SUPPLEMENTAL MATERIAL

Supplemental Figure 1 Directed acyclic graph for the association between maternal HBV infection in early pregnancy and risk of CHD in offspring.

Supplemental Figure 2 Directed acyclic graph for the association between maternal coxsackievirus-B infection in early pregnancy and risk of CHD in offspring.

Supplemental Figure 3 Directed acyclic graph for the association between maternal HCMV infection in early pregnancy and risk of CHD in offspring.

Supplemental Figure 4 Directed acyclic graph for the association between maternal HSV infection in early pregnancy and risk of CHD in offspring.

Supplemental Figure 5 Directed acyclic graph for the association between maternal rubella virus infection in early pregnancy and risk of CHD in offspring.

Supplemental Figure 6 The risks of CHD in offspring of pregnant women with viral infection in early pregnancy after excluding pregnant women whose children had non-cardiac defects.

Supplemental Figure 7 The risks of CHD in offspring of pregnant women with viral infection in early pregnancy after excluding pregnant women whose children were diagnosed with more than one CHD phenotypes.

Supplemental Table 1 The distribution of maternal characteristics according to status of maternal HBV, coxsackievirus-B, and HCMV infection.

Supplemental Table 2 The distribution of baseline characteristics according to status of maternal HSV and rubella virus infection.

Supplemental Figure 1 Directed acyclic graph for the association between maternal HBV
infection in early pregnancy and risk of CHD in offspring. Red arrows indicate biasing paths, green arrows indicate causal paths. APOs, adverse pregnancy outcomes; BMI, body mass index; CHD, congenital heart disease; CMs, congenital malformations; DM, diabetes mellitus; $H B V$, hepatitis B virus.

Supplemental Figure 2 Directed acyclic graph for the association between maternal coxsackievirus-B infection in early pregnancy and risk of CHD in offspring. Red arrows indicate biasing paths, green arrows indicate causal paths. APOs, adverse pregnancy outcomes; BMI, body mass index; CHD, congenital heart disease; CMs, congenital malformations; DM, diabetes mellitus.

Supplemental Figure 3 Directed acyclic graph for the association between maternal HCMV
infection in early pregnancy and risk of CHD in offspring. Red arrows indicate biasing paths, green arrows indicate causal paths. APOs, adverse pregnancy outcomes; BMI, body mass index; CHD, congenital heart disease; CMs, congenital malformations; DM, diabetes mellitus; HCMV, human cytomegalovirus.

Supplemental Figure 4 Directed acyclic graph for the association between maternal HSV
infection in early pregnancy and risk of CHD in offspring. Red arrows indicate biasing paths, green arrows indicate causal paths. APOs, adverse pregnancy outcomes; BMI, body mass index; CHD, congenital heart disease; CMs, congenital malformations; DM, diabetes mellitus; HSV, herpes simplex virus.

Supplemental Figure 5 Directed acyclic graph for the association between maternal rubella virus infection in early pregnancy and risk of CHD in offspring. Red arrows indicate biasing paths, green arrows indicate causal paths. APOs, adverse pregnancy outcomes; BMI, body mass index; CHD, congenital heart disease; CMs, congenital malformations; DM, diabetes mellitus.
a. Hepatitis B virus

c. Human cytomegalovirus

Type of CHD	Negative ($\mathrm{n}=40004$)	Positive ($\mathrm{n}=2 \mathrm{328}$)	Model 1		Model 2		Model 3	
Total CHD	482 (12.05\%)	82 (35.22\%)	2.92 (2.32-3.68)	-	3.23 (2.52-4.13)	-	3.02 (2.24-4.07)	-
ASD	148 (3.70\%)	22 (9.45\%)	2.55 (1.64-3.99)	--	2.77 (1.72-4.47)	--	3.03 (1.74-5.26)	-
VSD	216 (5.40\%)	30 (12.89\%)	2.39 (1.63-3.49)	-	2.62 (1.78-3.87)	--	2.18 (1.33-3.57)	-
AVSD	46 (1.15\%)	6 (2.58\%)	2.24 (0.96-5.24)	-	1.97 (0.82-4.76)	-	2.02 (0.77-5.28)	
PDA	50 (1.25\%)	34 (14.60\%)	11.69 (7.57-18.03)	\longmapsto	11.12 (6.46-19.14)	\longrightarrow	13.35 (8.08-22.08)	\rightarrow
TOF	30 (0.75\%)	6 (2.58\%)	3.44 (1.43-8.25)	-	7.57 (3.02-18.99)	\cdots	8.36 (3.34-20.9)	\rightarrow
PS	38 (0.95\%)	6 (2.58\%)	2.71 (1.15-6.41)	\square	2.27 (0.89-5.81)	-	2.3 (0.76-6.94)	
TGA	28 (0.70\%)	0 (0.00\%)	-		-		-	
				01246810 Risk ratio		01246810 Risk ratio		01246810 Risk ratio

