
Supplementary Material 1 
Description of information available in GePaRD 
For each person, the GePaRD database contains demographic information as well as 

information on hospitalizations, outpatient physician visits, and drug dispensations. 

The hospital data comprise information on the dates of hospitalization, diagnoses, 

reasons for admission and discharge, and diagnostic and therapeutic procedures. 

Claims of outpatient physician visits include outpatient treatments, procedures, and 

diagnoses. Reimbursed drugs are identified based on the Anatomical Therapeutic 

Chemical (ATC) codes, diagnoses are identified based on the International 

Classification of Diseases, tenth revision, German modification (ICD-10-GM) codes 

and procedures and services based on Operation and Procedure classification (OPS) 

codes and Uniform Assessment Standard (EBM) codes. Dispensation data are 

available for all reimbursed outpatient dispensations and include the dates of 

prescription and dispensation, the amount of substance prescribed, and information 

on the prescribing physician. 

The following table lists all exposures, covariates as well as the outcome, the ICD, 

ATC, OPS or EBM codes used for defining the variable (if applicable) and gives a 

brief description of the derivation of the variable. 

 

Outcome definition: For the definition of pancreatic cancer we considered inpatient 

diagnoses (ICD10 GM C25), which are considered to have a high validity. Patients 

with no inpatient but outpatient diagnosis codes of pancreatic cancer were only 

classified as pancreatic cancer cases if additional criteria were fulfilled such as coding 

of diagnostic examinations and death within 6-9 months after diagnosis to avoid 

misclassification. This algorithm was developed based on case reviewing and subject 

knowledge.    

 

Exposure ATC-Code Description 

Metformin A10BA02, A10BD03, A10BD05, 

A10BD07, A10BD08, A10BD10, 

A10BD15, A10BD16, A10BD20, 

A10BD31 

Set to 1 if proportion of days 

covered (PDC) in respective 

interval was >0.5 

or if  

PDC was >0.25 (but ≤0.5) for 

a certain year and in addition 

>0.5 for the preceding and 

succeeding year 

DPP4-inhibitors A10BH01-A10BH07, A10BH51, 

A10BD07, A10BD08, A10BD10 

Set to 1 if PDC in respective 

interval was >0.5 



or if  

PDC was >0.25 (but ≤0.5) for 

a certain year and in addition 

>0.5 for the preceding and 

succeeding year 

Other oral glucose-

lowering medication 

A10BB01-A10BB12, A10BB31, 

A10BF01-A10BF03, A10BG01-

A10BG03, A10BJ01-A10BJ06, 

A10BK01-A10BK05, A10BD03-

A10BD06, A10BD15, A10BD16, 

A10BD20, A10BD31 

Set to 1 if PDC in respective 

interval was >0.5 

Insulins A10A Set to 1 if PDC in respective 

interval was >0.5 

Outcome ICD-10-GM-Code Description 

Pancreatic cancer C25 First in- or outpatient 

diagnosis 

Death Not applicable Death is documented as a 

potential reason for leaving 

the insurance company. For 

persons dying in hospital, 

death is additionally 

documented in the hospital 

data. 

Covariates Code derivation Description 

Duration of diabetes ICD: E11, E14 
Glucose tests: 
ATC: V04CA01- V04CA08 
EBM: 32025, 32881 

Time in days from first 

diabetes type 2 diagnosis to 

first dispensation of 

metformin.  

Date of diabetes diagnosis 

was set to date of glucose test 

if a test was conducted within 

91 days preceding the first 

diabetes diagnosis 

Socioeconomic status  0: no information or no 

graduation 

1: secondary school certificate 

2: higher education entrance 

qualification 

Indicator variable for 

smoking/alcohol/drug 

abuse 

Alcohol abuse: 

ICD: E24.4, F10.0-F10.9, G31.2, 

G62.1, G72.1, I42.6, K29.2, 

One of the following had to be 

fulfilled: 

• at least one in- or 



K70.0-K70.4, K70.9, K85.2, 

K86.0, T51.9, Z50,2 

ATC: N05CM02, N07BB 

Smoking: 

ICD: F17.0-F17.9, T65.2 

ATC: N07BA 

Drug abuse: 

ICD: F11.0-F11.9, F12.0-F12.9, 

F13.0-F13.9, F14.0-F14.9, 

F15.0, F16.0-F16.9, F18.0-

F18.9, F19.0-F19.9, Z50.3, Z72.0 

outpatient diagnosis or 

dispensation 

• at least one in- or 

outpatient diagnosis or 

dispensation 

• at least one in- or 

outpatient diagnosis 

Maximum of (smoking, 

alcohol, drug abuse) 

Treated hypertension ICD: I10-I13, I15 

ATC: C02, C03, C07-C09 

At least one in- or outpatient 

diagnosis and dispensations 

for hypertension with at least 

180 DDDs 

Coronary heart disease ICD: I20-I25 

OPS: 5360-5363, 12755, 88370-

88372, 88375, 88376, 88378, 

88399, 8837e, 8837k, 8837m, 

8837p, 8837q, 8837t, 8837u, 

8837v, 8837w, 8839a, 883d 

ATC: B01AC, C01DA, C01DX11, 

C01DX12, C07, C08, C09XA53, 

C09XA54, C09A-C09D, C10AA-

C10AD, C10AX01- C10AX03, 

C10AX05- C10AX09, C10AX11- 

C10AX16, C10AX19, C10AX21 

One of the following had to be 

fulfilled: 

• at least one inpatient 

diagnosis  

• at least one inpatient 

procedure during hospital 

stay with non-missing 

main discharge diagnosis  

• at least one outpatient 

diagnosis in three different 

quarters and 

dispensations for 

treatment of at least 50 

DDDs 

Congestive heart failure ICD: I50, I11.0, I13.0, I13.2 

ATC: C01A, C03, C07, C09A-

C09D 

One of the following had to be 

fulfilled: 

