Supplementary data



Specimen ID: RS19058620FFP

# BurningRock OncoScreen Plus™ Report

Report No: 32034501903190

Report Date: 2019/11/19 PM

# CONTENT

| OVERVIEW       | PATIENT INFORMATION                                                        |  |  |  |  |
|----------------|----------------------------------------------------------------------------|--|--|--|--|
|                | ABOUT THE TEST                                                             |  |  |  |  |
|                | SUMMARY OF RESULTS                                                         |  |  |  |  |
| RESULTS        | 1. Somatic Variants and Interpretation                                     |  |  |  |  |
| INTERPRETATION | Interpretation of somatic variants                                         |  |  |  |  |
|                | 2. Germline Variants and Interpretation                                    |  |  |  |  |
|                | Clinical interpretation of pathogenic and likely pathogenic germline       |  |  |  |  |
|                | variants                                                                   |  |  |  |  |
|                | 3. Summary of Immunotherapy Biomarkers                                     |  |  |  |  |
|                | Results and clinical singnificance of immunotherapy biomarkers: TMB, MSI   |  |  |  |  |
|                | 4. SNPs in Drug Metabolism Enzymes                                         |  |  |  |  |
|                | Results and clinical singnificance of potential drug toxicity and efficacy |  |  |  |  |
|                | related SNP genotyping in metabolism enzymes                               |  |  |  |  |
|                | 5. Gene Copy Number Distribution                                           |  |  |  |  |
|                | Visualization of gene copy number distribution                             |  |  |  |  |
|                |                                                                            |  |  |  |  |



APPENDIX1 : QUALITY CONTROL APPENDIX2 : METHODOLOGY AND LIMITATIONS APPENDIX3 : GENE LIST APPENDIX4 : REFERENCE

|                                | k Dx          | Specimen ID<br>RS19058620FFP | Report Date<br>2019/11/19 PM | TEST<br>OncoScreen   | Plus™         |
|--------------------------------|---------------|------------------------------|------------------------------|----------------------|---------------|
| PATIENT IN                     | IFORMATION    |                              |                              |                      |               |
| Name                           | 吴成云           | Specimen<br>ID               | RS19058620FFP                | Accession<br>#       | A00144591     |
| Gender                         | Male          | Specimen<br>Type             | FFPE slides                  | Accession<br>Date    | 2019/11/11    |
| Age                            | 67            | Biopsy<br>Type               | Puncture                     | Specimen<br>Received | 2019/11/13 AM |
| ID                             | 3209211952*** | *11 Specimen<br>Site         | lung                         | Report<br>Date       | 2019/11/19 PM |
| Tumor Type*                    | Other         | Hospital                     | 江苏省人民医院                      |                      |               |
| Additional<br>Information<br>* | not provided  |                              |                              |                      |               |

\*Note : Tumor Type and Additional Information are not from the test, but provided by the patient.

## ABOUT THE TEST

BurningRock OncoScreen Plus<sup>™</sup> is a NGS based assay that identifies genomic alterations within 520 cancerrelated genes.

### SUMMARY OF RESULTS

| CATEGORIES          | RESULTS                                                     |                  |  |
|---------------------|-------------------------------------------------------------|------------------|--|
| Somatic Variants    | 12 variants in total, 3 of which with clinical significance |                  |  |
| Significant Results | MAP2K1: p.I103_K104del                                      | PIK3CA: p.H1047L |  |
|                     | TP53: p.G187S                                               |                  |  |
| ТМВ                 | 11.1 muts/Mbp                                               |                  |  |
| MSI                 | Microsatellite Stable (MSS)                                 |                  |  |
| Germline Variants   | None                                                        |                  |  |
| Quality Control     | Qualified                                                   |                  |  |

|                                                                     | Specimen ID                            | Report Date   | TEST             |  |  |
|---------------------------------------------------------------------|----------------------------------------|---------------|------------------|--|--|
|                                                                     | RS19058620FFP                          | 2019/11/19 PM | OncoScreen Plus™ |  |  |
| 1. Somatic Variants                                                 | 1. Somatic Variants and Interpretation |               |                  |  |  |
| Tier I: Variants with S                                             | strong Clinical Signi                  | ficance       |                  |  |  |
| AllelicRelevant TherapiesVariantFraction(Responsiveness , Evidence) |                                        |               |                  |  |  |
| No Tier I mutation detected                                         |                                        |               |                  |  |  |