d. Herpes simplex virus

Type of CHD	Negative ($\mathrm{n}=41 \mathrm{768}$)	Positive ($\mathrm{n}=564$)	Model 1	
Total CHD	556 (13.31\%)	8 (14.18\%)	1.07 (0.53-2.13)	
ASD	166 (3.97\%)	4 (7.09\%)	1.78 (0.66-4.79)	
VSD	241 (5.77\%)	5 (8.87\%)	1.54 (0.64-3.71)	-
AVSD	50 (1.20\%)	2 (3.55\%)	2.96 (0.72-12.14)	
PDA	82 (1.96\%)	2 (3.55\%)	1.81 (0.45-7.33)	
TOF	36 (0.86\%)	0 (0.00\%)	-	
PS	44 (1.05\%)	0 (0.00\%)	-	
TGA	28 (0.67\%)	0 (0.00\%)	-	
				$\begin{array}{lllllll} \hline 1 & 1 & 1 & 1 & \\ 012 & 4 & 6 & 8 & 10 \\ \text { Risk ratio } \end{array}$

e. Rubella virus

Type of CHD	Negative ($\mathrm{n}=41$ 121)	Positive ($\mathrm{n}=1$ 211)	Model 1		Model 2	Model 3		
Total CHD	520 (12.65\%)	44 (36.33\%)	2.87 (2.12-3.89)	--	2.70 (2.02-3.62)	-	2.88 (2.16-3.85)	-
ASD	153 (3.72\%)	17 (14.04\%)	3.77 (2.29-6.21)	\cdots	3.38 (2.14-5.33)	\cdots	3.57 (2.26-5.65)	-
VSD	226 (5.5\%)	20 (16.52\%)	3.00 (1.91-4.73)	--	2.29 (1.48-3.55)	-	2.52 (1.64-3.87)	--
AVSD	42 (1.02\%)	10 (8.26\%)	8.08 (4.07-16.07)	\cdots	2.93 (1.60-5.35)	--	3.67 (1.92-7.01)	--
PDA	82 (1.99\%)	2 (1.65\%)	0.83 (0.20-3.36)		0.97 (0.24-3.94)		1.12 (0.27-4.60)	
TOF	34 (0.83\%)	2 (1.65\%)	2.00 (0.48-8.30)		2.55 (0.69-9.47)		2.86 (0.76-10.8)	
PS	42 (1.02\%)	2 (1.65\%)	1.62 (0.39-6.67)		1.72 (0.39-7.55)		1.81 (0.41-8.01)	
TGA	24 (0.58\%)	4 (3.3\%)	5.66 (1.97-16.29)	$\stackrel{\square}{\square 1,}$	3.75 (1.50-9.41)	$\stackrel{\pi}{\pi 11}$	3.28 (1.29-8.35)	$\stackrel{\square}{\pi 111}$
				$\begin{aligned} & 01246810 \\ & \text { Risk ratio } \end{aligned}$		01246810 Risk ratio		$\begin{gathered} 01246810 \\ \text { Risk ratio } \end{gathered}$

