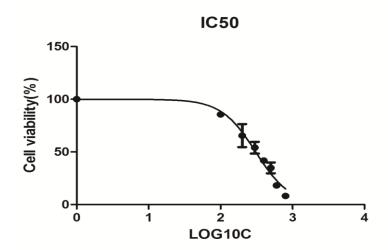
Berberine ameliorates hepatic insulin resistance by regulating microRNA-146b/SIRT1 pathway

Miao Sui¹, Xiaofei Jiang¹, Hongping Sun², Chao Liu^{2*} and Yaofu Fan^{2*}

¹Department of Endocrinology, Xuzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Chin*a*.


²Endocrine and Diabetes Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.

Correspondence: liuchao@nfmcn.com; fanyaofu2010@163.com

Supplementary Fig S1. The chemical structure of Berberine

$$H_3CO$$
 OCH_3 OCH_3

Supplementary Fig S2. The inhibitory effect of PA on cell viability of HepG2 cells. After calculation, the IC50 was about $307.8\mu M$.

Supplementary Fig S3. MicroRNA target prediction databases, such as microRNA.org, showed alignment between miR-146b and SIRT1. Target analysis predicts that SIRT1 is a potential target of miR-146b in Mus musculus.

Supplementary Fig S4. MicroRNA target prediction databases, such as microRNA.org, showed alignment between miR-146b and SIRT1. Target analysis predicts that SIRT1 is a potential target of miR-146b in homo sapiens.

Supplementary Table S1. Primers used in real-time PCR

Gene	Primers (5′→3′)
SIRT1	Forward: GAAGTATGACAAAGATGA
	Reverse: AGAGCTTCTTGGAGACTG
FOXO1	Forward: ACAATCTGTCCCTACACAG
	Reverse: AAATTTGCTAAGAGCCGAGAPDH
GAPDH	Forward: CAAGATTGTCAGCAATGCAT
	Reverse: TCACTGCCACTCAGAAGA C