• at least one inpatient 

diagnosis 

• at least one outpatient 

diagnosis in three different 

quarters and 

dispensations for 

treatment of at least 50 

DDDs 



Lipid lowering drugs ATC: C10AA Dispensations with at least 

180 DDDs 

Chronic obstructive 

pulmonary disease 

ICD: J43.2, J43.8, J43.9, J44 

ATC: R03A, R03BB, R03C, 

R03DX07 

One of the following had to be 

fulfilled: 

• at least one inpatient 

diagnosis 

• at least one outpatient 

diagnosis and one 

dispensation 

• at least one day 

participation in COPD 

disease management 

program 

Asthma ICD: J45, J46 

ATC: D11AH05, H02AB, R03A, 

R03BA, R03BC, R03C, R03DA, 

R03DB, R03DC, R03DX05, 

R03DX08-R03DX10 

One of the following had to be 

fulfilled: 

• at least one dispensation 

and at least one in- or 

outpatient diagnosis 

• at least one day 

participation in asthma 

disease management 

program 

Dementia ICD: F00-F03, F05.1, G30 One of the following had to be 

fulfilled: 

• at least one inpatient 

diagnosis 

• at least one outpatient 

diagnosis from a 

neurologist  

• at least two outpatient 

diagnoses in two 

consecutive quarters 

Hemiplegia ICD: G04.1, G11.4, G80-G83 At least one in- or outpatient 

diagnosis 

Antidepressants use ATC: N06AA, N06AB, N06AF, 

N06AG 

Dispensations with at least 

180 DDDs 

Antipsychotocs use ATC: N05A Dispensations with at least 

180 DDDs 

Comorbidity score   Sum of dichotomized 



variables for treated 

hypertension, coronary heart 

disease, congestive heart 

failure, lipid modifying agents, 

chronic obstructive pulmonary 

disease, asthma, dementia, 

hemiplegia, antidepressants 

use, antipsychotics use 

Microvascular 
complications including 
retinopathy, nephropathy 
and neuropathy 

ICD: E11.2-E11.4, E14.2-E14.4, 

G63.2, N08.3, H36.0 

At least one in- or outpatient 

diagnosis 

Poor glycaemic control ICD: E11.0, E11.1, E14.0, E14.1, 

R73 

At least one in- or outpatient 

diagnosis 

Liver disease ICD: K70-K76, B18.8 One of the following had to be 

fulfilled: 

• at least one inpatient 

diagnosis 

• at least one outpatient 

diagnosis in two different 

quarters) 

Severe liver disease ICD: K70-K77, B18.8 At least one inpatient 
diagnosis 

Chronic kidney disease ICD: N18, I12, I13, Z49.2 

OPS: 8857, 88570, 88571, 

885710, 885711, 885712, 

885713, 885714, 885715, 

885716, 885717, 885718, 

885719, 88571a, 88571b, 

88571c, 88572, 885720, 885721, 

885722, 885723, 885724, 

885725, 885726, 885727, 

885728, 885729, 88572a, 

88572b, 88572c, 8857x, 8857y, 

8853, 88530, 88531, 885310, 

885311, 885312, 885313, 

885314, 885315, 885316, 

885317, 885318, 885319, 

88531a, 88531b, 88531c, 

88531d, 88531e, 88531f, 88532, 

885320, 885321, 885322, 

885323, 885324, 885325, 

One of the following had to be 

fulfilled: 

• at least one in-or 

outpatient diagnosis   

• one in- or outpatient 

operation 

• one outpatient treatment 



885326, 885327, 885328, 88533, 

88534, 88535, 88536, 88537, 

885370, 885371, 885372, 

885373, 885374, 885375, 

885376, 885377, 885378, 

885379, 88537a, 88537b, 

88537c, 88538, 885380, 885381, 

885382, 885383, 885384, 

885385, 885386, 885387, 

885388, 885389, 88538a, 

88538b, 88538c, 8853x, 8853y, 

8854, 88540, 88541, 885410, 

885411, 885412, 885413, 

885414, 885415, 885416, 

885417, 885418, 88542, 88543, 

88544, 88545, 88546, 885460, 

885461, 885462, 885463, 

885464, 885465, 885466, 

885467, 885468, 885469, 

88546a, 88546b, 88546c, 88547, 

885470, 885471, 885472, 

885473, 885474, 885475, 

885476, 885477, 885478, 

885479, 88547a, 88547b, 

88547c, 88548, 8854x, 8854y, 

8855, 88550, 88551, 885510, 

885511, 885512, 885513, 

885514, 885515, 885516, 

885517, 885518, 885519, 

88551a, 88551b, 88551c, 

88551d, 88551e, 88551f, 88552, 

885520, 885521, 885522, 

885523, 885524, 885525, 

885526, 885527, 885528, 88553, 

88554, 88555, 88556, 88557, 

885570, 885571, 885572, 

885573, 885574, 885575, 

885576, 885577, 885578, 

885579, 88557a, 88557b, 

88557c, 88558, 885580, 885581, 

885582, 885583, 885584, 



885585, 885586, 885587, 

885588, 885589, 88558a, 

88558b, 88558c, 8855x, 8855y, 

8856 

EBM: 13611, 40823, 40824, 

40825, 40826, 40827, 40828, 

40837, 40838 

End-stage renal disease OPS: 8853, 8854, 8855, 8857, 

885a 

EBM: 13600, 13602, 13610, 

13611 

One of the following had to be 

fulfilled: 

• at least one in- or 

outpatient procedure 

• at least one outpatient 

treatment 

Liver disease/ severe 

liver disease / chronic 

kidney disease / terminal 

renal disease 

 Maximum of (liver disease, 

severe liver disease, chronic 

kidney disease, terminal renal 

disease) 