Supplemental Figure 6 The risks of CHD in offspring of pregnant women with viral infection in early pregnancy after excluding pregnant women whose children had non-cardiac defects. For the five viruses analyzed, model 1 was a crude model without any variable adjusted. For HBV (a), model 2 adjusted for educational level, age, ethnicity, history of adverse pregnancy
outcomes, pre-pregnancy BMI, and pre-pregnancy diabetes mellitus, while model 3 adjusted for the variables in model 2 plus other virus infection including coxsackievirus-B, HCMV, HSV, and rubella virus. For coxsackievirus-B (b), model 2 adjusted for educational level, age, and ethnicity, while model 3 adjusted for the variables in model 2 plus other virus infection including HBV, HCMV, HSV, and rubella virus. For HCMV (c), model 2 adjusted for educational level, age, ethnicity, parity, and history of adverse pregnancy outcomes, while model 3 adjusted for the variables in model 2 plus other virus infection including HBV, coxsackievirus-B, HSV, and rubella virus. For HSV (d), model 2 adjusted for educational level, age, ethnicity, parity, and history of adverse pregnancy outcomes, while model 3 adjusted for the variables in model 2 plus other virus infection including HBV, coxsackievirus-B, HCMV, and rubella virus. For rubella virus (e), model 2 adjusted for educational level, age, ethnicity, parity, history of adverse pregnancy outcomes, and pre-pregnancy BMI, while model 3 adjusted for the variables in model 2 plus other virus infection including HBV, coxsackievirus-B, HCMV, and HSV. BMI, body mass index; CHD, congenital heart disease; HBV, hepatitis B virus; HCMV, human cytomegalovirus; HSV, herpes simplex virus.

d. Herpes simplex virus

Type of CHD	Negative ($\mathrm{n}=42 \mathrm{660}$)	Positive ($\mathrm{n}=1$ 279)	Model 1		Model 2		Model 3	
Total CHD	422 (9.89\%)	33 (25.80\%)	2.61 (1.84-3.70)	-	2.47 (1.76-3.48)	-	2.65 (1.89-3.71)	-
ASD	55 (1.29\%)	6 (4.69\%)	3.64 (1.57-8.44)	\square	4.55 (2.07-10.01)	\square	4.51 (2.06-9.87)	\square
VSD	183 (4.29\%)	12 (9.38\%)	2.19 (1.22-3.91)	-	1.86 (1.06-3.29)	-	1.94 (1.14-3.29)	-
AVSD	0 (0.00\%)	0 (0.00\%)	-		-		-	
PDA	54 (1.27\%)	2 (1.56\%)	1.24 (0.30-5.06)		1.47 (0.36-6.02)		1.89 (0.46-7.75)	
TOF	25 (0.59\%)	2 (1.56\%)	2.67 (0.63-11.25)		3.25 (0.84-12.51)	$\xrightarrow{\longrightarrow}$	3.61 (0.92-14.20)	
PS	30 (0.70\%)	1 (0.78\%)	1.11 (0.15-8.15)		1.26 (0.16-9.95)		1.28 (0.16-10.46)	
TGA	18 (0.42\%)	4 (3.13\%)	7.41 (2.51-21.87)	\rightarrow	4.65 (1.73-12.5)	\square	4.07 (1.51-10.96)	\square
						11 1 1 1 12 4 6 8 10		$\begin{array}{llllll} \hline 1 & 1 & 1 & 1 & \\ 12 & 4 & 6 & 8 & 10 \end{array}$
				Risk ratio		Risk ratio		Risk ratio

Supplemental Figure 7 The risks of CHD in offspring of pregnant women with viral infection in early pregnancy after excluding pregnant women whose children were diagnosed with more than one CHD phenotypes. For the five viruses analyzed, model 1 was a crude model without any variable adjusted. For HBV (a), model 2 adjusted for educational level, age, ethnicity,
history of adverse pregnancy outcomes, pre-pregnancy BMI, and pre-pregnancy diabetes mellitus, while model 3 adjusted for the variables in model 2 plus other virus infection including coxsackievirus-B, HCMV, HSV, and rubella virus. For coxsackievirus-B (b), model 2 adjusted for educational level, age, and ethnicity, while model 3 adjusted for the variables in model 2 plus other virus infection including HBV, HCMV, HSV, and rubella virus. For HCMV (c), model 2 adjusted for educational level, age, ethnicity, parity and history of adverse pregnancy outcomes, while model 3 adjusted for the variables in model 2 plus other virus infection including HBV, coxsackievirus-B, HSV, and rubella virus. For HSV (d), model 2 adjusted for educational level, age, ethnicity, parity and history of adverse pregnancy outcomes, while model 3 adjusted for the variables in model 2 plus other virus infection including HBV, coxsackievirus-B, HCMV, and rubella virus. For rubella virus (e), model 2 adjusted for educational level, age, ethnicity, parity, history of adverse pregnancy outcomes, and pre-pregnancy BMI, while model 3 adjusted for the variables in model 2 plus other virus infection including HBV, coxsackievirus-B, HCMV, and HSV. BMI, body mass index; CHD, congenital heart disease; HBV, hepatitis B virus; HCMV, human cytomegalovirus; HSV, herpes simplex virus.

