80%	
			SNORA71C		0.9425	95%	75%	
			SNORD10		0.8850	95%	80%	
			SNORD74		0.8750	70%	95%	
			SNORD80		0.8625	80%	85%	

Author	Tumor	Specimen	snoRNA	AUC; 95% CI	Sensitivity	Specificity	Remark
			SNORD96A	0.8225	80%	80%	
			SNORA21	0.8900	80%	85%	
			SNORD28	0.8475	80%	80%	
			SNORA34	0.7475	80%	75%	
			SNORA38B	0.7569	75%	80%	
			SNORA47	0.7567	80%	75%	
			SNORD66	0.7975	75%	80%	
Su J[8]	NSCLC	sputum	SNORD33	0.7230 (0.630-0.816)			
			SNORA42	0.7431 (0.655-0.831)			
			SNORD66	0.8065 (0.725-0.888)			
			SN0RD78	0.8112 (0.731-0.891)			
			SNORDs-66,78	0.86			
Yang X[9]	CRC	tissues	SNORA15	0.808	59.09%	92.86%	3
			SNORA41	0.875	84.09%	64.29%	
			SNORD33	0.938	86.36%	89.99%	
			combination	0.995	90.84%	94.00%	
			SNORA15	0.648	43.18%	99.99%	4
			SNORA41	0.716	70.45%	71.43%	
			SNORD33	0.845	84.09%	82.14%	
			combination	0.841	75.47%	31.58%	
Wu L[10]	HCC	tissues	SNORD76	0.73 (0.64-0.81)			

Author	Tumor	Specimen	snoRNA	AUC; 95% CI	Sensitivity	Specificity	Remark
Zhao Y[11]	ccRCC	tissues	SNORA2, SNORD12B, SNORA59B,	0.800			
			SNORA70B, SNORD93,				
			SNORD116-2				
		serum	SNORA2, SNORD12B, SNORA59B,	0.747			
			SNORA70B, SNORD93, SNORD116-2				
Liu Y[12]	CRC	serum	SNORD1C	0.748(0.670–0.826)	79.80%	57.45%	
			SNORD1C and CEA	0.838(0.774–0.901)	85.86%	62.26%	
Hu T[13]	BC	tissue	SNORA71A	0.72	76.92%	61.54%	
Wang K[14]	NSCLC	plasma	SNORD83A	0.7387	76%	60%	
	early	plasma	SNORD83A	0.7016	84.7%	52.4%	
	NSCLC						
Bagheri A[15]	NSCLC	sputum	SNORD37	0.82(0.72–0.93)	93.3%	63.3%	

Abbreviations: ccRCC = clear cell renal cell carcinoma, NSCLC = non - small cell lung cancer, LUAD = lung adenocarcinoma, LUSC = lung squamous cell carcinoma, CC = colon cancer, PDAC = Pancreatic ductal adenocarcinom, HCC = hepatocellular carcinoma, COPD = chronic obstructive pulmoriary disease, UC = ulcerative colitis, HC = healthy control, US = urinary sediment, TEP = tumor - educated platelet, CEA = carcinoembryonic antigen.

Note: 1. Distinguishing NSCLC from healthy subjects; 2. Distinguishing NSCLC from COPD; 3. Distinguishing CRC from HC; 4. Distinguishing CRC from UC.

References

- 1. Shang, X., et al., SNORD63 and SNORD96A as the non-invasive diagnostic biomarkers for clear cell renal cell carcinoma. Cancer Cell Int, 2021. 21(1): p. 56.
- 2. Dong, X., et al., Tumor-educated platelet SNORD55 as a potential biomarker for the early diagnosis of non-small cell lung cancer. Thorac Cancer, 2021. 12(5): p. 659-666.
- 3. He, J.Y., et al., Small Nucleolar RNA, C/D Box 16 (SNORD16) Acts as a Potential Prognostic Biomarker in Colon Cancer. Dose Response, 2020.

18(2): p. 1559325820917829.