Myocardial infarction or 

stroke 

ICD: I21, I22, I60-I64 At least one inpatient 
diagnosis 

Cancer ICD-10: C00-C97 (except C25 

and C44 

At least one inpatient 
diagnosis 

Number of 

hospitalisations 

 Number of distinct 

hospitalisation dates 

Number of visits with 

diabetologist 

 Number of distinct 

diabetologist visit dates 

Obesity ICD: E66.0. E66.2, E66.8, E66.9 

OPS: 54343, 54344, 54454, 

54455, 5448a-f 

One of the following had to be 

fulfilled: 

• at least one in- or 

outpatient diagnosis 

• at least one in- or 

outpatient procedure 
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Variable Purpose Time period of 
variable 
assessment 

Type of model when 
used as dependent 
variable 

Functional 
form when 
used as 
predictor 

Modelling type 
selected in SAS 
macroc for 
covariate history 
(covXptype) 

Baseline       
Age at cohort entry Confounder Pre-baseline Not predicted Continuous  
Sex Confounder Pre-baseline Not predicted Binary  
Duration of diabetes  Confounder; proxy  Pre-baseline Not predicted Continuous  
Socioeconomic status Confounder, proxy Pre-baseline Not predicted Categorical (3 

categories) 
 

Indicator for smoking/alcohol/drug 
abusea 

Confounder Pre-baseline Not predicted Binary  

Comorbidity score Indicator for general health to 
reflect ability to adhere to the 
treatment strategy 

Pre-baseline 
 

Not predicted Continuous  

Outcome      
Pancreatic cancer Outcome variable Post-baseline Pooled across time 

intervals logistic 
regression (discrete time 
hazard) 

N/A N/A 

Treatment      
Metformin dispensation Exposure Post-baseline Logistic Binary lag1cumavgd 

Dispensation of DPP-4-inhibitors Exposure Post-baseline Logistic Binary lag1cumavgd 

Time-varying factors      
Other glucose-lowering treatment Confounder Post-baseline Logistic Binary lag1bine 

Microvascular complications 
including retinopathy, nephropathy 
and neuropathy 

Factor to intensify treatment; 
switch to MET+DPP-4i strategy 

Post-baseline Logistic to failure History-binaryb tsswitch1f 

Poor glycaemic control Factor to switch to MET+DPP-4i 
strategy 

Post-baseline Logistic Binary lag1bine 

Liver disease/ severe liver disease / 
chronic kidney disease / terminal 
renal disease 

Contraindications; switch or quit 
medication 

Post-baseline Logistic to failure History-binaryb tsswitch1f 

Myocardial infarction or stroke Contraindications; switch or quit 
medication 

Post-baseline Logistic to failure History-binaryb tsswitch1f 

Cancer Confounder Post-baseline Logistic to failure History-binaryb tsswitch1f 

Number of hospitalisations Confounder Post-baseline Logistic and linear Continuous lag1bine 

Number of visits with diabetologist Confounder in sensitivity 
analysis 

Post-baseline Logistic and linear Continuous lag1bine 

Obesitya Confounder Post-baseline Logistic to failure History-binaryb tsswitch1f 

Other important factors that 
could not be considered 

 Reason not accounting for the variable   



 

 

 

 

eTable 1: Summary of covariates, type of model and functional form when used as covariate in parametric g-formula  
aThe database contains information on smoking, drug use and obesity diagnosis but no information on changes to these statuses 
bThe term history-binary denotes variables which remain at 1 once they have switched from 0 to 1 
cDetails are given in the user guide of the GFORMULA SAS macro available at https://causalab.sph.harvard.edu/software/ 
d At time t, the cumulative average of the history of the covariate relative to interval t beginning from time 0 to time t-2 is computed. The last term is not included in the average. There are two generated 

predictors for the covariate at time t, i.e. the lagged covariate at time t-1 and the average of the covariate from time 0 to time t-2. 
e A lagged variant of the covariate (Covt-1 ) is created and used as predictor.  
f The history of the covariate is modelled as a function of the time since the covariate last switched from 0 to 1 at each time t.  

 

   

HbA1c / symptoms of an 
undetected cancer 

Confounder Unobserved   

Chronic pancreatitis Confounder, contraindication 
ddp4 inhibitors 

Low prevalence; models did not converge   
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Time-related and other sources of bias  
In this section, we will summarize the main sources of time-related and other biases 

as relevant to the analysis of healthcare claims databases. Some of these are 

avoidable by suitable design and methods. The section follows Suissa and 

Dell’Aniello (2020)1 , Suissa and Azoulay (2012)2 and Hernán et al. (2016)3 providing 

a comprehensive overview of time-related biases in pharmacoepidemiology or 

observational studies. 

 

Immortal time bias 

Immortal time bias is a common source of bias in observational studies 2-5 and results 

from misclassifying unexposed time as exposed time. It occurs when study subjects 

using specific drugs are compared to those not using drugs but the time interval 

between time zero and the first drug prescription is counted to the exposure time for 

the drug-users. The time prior to treatment initiation is actually yet unexposed and 

called immortal because by definition no outcome event can occur (in the user-group) 

so that the risk is guaranteed to be zero. Immortal time bias typically results in an 

overestimation of the outcome of interest in the non-users and hence in an apparent 

protective effect of the drug.6  

In our study, we applied a new user design comparing two drugs initiated in persons 

with similar duration of T2DM. Treatment assignment and eligibility were thus aligned 

(Hernan et al, 2016). In the analysis stage, both groups were analytically “forced” to 

adhere to their treatment strategies using the parametric g-formula so that immortal 

time bias was avoided. 

 

Time-lag bias  

Time-lag bias occurs when comparing treatments that are typically prescribed in 

different disease stages, i.e. first-line treatments are compared with second- or third-

line treatments.2 This can result in confounding by disease duration (and stage) 

because an outcome (e.g. cancer incidence) related to the first-line treatment may 

also be attributed to the second-line treatment if it occurs after a long period of 

exposure. For instance, metformin is mainly a first-line treatment for type-2 diabetes 

whereas DPP-4i are usually prescribed as second-line treatment after using 

metformin for a certain time. As T2DM itself is a risk factor for cancer, an increased 

cancer risk may be observed for DPP-4i compared to metformin only due to the later 

disease stage/longer duration of patients receiving DPP-4i.7  



In our application we enrolled only new drug users showing approximately the same 

duration of T2DM (mean diabetes duration of 46 days at baseline). We additionally 

adjusted for diabetes duration. Under strategy B, everyone starts DPP-4i one year 

after first metformin use, and the g-formula ensures that the corresponding 

counterfactual risk is computed correctly (under the stated assumptions).   