## Tier II: Variants of Potential Clinical Significance

| Variant                                                                                              | Allelic<br>Fraction | Interpretation                                                                                                                                                                                                                    | Relevant Therapies<br>(Responsiveness , Evidence)                 |
|------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| MAP2K1<br>Exon 3 p.I103_K104del<br>disruptive_inframe_deletion<br>c.306_311del<br>p.Ile103_Lys104del | 17.03%              | MAP2K1 has the deletion<br>between position 103 and<br>position 104.The variant lies<br>within protein kinase<br>domain(UniProt.org: Q02750).                                                                                     | Trametinib(Resistance, Level D)<br>RO5126766(Resistance, Level D) |
| PIK3CA<br>Exon 21 p.H1047L<br>missense_variant<br>c.3140A>T<br>p.His1047Leu                          | 7.38%               | PIK3CA has the substitution of<br>Histidine with Leucine at position<br>1047.The variant lies within<br>PI3K/PI4K domain(UniProt.org:<br>P42336). The variant causes Gain-<br>of-function[PMID: 20593314,<br>26627007, 22120714]. | Alpelisib(Response, Level C)                                      |
| TP53<br>Exon 5 splice_region_variant<br>c.559G>A<br>p.Gly187Ser                                      | 14.5%               | TP53 has the substitution of the<br>G nucleotide at c.559 by a A. The<br>variant is located at the<br>boundary of an exon, which may<br>affect alternative splicing by<br>prediction.                                             | Adavosertib+Olaparib<br>(Response, Level C)                       |

## Tier III: Variants of Unknown Clinical Significance

| Gene   | Variant Type            | Exon | Nucleotide<br>Change | Amino Acid Change | Allelic<br>Fraction |
|--------|-------------------------|------|----------------------|-------------------|---------------------|
| ARID2  | splice_acceptor_variant | 3    | c.187-2A>G           | -                 | 15.72%              |
| ARID2  | frameshift_variant      | 15   | c.4709_4710del       | p.Ile1570fs       | 6.87%               |
| DICER1 | missense_variant        | 22   | c.4061G>T            | p.Cys1354Phe      | 6.23%               |
| HGF    | missense_variant        | 5    | c.610C>T             | p.Pro204Ser       | 16.32%              |
| MCL1   | missense_variant        | 2    | c.734C>T             | p.Ser245Leu       | 6.73%               |
| NOTCH3 | missense_variant        | 3    | c.304G>T             | p.Ala102Ser       | 12.56%              |

|        | Specimen ID                     | Specimen ID   |                | TEST             |        |
|--------|---------------------------------|---------------|----------------|------------------|--------|
|        | <b>F</b><br>Dx RS19058620FFP    | RS19058620FFP |                | OncoScreen Plus™ |        |
| PIK3CG | stop_gained                     | 2             | c.1229G>A      | p.Trp410*        | 16.28% |
| TET2   | frameshift_variant              | 6             | c.3733_3737del | p.Tyr1245fs      | 2.05%  |
| TSC1   | disruptive_inframe_deleti<br>on | 23            | c.3459_3461del | p.Ile1153del     | 6.56%  |

**Note :** 1. The responsiveness to the relevant therapies corresponding to the genetic variation is derived from OncoDB, which is an internal database of Burning Rock Dx, with reference to public data such as NCCN guidelines. This data is for reference purpose by clinicians only. With the continuous improvement of the database and the update of clinical data, the grade of variants may change.

2. The evidence levels are grouped into four levels according to the AMP / ASCO / CAP guidelines [PMID: 27993330]: level A (FDA-approved therapies or have been included in professional guidelines), level B (based on well-powered studies with consensus from experts), level C (level A evidence in a different tumor type, or serve as inclusion criteria for clinical trials, or supported by multiple small studies), level D (preclinical studies , or supported by case reports). The variants are categorized into four categories based on their clinical impact: tier I, variants with strong clinical significance (level A and B evidence); tier II, variants with potential clinical significance (level C or D evidence); tier III, variants with unknown clinical significance; and tier IV, variants that are benign or likely benign.