Supplemental Table 1 The distribution of maternal characteristics according to status of maternal HBV, coxsackievirus-B, and HCMV infection.

Baseline characteristics	HBV			Coxsackievirus-B			HCMV		
	Negative (n, \%)	Positive (n, \%)	p-value	Negative (n, \%)	Positive (n, \%)	p-value	Negative (n, \%)	Positive (n, \%)	p-value
Sociodemographic characteristics									
Age (years)			< 0.001			< 0.001			<0.001
<25	4,666 (11.2\%)	314 (12.7\%)		4,668 (11.1\%)	312 (15.0\%)		4,658 (11.2\%)	322 (13.0\%)	
25-29.9	18,442 (44.4\%)	1,282 (51.7\%)		18,530 (44.2\%)	1,194 (57.3\%)		18,292 (44.0\%)	1,432 (57.9\%)	
30-34.9	13,592 (32.7\%)	600 (24.2\%)		13,700 (32.6\%)	492 (23.6\%)		13,674 (32.9\%)	518 (21.0\%)	
≥ 35	4,868 (11.7\%)	284 (11.5\%)		5,066 (12.1\%)	86 (4.1\%)		4,952 (11.9\%)	200 (8.1\%)	
Ethnicity			< 0.001			< 0.001			<0.001
Han	39,350 (94.7\%)	2,468 (99.5\%)		39,700 (94.8\%)	2,048 (98.3\%)		39,428 (94.8\%)	2,390 (96.7\%)	
Minority	2,281 (5.3\%)	12 (0.5\%)		2,194 (5.2\%)	36 (1.7\%)		2,148 (5.2\%)	82 (3.3\%)	
Educational level			< 0.001			< 0.001			< 0.001
Junior high school or below	6,783 (16.3\%)	116 (4.7\%)		6,814 (16.2\%)	86 (4.1\%)		6,648 (16.0\%)	252 (10.2\%)	
Senior middle school	22,276 (53.6\%)	888 (35.8\%)		21,826 (52.0\%)	1,338 (64.2\%)		21,704 (52.2\%)	1,460 (59.1\%)	
College	9,426 (22.7\%)	1,394 (56.2\%)		10,318 (24.6\%)	502 (24.1\%)		10,206 (24.5\%)	614 (24.8\%)	
Master or above	3,082 (7.4\%)	82 (3.3\%)		3,006 (7.2\%)	158 (7.6\%)		3,018 (7.3\%)	146 (5.9\%)	
Obstetric, clinical, and genetic characteristics									
Mode of conception			< 0.001			< 0.001			<0.001
Spontaneous conception	32,638 (78.5\%)	1,466 (59.1\%)		32,072 (76.4\%)	2,032 (97.5\%)		32,012 (77.0\%)	2,092 (84.6\%)	
Assisted conception	8,930 (21.5\%)	1,014 (40.9\%)		9,892 (23.6\%)	52 (2.5\%)		9,564 (23.0\%)	380 (15.4\%)	
Consanguineous marriage (yes)	170 (0.4\%)	14 (0.6\%)	0.243	152 (0.4\%)	32 (1.5\%)	< 0.001	158 (0.4\%)	26 (1.1\%)	< 0.001