 

Latency time bias 

According to the Dictionary of Epidemiology – there are two definitions of latency time 

commonly used in health and life sciences. The first one considers latency time as 

“the interval from initiation of the disease to clinical emergence or detection of 

disease”, the second one as “the interval between exposure to the causal agent and 

appearance or detection of the health process”. In this study we use the first definition 

of latency time because we mainly use it to get an indication on unmeasured 

confounding by an undetected disease (see also protopathic bias).  

Latency time is a common issue in cancer outcomes because cancers are typically 

assumed to develop a long time after initial exposure to a certain causal agent.1 In 

such cases a sufficiently long follow-up time needs to be considered to avoid a risk 

underestimation, although it may be difficult in practice to know what ‘sufficiently long’ 

means when little is known about the latency time. Moreover, estimating the risk as a 

function over time can help to identify the time point where the risk changes. Our 

analysis assessed the risk of pancreatic cancer in persons with T2DM over a seven 

year follow-up period. Latency time bias is particularly important to consider when the 

absolute risk of new cancers is of interest.  

When comparing two treatment strategies, as in our example, both treatment groups 

would be affected by the latency time in similar manner if treatments were 

randomised. Thus, in an observational study latency time will possibly bias the overall 

results if latent pancreatic cancer is related to unobserved confounding factors as 

described in next. 

 

Protopathic bias 

Protopathic bias, also referred to as reverse causality, applies to situations where a 

medication is initiated in response to an early symptom of the health outcome of 

interest 1. As a result, exposure to the drug is prior to the time point of the disease 

diagnosis although the exposure actually occurred after the first manifestation of the 

outcome. If the early symptom leading to the treatment decision has not been 

recorded, this is basically a form of unmeasured confounding by an undiagnosed (i.e. 

latent) disease,8 e.g. an occult cancer. The issue is connected with the above latency 



time as there needs to be a period of time between onset and diagnosis for 

protopathic bias to be possible. While the above types of bias (immortal time, time-

lag, and possibly latency time) are avoidable, protopathic bias as a form of 

unmeasured confounding is difficult to deal with. Sensitivity analyses can be carried 

based on reasonable assumptions (that could be included in the models)about the 

latency time, or by suitable restrictions.8,9   

In our example poor glycaemic control may be an early symptom of (undetected) 

pancreatic cancer. If then glucose-lowering drugs are prescribed the resulting 

association will be due to protopathic bias. When estimating the risk function over 

time this may become apparent as a difference occurring early in time after exposure; 

this has to be kept in mind when interpreting the results. In our analysis we adjusted 

for diagnosed poor glycaemic control, but the actual HbA1c levels were not available 

resulting in possible residual confounding. We conducted a number of sensitivity 

analyses to check for protopathic bias i) assuming a minimum latency time of one 

year for the development of pancreatic cancer or excluding persons with T2DM that 

switched/intensified their medication ii) in the year or iii) 3 to 6 months prior to the 

pancreatic cancer diagnosis. This exclusion can be seen as an attempt to restricting 

the study population to those who do not have a latent disease at time-zero mimicking 

a hypothetical target trial, where participants are screened for a latent disease before 

treatment assignment.8 

 

Prevalent user bias 

This bias results from including prevalent users of a drug in study design and 

analysis.10,11 Since prevalent users are survivors of the initial period of drug use, this 

can e.g. lead to bias if the risk of the outcome changes over time. In addition, users 

experiencing an outcome early (before start of the study) may stop taking the drug 

giving an extra survival benefit to the prevalent (sustained) users. 

This bias was circumvented by a careful target trial emulation where time zero, 

eligibility and treatment assignment were aligned; as treatment cannot be assigned 

retrospectively, this avoids prevalent user bias.3  

 

Immeasurable time bias 

This bias occurs if healthcare databases used to study association between drug use 

and certain health outcomes, especially death, include only prescriptions of 

medications on an outpatient basis, but not during hospitalizations (inpatient 

medications).1 This means patients being hospitalized during the exposure time 

window will have missing exposure information resulting in bias. 



GePaRD includes information on inpatient and outpatient diagnosis, but only on 

outpatient dispensations. However, it is assumed that patients that are hospitalized 

due to reasons other than diabetic complications will continue their therapy using their 

own medications. In addition, we adjusted for the number of hospitalizations. 

 

Confounding by indication 

This bias occurs when the risk of an adverse event is related to the indication for drug 

use but not the use of the drug itself. This means that the clinical condition that 

determined the prescription of the drug acts as a confounding factor. This situation is 

also referred to as confounding by indication. 

In our example, different drug classes are recommended to control for poor glycaemic 

control and prevent T2DM complications. T2DM/ poor glycaemic control itself is 

associated with multiple risk factors making T2DM patients high-risk individuals for 

e.g. hypertension, CVD and cancer. Thus, poor glycaemic control may confound the 

association between certain glucose-lowering drugs and cancer.12-14 In our example 

we adjusted for diagnosed poor glycaemic control (being included as time-varying 

confounder) to account for this source of bias. 

 

Detection bias (also surveillance bias) 

This bias occurs when the probability of detecting the study outcome is higher in one 

exposure group due to increased surveillance, screening or testing of the outcome 

itself, or an associated symptom. Poor glycaemic control (increased HbA1c) may lead 

to an addition or switch of medication (e.g. from metformin to combination therapy 

with DPP-4i) and may further go along with more regular screenings such that 

detection bias may arise in the exposure group with the metformin/DPP-4i 

combination therapy. Further, any differential detection may simply reveal cancers 

that were already latent at the start of DPP-4i. With a long follow-up it is likely that the 

latent cases will be detected eventually in both groups so that if there is no actual 

treatment effect, initial differences will level out over time. Moreover, we adjusted for 

for the number of hospitalizations and in a sensitivity analysis additionally for the 

number of visits at a diabetologist as proxies for increased surveillance. 

