Supplementary information

ORIGINAL RESEARCH

Rong Ma, Nuernisha Alifu et al

Indocyanine green-based theranostic nanoplatform for NIR fluorescence image-guided chemo/photothermal therapy of cervical cancer

Rong Ma^{#1}, Nuernisha Alifu^{#2}, Zhong Du¹, Shuang Chen¹, Youqiang Heng¹, Jing Wang¹, Lijun Zhu², Cailing Ma^{*1} and Xueliang Zhang^{*2}

¹State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia /Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University. Urumqi, China;

²State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence

Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical

University, Urumqi, China

*These authors contributed equally to this work

Correspondence: Cailing Ma

State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia /Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University. Urumqi 830054, China

Tel: +86-13009661999

Email: hymcl13009661999@126.com

Correspondence: Xueliang Zhang

State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University,

Urumqi 830011, China

Email:shuxue2456@126.com

Tel: +86-18999978069

Figure S1 Fluorescence stability of BSA@ICG and BSA@ICG-DOX NPs. (A) CLSM fluorescence images of BSA@ICG NPs in aqueous dispersion and in the blood (B) CLSM fluorescence images of BSA@ICG-DOX NPs in aqueous dispersion and in the blood (C) Fluorescence intensity of BSA@ICG NPs in blood at 24 h and 48 h. (D) Fluorescence intensity of BSA@ICG-DOX NPs in blood at 24 h and 48 h. (E) Fluorescence intensity of BSA@ICG-DOX NPs in blood at 24 h and 48 h. (E) Fluorescence intensity of BSA@ICG NPs in acidic environment. (pH=5.5, 6, 6.5 and 7 was measured at different time points for 24 h and 48 h). (F) Fluorescence intensity of BSA@ICG-DOX NPs in acidic environment. (pH=5.5, 6, 6.5 and 7 was measured at different time points for 24 h and 48 h). (F) Fluorescence intensity of BSA@ICG-DOX NPs in acidic environment. (pH=5.5, 6, 6.5 and 7 was measured at different time points for 24 h and 48 h). (F) Fluorescence intensity of BSA@ICG-DOX NPs in acidic environment. (pH=5.5, 6, 6.5 and 7 was measured at different time points for 24 h and 48 h). (F) Fluorescence intensity of BSA@ICG-DOX NPs in acidic environment. (pH=5.5, 6, 6.5 and 7 was measured at different time points for 24 h and 48 h). (F) Fluorescence intensity of BSA@ICG-DOX NPs in acidic environment. (pH=5.5, 6, 6.5 and 7 was measured at different time points for 24 h and 48 h) (n = 3 in each group, under 640 nm laser irradiation)

Figure. S2 (A) Linear time data versus -In*θ* obtained from the cooling period of BSA @ICG NPs in aqueous dispersion. (B) Temperature variation of ICG@BSA NPs aqueous dispersion upon single cycle of NIR laser irradiation.

Figure S3 Cytoviability of HeLa cells after incubation with BSA at different concentrations for 24 h. Data are expressed as mean \pm S.D. (n = 6 in each concentration)

Figure S4 Image of cervical tumor-bearing mouse (left) and H&E microscopic image of

tumour section

Figure S5 In vivo NIR Fluorescence images of Tumour-bearing nude mice treated with

BSA@ICG NPs at 24h and 48h.Excitation: 745 nm. Emission: 840 nm.

Figure S6 Relative tumor weight in 2 weeks after different treatments.

Figure S7 Body weight of HeLa cell-xenografted nude mice in groups after different

treatments. Data were displayed as the mean \pm SD (n =4)