- 4. Kitagawa, T., et al., Circulating pancreatic cancer exosomal RNAs for detection of pancreatic cancer. Mol Oncol, 2019. 13(2): p. 212-227.
- 5. Su, Y., et al., Small non-coding RNA biomarkers in sputum for lung cancer diagnosis. Mol Cancer, 2016. 15(1): p. 36.
- 6. Liao, J., et al., Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol Cancer, 2010. 9: p. 198.
- Gao, L., et al., Genome-wide small nucleolar RNA expression analysis of lung cancer by next-generation deep sequencing. Int J Cancer, 2015.
 136(6): p. E623-9.
- 8. Su, J., et al., Analysis of small nucleolar RNAs in sputum for lung cancer diagnosis. Oncotarget, 2016. 7(5): p. 5131-42.
- 9. Yang, X., et al., SnoRNAs are involved in the progression of ulcerative colitis and colorectal cancer. Dig Liver Dis, 2017. 49(5): p. 545-551.
- 10. Wu, L., et al., Clinical significance of C/D box small nucleolar RNA U76 as an oncogene and a prognostic biomarker in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol, 2018. 42(1): p. 82-91.
- 11. Zhao, Y., et al., Expression signature of six-snoRNA serves as novel non-invasive biomarker for diagnosis and prognosis prediction of renal clear cell carcinoma. J Cell Mol Med, 2020. 24(3): p. 2215-2228.
- 12. Liu, Y., et al., Overexpression of small nucleolar RNA SNORD1C is associated with unfavorable outcome in colorectal cancer. Bioengineered, 2021. 12(1): p. 8943-8952.
- 13. Hu, T., et al., Small nucleolar RNA SNORA71A promotes epithelial-mesenchymal transition by maintaining ROCK2 mRNA stability in breast cancer. Mol Oncol, 2022.
- 14. Wang, K., et al., Plasma SNORD83A as a potential biomarker for early diagnosis of non-small-cell lung cancer. Future Oncol, 2021.
- 15. Bagheri, A., et al., Altered miR-223 Expression in Sputum for Diagnosis of Non-Small Cell Lung Cancer. Avicenna J Med Biotechnol, 2017. 9(4): p. 189-195.

Fig.S1 Trends in articles published from January 2008 to February 2022.

Fig.S2 Distribution of cancer types.

Abbreviations: NSCLC = Non-small cell lung cancer, HCC = Hepatocellular carcinoma, CRC = Colorectal cancer, PDAC = Pancreatic ductal adenocarcinoma, GC = Gastric cancer, ccRCC = Clear cell renal cell carcinoma, BC = Breast cancer, OC = Ovarian cancer, PCa = Prostate can--cer, MM = Multiple myeloma, PTCL = Peripheral T-cell lymphoma, HNSCC = Head and neck squamous cell carcinoma, ESCC = Esophageal squamous cell carcinoma. Supplementary materials - Fig.S3 Fractions of articles from each continent from January 2008 to February 2022.

Fig.S3 Fractions of articles from each continent from January 2008 to February 2022.

Fig.S4 Publication of articles on different cancer types in four continents.

Abbreviations: NSCLC = Non-small cell lung cancer, HCC = Hepatocellular carcinoma, ccRCC = Clear cell renal cell carcinoma, BC = Breast cancer, CRC = Colorectal cancer, MM = Multiple myeloma, PDAC = Pancreatic ductal ade--nocarcinoma, GC = Gastric cancer, PCa = Prostate cancer, PTCL = Peripheral T-cell lymphoma, HNSCC = Head and neck squamous cell carcinoma, ESCC = Esophageal squamous cell carcinoma.

Fig.S5 The relationship between deregulated snoRNAs and cancer cell phenotype.

Abbreviations: HCC = hepatocellular carcinoma, PDAC = pancreatic ductal adenocarcinoma, CRC = colorectal cancer, BC = Breast cancer, PCa = Prostate cancer, OC = Ovarian cancer, NSCLC = Non-small cell lung cancer, MM = Multiple myeloma, PTCL = Peripheral T-cell lymphoma, EMT = epithelial-mesenchymal transition, ESCC = Esophageal squam-ous cell carcinoma.