 

Competing events 

The presence of a competing event, such as death, needs to be taken into account by 

the choice of causal contrast and analysis to allow for the desired interpretation. 

Sometimes the term ‘competing event bias’ is used when analysis and interpretation 

do not match, even though this is not strictly speaking a bias issue. Young et al. 



(2020)15 describe the causal interpretation of different popular statistical approaches 

for dealing with competing events. In brief, the first option is to target the total causal 

effect of a treatment on the event of interest by estimating the event-specific 

cumulative incidence as we do in our analysis. However, this may imply that if 

treatment, say, increases the risk of death a reduced total risk of the event of interest 

(pancreas cancer) may result because participants die before the latter is diagnosed. 

In our application, Figure 1 suggests that this is not the case as the incidences of 

death are nearly identical for strategies A and B. 

The second option is to censor the competing event, which corresponds to a direct 

effect of treatment on the event of interest under a hypothetical intervention where the 

competing event can be eliminated. This is typically not a meaningful approach when 

the competing event is death as in our application. Moreover, for this second option, 

one needs to additionally adjust for common causes of the two types of events 

(pancreas cancer diagnosis and death) in order to justify the ‘independent censoring’ 

assumption.   
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Time-dependent confounding  

Time-dependent confounding occurs when there is a time-varying variable affecting 

both, the disease and the time-varying exposure. It is a common situation that a time-

dependent confounder is also affected by the prior exposure, i.e. the subsequent 

values of the time-dependent confounder are affected by prior exposure. For 

instance, obesity (time-dependent confounder) may be causally related to diabetes 

medications (exposure) as well as cancer risk (outcome) and earlier diabetes 

medications may affect subsequent obesity risk resulting in feedback as displayed in 

Figure 1. Another example of a time-varying confounder is poor glycaemic control in 

our example. 



 
eFigure 1: Time-varying confounding affected by prior exposure 

Whereas standard regression models do not correctly adjust for time-varying 

confounding, the g-methods suggested by Robins and Hernán16,17 provide valid ways 

of adjustment (see Daniel, et al. 18 for an accessible introduction). Time-dependent 

confounding cannot be accounted for at the design stage, unless treatment / 

exposure can be sequentially randomised. Hence it typically needs to be considered 

at the analysis stage. Here we focussed on the parametric g-formula. 
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The g-formula is valid under the following assumptions: 

Conditional sequential exchangeability 

This assumption demands that the potential outcomes under certain fixed exposure 

levels are independent of the observed exposures. It is made within levels of past 

observed covariate values (conditional) and at each time point (sequentially). In 

Figure 1, this is expressed by the absence of edges from unobservables U into 

exposures X0 and X1 while observed covariates C1 can affect X1.  Informally, we 

speak of “no unmeasured confounding”. 
 

Treatment version irrelevance (counterfactual consistency) 

It is assumed that the effect of the exposure is the same whether it is set by the 

considered hypothetical intervention or whether it occurs naturally. This assumption 

guarantees that the strategies under consideration are well-defined.  
 

Positivity 



This assumption demands that for each strategy and within each confounder and 

treatment history observed in the data through time t, it is possible to also observe in 

the data a value of treatment at t consistent with the strategy for all t. Positivity is met 

when there are exposed and unexposed subjects within all confounder and prior 

exposure levels. This can be verified empirically. 
 

Correct model specification 

The g-formula requires correct specification of the conditional (on the past) 

probabilities of the outcome and time-varying covariates in all follow-up intervals. Due 

to the use of multiple models, the parametric g-formula is especially vulnerable to the 

assumption of correct model specification. Informal checking is possible by 

comparison of the observed data to the data simulated under the natural course. The 

g-formula should preferably be applied in situations with good knowledge on the 

causal relationships among the variables of interest. 

Moreover, it is important to use flexible models to avoid the g-null paradox.19 
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In the following, the algorithm to apply the parametric g-formula is outlined: 

Step 1: Probability modelling 

a) Separate regression models for the treatment and each covariate in year t are 

fitted as a function of t and past treatment and covariate history, restricted to 

those who survived and remained uncensored until t. The covariate history may 

e.g. be summarized by the baseline covariates and the two most recent values of 

time-varying covariates. The estimated conditional distributions of the covariates 

are used to construct an estimate of the joint distribution of the covariates. 

b) A discrete-time hazard regression model for the occurrence of a pancreatic 

cancer diagnosis in year t is fitted as a function of t and past treatment and 

covariate history at each time t (a logistic regression pooled over time intervals). A 

logistic model is also fitted to estimate the conditional discrete-time hazard of the 

competing event (death) at each time t, which is necessary to compute the event-

specific cumulative incidence function. 

Step 2: Monte Carlo Sampling 

In this step, a large number of covariate histories consistent with the intervention is 

generated. For each treatment strategy, do the following n times (with n being as 

large as possible to reduce simulation error): 

a) For each year t, the treatment and covariates using the model coefficients 

estimated in Step 1a are simulated based on previously simulated treatment and 

covariates through t-1 (values at baseline are sampled from the observed data).  



b) The simulated treatment value at time t is replaced with the value of treatment that 

should be assigned according to the specified treatment strategy.  

c) The discrete-time hazard of pancreatic cancer at t is estimated using the 

estimated regression coefficients from Step 1b for each of the n simulated 

histories through t consistent with the specific strategy. The discrete hazard of the 

competing risk event is also estimated at each t from the estimated model 

coefficients. 

Step 3: Estimation of the risks for the two treatment strategies 

a) For each of the n histories, the estimated hazards from Step 2c are used to 

compute the n history-specific 7-year risks by the end of follow-up under each 

strategy 

b) The 7-year risk under treatment strategy A/B in the study population is obtained 

by averaging the n history-specific risks.  