Parity			< 0.001			< 0.001			< 0.001
Nulliparous	17,954 (43.2\%)	1,608 (64.8\%)		19,356 (46.1\%)	206 (9.9\%)		18,938 (45.6\%)	624 (25.2\%)	
Multiparous	23,614 (56.8\%)	872 (35.2\%)		22,608 (53.9\%)	1,878 (90.1\%)		22,638 (54.4\%)	1,848 (74.8\%)	
History of adverse									
pregnancy outcomes (yes)	16,708 (40.2\%)	1,000 (42.3\%)	0.034	17,046 (40.6\%)	712 (34.2\%)	< 0.001	16,832 (40.5\%)	926 (37.5\%)	0.003
Family history of congenital malformations (yes)	62 (0.1\%)	0 (0.0\%)	0.054	50 (0.1\%)	12 (0.6\%)	< 0.001	42 (0.1\%)	20 (0.8\%)	< 0.001
Health-related factors									
Pre-pregnancy BMI (kg/m²)			< 0.001			< 0.001			< 0.001
<18.5	7154 (17.2\%)	378 (15.2\%)		6,998 (16.7\%)	534 (25.6\%)		7,070 (17.0\%)	462 (18.7\%)	
18.5-23.9	27,336 (65.8\%)	1,988 (80.2\%)		28,018 (66.8\%)	1,306 (62.7\%)		27,626 (66.4\%)	1,698 (68.7\%)	
24-27.9	5,990 (14.4\%)	72 (2.9\%)		5,902 (14.1\%)	160 (7.7\%)		5,818 (14.0\%)	244 (9.9\%)	
≥ 28	1,088 (2.6\%)	42 (1.7\%)		1,046 (2.5\%)	84 (4.0\%)		1,062 (2.6\%)	68 (2.8\%)	
Pre-pregnancy diabetes mellitus (yes)	298 (0.7\%)	34 (1.4\%)	0.152	332 (0.8\%)	0 (0.0\%)	< 0.001	318 (0.8\%)	14 (0.6\%)	0.268
Personal history of congenital malformations (yes)	394 (0.9\%)	72 (2.9\%)	< 0.001	466 (1.1\%)	0 (0.0\%)	< 0.001	426 (1.0\%)	40 (1.6\%)	0.005
Taking folic acid in 3 months before pregnancy or in early pregnancy (yes)	39,754 (95.6\%)	2,318 (93.5\%)	< 0.001	40088 (95.5\%)	1,984 (95.2\%)	0.480	39,740 (95.6\%)	2,332 (94.3\%)	0.004
Smoking in early	558 (1.3\%)	46 (1.9\%)	0.033	566 (1.3\%)	38 (1.8\%)	0.069	562 (1.4\%)	42 (1.7\%)	0.149

pregnancy (yes)									
Drinking in early pregnancy (yes)	556 (1.3\%)	8 (0.3\%)	< 0.001	560 (1.3\%)	4 (0.2\%)	< 0.001	546 (1.3\%)	18 (0.7\%)	0.012
Environmental pollution around the dwelling place									
in three months before pregnancy or in early pregnancy (yes)	880 (2.1\%)	40 (1.6\%)	0.088	892 (2.1\%)	28 (1.3\%)	0.015	884 (2.1\%)	36 (1.5\%)	0.024
Exposure to radioactive hazardous while at work									
in three months before pregnancy or in early pregnancy (yes)	1,326 (3.2\%)	106 (4.3\%)	0.003	1,328 (3.2\%)	104 (5.0\%)	< 0.001	1,372 (3.3\%)	60 (2.4\%)	0.017

BMI, body mass index; HBV, hepatitis B virus; HCMV, human cytomegalovirus.

Supplemental Table 2 The distribution of baseline characteristics according to status of maternal HSV and rubella virus infection.

