Supplemental figures and tables

Figure S1. The design of the experiment. Different procedures used in animal studies were

illustrated.

Figure S2. Images of WJ-MSC-EVs labeled with DIR fluorescent. The 200 μg EVs labeled with

DIR were systemically administrated into healthy BALB/c mice. The mice were imaged at 1, 3, 6,

24, 48 h after injection.

Figure S3. Dynamic acquisition of [¹⁸F]NaF. (A) Dynamic imaging was performed by µPET/CT

after injection, and images were shown in axial, coronal, sagittal views. (B, C) The time-activity

relationship in ROIs at distal femur and kidneys of mice were analyzed and presented by %ID/cc

and SUVmean.

Figure S4. *Ex vivo* µCT imaging and quantitative analysis in OVX-200 µg UC EVs group. (A)

3D- μ CT *in vivo* and *ex vivo* images of trabecular and cortical bone microstructure in OVX-PBS, OVX-200 μ g EVs, OVX-200 μ g UC EVs group, and Sham groups. (**B**) Images were further quantitatively analyzed by μ CT. The parameters including BMD, tBMD, BV/TV, Tb.N, Tb.Th, Tb.Sp, Po.V (tot) , and Po (tot) were acquired. Data are expressed as mean \pm SD (*p < 0.05, **p < 0.01, ***p < 0.005).

Figure S5. Gene regulation by treatment using exogenous WJ-MSC-EVs in osteoporotic mice.

The mRNA expression levels of ALP, OCN, DKK1, β -catenin, Osx, RUNX2 in bone tissues were calculated by qRT-PCR. Data are expressed as mean \pm SD (*p < 0.05, **p < 0.01, ***p < 0.005).

Figure S6. miRNA NGS analysis of WJ-MSC-EVs. (A) Top 10 most highly enriched miRNAs in WJ-MSC-EVs. (B) Comparing the top 3 enriched miRNAs in WJ-MSC-EVs with ADSC-EVs (Adipose tissue-derived stem cells secreted extracellular vesicles) by qPCR. Adapted from Chen YA, Lu CH, Ke CC, et al. Mesenchymal Stem Cell-Derived Exosomes Ameliorate Alzheimer's Disease Pathology and Improve Cognitive Deficits. Biomedicines. 2021;9(6). Creative Commons license and disclaimer available from: http://creativecommons.org/licenses/by/4.0/legalcode.¹

Figure S7. IPA analysis of possible mechanism. (A) The connections between top 10 enriched EV-

В

miRNAs and general markers of bone remodeling were illustrated. **(B)** In addition of canonical markers, supplementary analysis of connections between EV-miRNAs and BMP signaling pathway was illustrated. **(C)** Replacement of BMP signaling pathway, PI3K/AKT was selected in the analysis.

Figure S8. Volcano plot of fold change of gene expression. The screened DEGs illustrated by

volcano map, the p-value was used to discriminate the significant change.

Figure S9. Prediction of signaling pathways. Use of the KEGG database to predict the significant alteration of potential molecules in OVX mice treated with exogenous WJ-MSC-EVs. Red: Upregulated genes.

%ID/cc	1 week	3 weeks	7 weeks	15 weeks
OVX-PBS	0.44 ± 0.03	0.39 ± 0.06	0.31 ± 0.02	0.33 ± 0.03
OVX-200 μg EVs	0.5 ± 0.01	0.57 ± 0.09	0.47 ± 0.08	0.35 ± 0.01
Sham	0.5 ± 0.03	0.49 ± 0.04	0.51 ± 0.05	0.40 ± 0.05
SUVmean	1 week	3 weeks	7 weeks	15 weeks
OVX-PBS	0.09 ± 0.01	0.08 ± 0.01	0.06 ± 0.01	0.06 ± 0.01
OVX-200 μg EVs	0.1 ± 0.01	0.12 ± 0.02	0.09 ± 0.02	0.07 ± 0.01
Sham	0.1 ± 0.01	0.11 ± 0.01	0.1 ± 0.01	0.08 ± 0.01

Table S1. ROI analysis of µPET/CT images.

Quantitative ROIs of [¹⁸F]NaF in distal femur at 1,3,7, and 15 weeks after OVX. Each value

represents mean \pm SD. Unit: %ID per cubic centimeter (%ID/cc); SUVmean, mean activity of standardized uptake values.

Gene (human)	Direction	Sequence (5'-3')	
ALP	Forward	GCCTGGCTACAAGGTGGTG	
	Reverse	GGCCAGAGCGAGCAGC	
OPG	Forward	GGCAACACAGCTCACAAGAA	
	Reverse	CTGGGTTTGCATGCCTTTAT	
DKK1	Forward	GATCATAGCACCTTGGATGGG	
	Reverse	GGCACAGTCTGATGACCGG	
RUNX2	Forward	GGTACCAGATGGGACTGTGG	
	Reverse	GAGGCGGTCAGAGAACAAAC	
HDAC4	Forward	GGCCCACCGGAATCTGAAC	
	Reverse	GAACTCTGGTCAAGGGAACTG	
GAPDH	Forward	GAGTCAACGGATTTGGTCGT	
	Reverse	TTGATTTTGGAGGGATCTCG	

Table S2.	List of s	pecific	primers	for genes	used in	RT-aPCR.
				-or Berres		

Gene (mouse)	Direction	Sequence (5'-3')
ALP	Forward	TGTGGAATACGAACTGGATGAG
	Reverse	ATAGTGGGAATGCTTGTGTCTG
OCN	Forward	GAGGACCATCTTTCTGCTCACT

CA
_

1. Chen YA, Lu CH, Ke CC, et al. Mesenchymal Stem Cell-Derived Exosomes Ameliorate Alzheimer's Disease Pathology and Improve Cognitive Deficits. *Biomedicines*. 2021;9(6).