95%- confidence intervals can be obtained by nonparametric bootstrapping, i.e., by 

repeating these three steps in 100 bootstrap samples. 

After concatenating the datasets from step 2, the hazard ratio can be estimated by 

comparing the hazards in treatment strategy A dataset with those in the treatment 

strategy B dataset.  

Comparison of the distribution of the simulated variables with the ones observed in 

the actual population can provide an indication on gross model misspecification. 
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Implementation of the parametric g-formula  

For modelling the outcome, the pancreatic cancer incidence, a logistic regression was 

fitted by pooling across all time points; this estimated the conditional discrete-time 

hazard at each time t given past covariates. Also, a logistic model to estimate the 

conditional discrete-time hazard of the competing event (death) at each time t was 

fitted. 

At each time point t>0 parametric models are fit to estimate the joint distribution of the 

p covariates given past covariate history through t-1, f_t(cov_1, ... , cov_p | past). This 

joint distribution is estimated via a product of conditional distributions: 

f_t(cov_1|past)f_t(cov_2|cov_1,past)…f_t(cov_p|cov_p-1,…,cov_1,past) (cmp. Step 

1a in Supplementary Material 6).  

A separate parametric model is fitted for each conditional distribution of this product. 

For the covariates cov_1,…,cov_p, an arbitrary ordering was chosen. Under correct 

model specification, the g-formula would be insensitive to this ordering of the 



covariates. As we cannot use saturated models, we conducted a sensitivity analysis 

changing the arbitrary order of covariates to check for model misspecification (cf. 

previous examples 20-22). The type of model used for each covariate when considered 

as dependent variable as well as the functional form when used as predictor is 

summarized in Supplementary Material 2.  

In brief, each time-varying predictor was classified as binary, history-binary or 

continuous. Binary-dependent variables, like poor glycaemic control, and history-

binary-dependent variables (indicators that move only from zero to one like 

myocardial infarction or stroke) were modelled using logistic regression. The models 

for history-binary variables were limited to those with no history at the beginning of 

the 365-day-interval. To account for the high number of zero values, continuous 

covariates like the number of hospitalizations were modelled based on both, a logistic 

model (using an indicator whether the covariate is >0) to estimate the probability of 

the covariate being zero and a linear regression model for the natural log of the 

covariate restricted to records with the covariate being >0 for the estimation of non-

zero values.  

All models included, as predictors, all baseline covariates, the current and previous 

value of all binary and continuous covariates as main terms; history-binary variables 

were modelled as a function of the time since the covariate last switched from 0 to 1 

at each time t. No interaction terms were added. 

 
  

Plausibility of identifying assumptions 

Conditional and sequential exchangeability: As a common issue in observational 

data, unmeasured confounding cannot be fully excluded e.g. due to the lack of HbA1c 

and more precise information on lifestyle factors. However, proxies were included for 

all known important confounders except for chronic pancreatitis (prevalence was too 

low). 

Causal consistency: This assumption is fulfilled when the treatment strategies being 

assessed are well-defined and correspond to the treatment strategies observed in the 

data, e.g. the outcome for a patient who happens to receive a metformin 

monotherapy is the same as if he/she had been assigned to the metformin 

monotherapy in the target trial, which is plausible. 

Positivity: The positivity assumption was checked empirically. It was slightly violated 

with regard to both treatment groups. This is mainly due to the high number of 

binary/categorical variables (1043 possible combinations) with partly low prevalence 

such that e.g. combinations like cancer + myocardial infarction/stroke + (severe) liver 

disease/renal disease/chronic kidney disease are not observed in all strata of the 



other covariates. Essentially this means that even this huge dataset does not provide 

enough data and that the models need to extrapolate information. However, we do 

not believe that the problem is structural so that it will not strongly affect our results. 

Nevertheless, instead of adjusting for contraindications, future studies using the 

parametric g-formula could define dynamic treatment strategies based on 

contraindications to mitigate this problem. Especially in older patients suffering from 

multiple diseases a dynamic strategy may better reflect “real-life” treatment practice. 

 

To assess the validity of our parametric assumptions, we compared the observed 

means of the outcome and time-varying covariates with those predicted by our 

models. The parametric g-formula closely replicated the observed risk (0.86%) and 

the mean covariates under the natural course. 
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eFigure 2: Flow-chart depicting the selection process leading to the final analysis sample 
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Time-varying variables 

Baseline/  
cohort 

 entry (day 1) 
(N=77,330) 

Year 1 
(N=77,323) 

Year 2 
(N=74,929) 

Year 3 
(N=72,758) 

Year 4 
(N=70,691) 

Year 5 
(N=68,747) 

Year 6 
(N=66,772) 

Year 7 
(N=64,821) 

 

Metformin  77,330 (100%) 43,537 
(56.3%) 

38,042 
(50.8%) 

38,471 
(52.9%) 

38,736 
(54.8%) 

38,535 
(56.1%) 

37,889 
(56.7%) 

37,003 (57.1%)  

Metformin monotherapy 77,330 (100%) 39,953 
(51.7%) 

32,222 
(43.0%) 

30,273 
(41.6%) 

28,110 
(39.8%) 

25,703 
(37.4%) 

23,169 
(34.7%) 

20,866 (32.2%)  

DPP-4-inhibitors 0 (0.0%) 1,487 (1.9%) 3,239 (4.3%) 5,099 (7.0%) 7,237 (10.2%) 9,433 (13.7%) 11,500 
(17.2%) 

12,954 (20.0%)  

Metformin and DPP-4i  0 (0.0%) 1,162 (1.5%) 2,532 (3.4%) 4,049 (5.6%) 5,877 (8.3%) 7,762 (11.3%) 9,489 (14.2%) 10,633 (16.4%)  