Baseline characteristics	HSV			Rubella virus		
	Negative (n, \%)	Positive (n, \%)	p-value	Negative (n, \%)	Positive (n, \%)	p-value
Sociodemographic characteristics						
Age (years)			< 0.001			< 0.001
<25	4,824 (11.1\%)	156 (26.6\%)		4,796 (11.2\%)	184 (14.3\%)	
25-29.9	19,522 (44.9\%)	202 (34.5\%)		19,206 (44.9\%)	518 (40.2\%)	
30-34.9	14,108 (32.5\%)	84 (14.3\%)		13,784 (32.2\%)	408 (31.6\%)	
≥ 35	5,008 (11.5\%)	144 (24.6\%)		4,972 (11.6\%)	180 (14.0\%)	
Ethnicity			< 0.001			0.388
Han	41,232 (94.9\%)	586 (100\%)		40,600 (95.0\%)	1,218 (94.4\%)	
Minority	2,230 (5.1\%)	0 (0.0\%)		2,158 (5.0\%)	72 (5.6\%)	
Educational level			< 0.001			0.677
Junior high school or below	6,718 (15.5\%)	182 (31.1\%)		6,684 (15.6\%)	216 (16.7\%)	
Senior middle school	22,932 (52.8\%)	232 (39.6\%)		22,502 (52.6\%)	662 (51.3\%)	
College	10,664 (24.5\%)	156 (26.6\%)		10,504 (24.6\%)	316 (24.5\%)	
Master or above	3,148 (7.2\%)	16 (2.7\%)		3,068 (7.2\%)	96 (7.4\%)	
Obstetric, clinical, and genetic characteristics						
Mode of conception			0.005			0.025
Spontaneous conception	33,622 (77.4\%)	482 (82.3\%)		33,072 (77.3\%)	1,032 (80.0\%)	
Assisted conception	9,840 (22.6\%)	104 (17.7\%)		9,686 (22.7\%)	258 (20.0\%)	
Consanguineous marriage (yes)	180 (0.4\%)	4 (0.7\%)	0.317	178 (0.4\%)	6 (0.5\%)	0.789
Parity			< 0.001			< 0.001
Nulliparous	19,498 (44.9\%)	64 (10.9 \%)		19,234 (45.0\%)	328 (25.4\%)	

Multiparous	23,964 (55.1\%)	522 (89.1\%)		23,524 (55.0\%)	962 (74.6\%)	
History of adverse pregnancy outcomes (yes)	17,506 (40.3\%)	252 (43.0\%)	0.182	17,188 (40.2\%)	570 (44.2\%)	0.004
Family history of congenital malformations (yes)	62 (0.1\%)	0 (0.0\%)	0.360	62 (0.1\%)	0 (0.0\%)	0.171
Health-related factors						
Pre-pregnancy $\mathrm{BMI}\left(\mathrm{kg} / \mathrm{m}^{2}\right)$			<0.001			<0.001
<18.5	7,450 (17.1\%)	82 (14.0\%)		7,290 (17.0\%)	242 (18.8\%)	
18.5-23.9	28,846 (66.4\%)	478 (81.6\%)		28,506 (66.7\%)	818 (63.4\%)	
24-27.9	6,040 (13.9\%)	22 (3.8\%)		5,888 (13.8\%)	174 (13.5\%)	
≥ 28	1,126 (2.6\%)	4 (0.7\%)		1,074 (2.5\%)	56 (4.3\%)	
Pre-pregnancy diabetes mellitus (yes)	332 (0.8\%)	0 (0.0\%)	0.034	322 (0.8\%)	10 (0.8\%)	0.928
Personal history of congenital malformations (yes)	466 (1.1\%)	0 (0.0\%)	0.012	456 (1.1\%)	10 (0.8\%)	0.314
Taking folic acid in 3 months before pregnancy or in early pregnancy (yes)	41,492 (95.5\%)	580 (99.0\%)	< 0.001	1,926 (4.5\%)	50 (3.9\%)	0.283
Smoking in early pregnancy (yes)	600 (1.4\%)	4 (0.7\%)	0.149	590 (1.4\%)	14 (1.1\%)	0.370
Drinking in early pregnancy (yes)	560 (1.3\%)	4 (0.7\%)	0.195	538 (1.3\%)	26 (2.0\%)	0.017
Environmental pollution around the dwelling place in three months before pregnancy or in early pregnancy (yes)	908 (2.1\%)	12 (2.0\%)	0.945	894 (2.1\%)	26 (2.0\%)	0.852
Exposure to radioactive hazardous while at work in three months before	1,406 (3.2\%)	26 (4.4\%)	0.103	1,398 (3.3\%)	34 (2.6\%)	0.206

pregnancy or in early pregnancy
(yes)
BMI, body mass index; HSV, herpes simplex virus.