Metformin and DPP-4i but no other antidiabetic 
treatments 

0 (0.0%) 1,116 (1.4%) 2,361 (3.2%) 3,635 (5.0%) 5,118 (7.2%) 6,501 (9.5%) 7,667 (11.5%) 8,271 (12.8%)  

Switchers from monotherapy to combination therapy 0 (0.0%) 1,116 (1.4%) 1,193 (1.6%) 1,260 (1.7%) 1,554 (2.2%) 1,650 (2.4%) 1,673 (2.5%) 1,454 (2.2%)  

Other oral antidiabetic treatment 0 (0.0%) 3,346 (4.3%) 5,268 (7.0%) 6,361 (8.7%) 6,988 (9.9%) 7,362 (10.7%) 7,559 (11.3%) 7,948 (12.3%)  

Insulin 0 (0.0%) 759 (1.0%) 1,274 (1.7%) 1,914 (2.6%) 2,686 (3.8%) 3,537 (5.1%) 4,538 (6.8%) 5,474 (8.4%)  

Pancreatic cancer 0 (0.0%) 214 (0.3%) 102 (0.1%) 84 (0.1%) 61 (0.1%) 74 (0.1%) 51 (0.1%) 66 (0.1%)  

Death 0 (0.0%) 802 (1.0%) 828 (1.1%) 951 (1.3%) 1,032 (1.5%) 1,088 (1.6%) 1,156 (1.7%) 1,279 (2.0%)  

Censored 7 (0.0%) 1,378 (1.8%) 1,241 (1.7%) 1,032 (1.4%) 851 (1.2%) 813 (1.2%) 744 (1.1%) 63,476a 
(97.9%) 

 

Chronic Pancreatitis 3 (0.0%) 48 (0.1%) 88 (0.1%) 137 (0.2%) 162 (0.2%) 181 (0.3%) 210 (0.3%) 236 (0.4%)  

Microvascular diabetic complicationsb 4,505 (5.8%) 13,049 
(16.9%) 

17,494 
(23.3%) 

21,128 
(29.0%) 

24,452 
(34.6%) 

27,396 
(39.9%) 

30,098 
(45.1%) 

32,249 (49.8%)  

Hypoglycaemia 142 (0.2%) 225 (0.3%) 194 (0.3%) 177 (0.2%) 189 (0.3%) 195 (0.3%) 189 (0.3%) 180 (0.3%)  

Poor glycaemic control 6,315 (8.2%) 4,183 (5.4%) 3,427 (4.6%) 3,270 (4.5%) 3,019 (4.3%) 2,749 (4.0%) 2,654 (4.0%) 2,465 (3.8%)  

Any liver or kidney disease 8,887 (11.5%) 13,044 
(16.9%) 

14,854 
(19.8%) 

16,426 
(22.6%) 

17,825 
(25.2%) 

19,335 
(28.1%) 

20,660 
(30.9%) 

21,917 (33.8%)  

Liver disease 8,838 (11.4%) 12,086 
(15.6%) 

13,129 
(17.5%) 

13,917 
(19.1%) 

14,497 
(20.5%) 

15,039 
(21.9%) 

15,417 
(23.1%) 

15,736 (24.3%)  

Severe liver disease 0 (0.0%) 91 (0.1%) 175 (0.2%) 240 (0.3%) 296 (0.4%) 372 (0.5%) 436 (0.7%) 500 (0.8%)  

Chronic kidney disease 53 (0.1%) 1,156 (1.5%) 2,176 (2.9%) 3,240 (4.5%) 4,360 (6.2%) 5,766 (8.4%) 7,219 (10.8%) 8,676 (13.4%)  

Terminal renal disease 0 (0.0%) 71 (0.1%) 131 (0.2%) 216 (0.3%) 317 (0.4%) 465 (0.7%) 650 (1.0%) 886 (1.4%)  



Time-varying variables 

Baseline/  
cohort 

 entry (day 1) 
(N=77,330) 

Year 1 
(N=77,323) 

Year 2 
(N=74,929) 

Year 3 
(N=72,758) 

Year 4 
(N=70,691) 

Year 5 
(N=68,747) 

Year 6 
(N=66,772) 

Year 7 
(N=64,821) 

 

Cancer 0 (0.0%) 1,114 (1.4%) 904 (1.2%) 884 (1.2%) 859 (1.2%) 818 (1.2%) 798 (1.2%) 833 (1.3%)  

Cardiovascular events 1,621 (2.1%) 2,332 (3.0%) 2,888 (3.9%) 3,431 (4.7%) 3,962 (5.6%) 4,455 (6.5%) 4,939 (7.4%) 5,434 (8.4%)  

Myocardial infarction 733 (0.9%) 1,061 (1.4%) 1,320 (1.8%) 1,574 (2.2%) 1,849 (2.6%) 2,085 (3.0%) 2,330 (3.5%) 2,603 (4.0%)  

Stroke 892 (1.2%) 1,294 (1.7%) 1,601 (2.1%) 1,902 (2.6%) 2,186 (3.1%) 2,471 (3.6%) 2,748 (4.1%) 3,009 (4.6%)  

Alcohol abuse 31 (0.0%) 522 (0.7%) 916 (1.2%) 1,276 (1.8%) 1,577 (2.2%) 1,783 (2.6%) 2,015 (3.0%) 2,235 (3.4%)  

Smoking 4,422 (5.7%) 5,911 (7.6%) 6,736 (9.0%) 7,399 (10.2%) 7,849 (11.1%) 8,318 (12.1%) 8,719 (13.1%) 9,012 (13.9%)  

Drug abuse 426 (0.6%) 628 (0.8%) 794 (1.1%) 988 (1.4%) 1,160 (1.6%) 1,310 (1.9%) 1,414 (2.1%) 1,522 (2.3%)  

Obesity 26,685 (34.5%) 31,443 
(40.7%) 

33,407 
(44.6%) 

34,567 
(47.5%) 

35,396 
(50.1%) 

35,933 
(52.3%) 

36,296 
(54.4%) 

36,306 (56.0%)  

Number of hospitalizations, mean (sd) 0.3 (0.68) 0.4 (0.85) 0.3 (0.86) 0.4 (0.91) 0.4 (0.93) 0.4 (0.95) 0.4 (0.97) 0.5 (1.00)  

Number of visits at a diabetologist, mean (sd) 2.9 (6.79) 3.3 (7.40) 2.2 (6.10) 1.4 (4.50) 0.7 (2.62) 0.5 (2.33) 0.5 (2.39) 0.5 (2.42)  

 
eTable 2: Distribution of exposures and time-varying covariates (number and percentage) over the 7-year follow-up period in the observed data 
 
aAfter 7 years, all remaining patients are censored (end of follow-up)  
bComplications due to poor glycaemic control such as retinopathy, nephropathy and neuropathy 
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Observed means and predicted means under the natural course for the outcome (pancreatic cancer)  

 

Left column: observed cumulative incidence of pancreatic cancer (solid line), natural course (dotted line) estimates by follow-up year. 

Right column: differences between observed and natural course estimates (solid lines) and 95% pointwise confidence intervals (dotted 

lines) 



Left: Observed means (solid lines) and predicted means under the natural course (dotted lines) for time-varying covariates; right: 

differences between observed and natural course estimates (solid lines) and 95% pointwise confidence intervals (dotted lines) 
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In the following, the results of several sensitivity analyses are summarized. 

Corresponding risk estimates are presented in SCD11: 

1) Using two instead of one year prior to baseline to apply the eligibility 

criteria as well as change of the arbitrary order of the covariates in the 

fitting of the models in step 1) of the parametric g-formula algorithm did not 

markedly alter the results. 

2) Choosing smaller sample sizes for the simulations (10 000, 35 000 instead 

of actual sample size of 77,330) lead to problems of quasi-separation in 

some of the bootstrap samples; confidence intervals for risk ratios and risk 

differences were much wider as compared to the model with a sample size 

of 77,330. 

3) When using a 91-day (quarter) instead of a 365-day interval, the run time 

increased markedly, convergence problems arose, observed and 

predicted values of certain variables showed large deviations and certain 

important covariates could not be considered (e.g. poor glycaemic control) 

as the models became too complex. 

4) When using death as censoring event (instead of competing event) the 7-

year risk estimates increased slightly as compared to the main model. 

5) Including further covariates also led to convergence problems which was 

the reason to finally combine certain variables into one variable (e.g. 

comorbidity score). 

6) Changing the cut-off for the proportion of day covered by the medication to 

check for exposure misclassification (use a PDR of >0.8 instead of >0.5 as 

a stricter criterion for treatment classification) resulted in slightly higher 

estimates for the risk ratio and risk difference with confidence intervals 

being wider. When choosing the more stringent cut-off of 0.8, the number 

of observed patients being treated with metformin and/or DPP-4i is smaller 

by definition. This potentially leads to a selection effect (patients with lower 

doses are left out) and further increases the problem of violating the 

positivity assumption. This corroborated the decision to use a cut-off of 

0.5. 
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eTable 3: Risks of development of pancreatic cancer under a sustained metformin monotherapy and under a combination therapy with DPP-4-inhibitors 
in our main model and certain sensitivity analyses; GePaRD data 2007 – 2017 
 

Model Cases Treatment 
strategy 

7-year 
risk (%) 

95% CI Risk 
ratio 

95% CI Risk difference 
(%) 

95% CI 

Main 652 Metformin 0.86 0.79 – 0.96 Ref  Ref   

  Met / DPP-4i 1.26 0.94 – 1.69 1.47 1.07–1.94 0.40 0.07 – 0.82  

Additional adjustment for visits at 
diabetologist 

652 Metformin 0.87 0.79 – 0.94 Ref  Ref   

 Met / DPP-4i 1.27 0.95 – 1.72 1.47 1.08–1.94 0.41 0.08 – 0.82  

2-y exclusion criteria 558 Metformin 0.90 0.80 – 0.99 Ref  Ref   

  Met / DPP-4i 1.26 0.89 – 1.59 1.40 0.97 – 1.83 0.36 -0.03 – 0.73  
Reordering of covariates 652 Metformin 0.88 0.80 – 0.98 Ref  Ref   

  Met / DPP-4i 1.33 1.01 – 1.77 1.51 1.09 – 1.98 0.45 0.09 – 0.89  

Simulation based on 35,000a 652 Metformin 0.86 0.72 – 0.99 Ref  Ref   

  Met / DPP-4i 1.27 0.75 – 1.70 1.46 0.88 – 2.13 0.40 -0.11 – 0.86  

Simulation based on 10,000b 652 Metformin 0.87 0.61 – 1.14 Ref  Ref   

  Met / DPP-4i 1.27 0.44 – 2.86 1.47 0.52 – 3.65 0.40 -0.40 – 2.23  

91-day intervals (instead of 365 
days)c 

652 Metformin 0.89 0.81 – 1.00 Ref  Ref   

  Met / DPP-4i 1.34 1.02 – 1.63 1.49 1.17 - 1.83 0.44 0.15 – 0.73  

No competing risk (death is censored) 652 Metformin 0.93 0.84 – 1.03 Ref  Ref   

  Met / DPP-4i 1.36 1.02 – 1.85 1.47 1.07 – 1.97 0.44 0.07 – 0.91  

Change of cut-off for PDC 652 Metformin 0.89 0.68 – 1.14 Ref  Ref   

  Met / DPP-4i 1.38 0.87 – 2.17 1.55 1.02 – 2.33 0.49 0.02 – 1.08  



aQuasi-separation occurred in 1 out of 100 bootstrap samples; results may be interpreted with caution 
bQuasi-separation occurred in 60 out of 100 bootstrap samples; results should be interpreted with great caution 
cPoor glycaemic control could not be included in the 91-day interval model due to convergence problems; observed and predicted values of certain covariates (e.g. 
metformin) showed large discrepancies  
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