|            | Specimen ID<br>然石医学<br>Burning Rock Dx RS19058620FFP |                 | Report [<br>2019/11  | Date<br>/19 PM      | TEST<br>OncoScreen Plus™ |                    |
|------------|------------------------------------------------------|-----------------|----------------------|---------------------|--------------------------|--------------------|
| 2. Germlir | ne Variants and                                      | Interpretation  |                      |                     |                          |                    |
| Gene       | Variant Type                                         | e Exon          | Nucleotide<br>Change | Amino Aci<br>Change | d Zygosity               | Interpretati<br>on |
|            | No pathogenic                                        | or likely patho | genic germline       | variant deteo       | cted in this sample      |                    |

**Note :** 1. Only pathogenic or likely pathogenic variants of hereditary cancer related genes will be reported.

2.Hereditary cancer related genes are defined by ACMG secondary finding guideline v2.0 [PMID: 27854360] and NCCN guidelines.This product tests 62 genes: APC、ATM、AXIN2、BARD1、BMPR1A、BRCA1、BRCA2、BRIP1、CDH1、CDK12、CDK4、CDKN2A、CHEK1、CHEK2、EGFR、EPCAM、FANCA、FANCI、FANCL、FH、FLCN、GREM1、HOXB13、KIT、MEN1、MET、MLH1、MSH2、MSH3、MSH6、MUTYH、NBN、NF1、NF2、NTHL1、PALB2、PDGFRA、PMS2、POLD1、POLE、PPP2R2A、PRKAR1A、PTCH1、PTEN、RAD51B、RAD51C、RAD51D、RAD54L、RB1、RET、SDHA、SDHAF2、SDHB、SDHC、SDHD、SMAD4、STK11、TP53、TSC1、TSC2、VHL、WT1.

3. According to ACMG guidelines[PMID:25741868], the pathogenicity of germline variant is classified into five categories : 1-benign; 2-likely benign; 3-variants with uncertain significance; 4-likely pathogenic; 5-pathogenic. The interpretation of variant is based on available literature and relevant databases and may change as research progresses.

|                         | Specimen ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Report Date                                                                              | TEST                                                                                                                         |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Burning Rock Dx         | RS19058620FFP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2019/11/19 PM                                                                            | OncoScreen Plus™                                                                                                             |
| 3. Summary of Immun     | otherapy Biomarkers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                          |                                                                                                                              |
| ТМВ                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                                              |
| • RESULT                | 11.1 muts/Mbp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          |                                                                                                                              |
| • TMB Introduction      | Tumor mutation burd<br>that occur per million<br>load of the genome l<br>mutations) within reg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | den (TMB) represen<br>n bases in the geno<br>based on non-silent<br>jions of the PANEL c | ts the number of somatic mutations<br>me. This test evaluates the mutation<br>mutations (excluding tumor hotspot<br>aptured. |
| • Clinical Significance | Previous retrospective studies have shown that a higher mutational burden in<br>the tumor genome is correlated with a better efficacy of anti-PD-1/PD-L1 (±<br>anti-CTLA-4) treatments. The TMB obtained from large NGS panels is highly<br>correlated with that from whole exome sequencing (WES), confirming that<br>selective sequencing of the specific genomic region is sufficient to obtain full<br>understanding of a patient's TMB and can help predict the efficacy of immune<br>checkpoint inhibitors. The CheckMate-227 study further confirmed that<br>EGFR/ALK-negative advanced NSCLC patients with TMB≥10 have significant<br>benefits in both objective response rate (ORR) and progression-free<br>survival (PFS) when they were treated with first-line immune checkpoint<br>inhibitor (Navurizumab plus Ipilimumab) regardless of their PD-L1 expression<br>level compared to standard chemotherapy [PMID: 29658845]. |                                                                                          |                                                                                                                              |

| MSI                   |                                                                                                                                                                                                                                                                                                          |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • RESULT              | Microsatellite Stable (MSS)                                                                                                                                                                                                                                                                              |
| MSI Introduction      | Microsatellite instability (MSI) refers to insertions and deletions of simple<br>repetitive sequences in a microsatellite locus, resulting in genomic instability.<br>Microsatellite instability (MSI) status is evaluated by the MSI detection<br>algorithm independently developed by Burning Rock Dx. |
| Clinical Significance | No immunotherapy drugs are recommended for solid tumors with microsatellite stable (MSS).                                                                                                                                                                                                                |

Specimen ID RS19058620FFP Report Date 2019/11/19 PM

OncoScreen Plus™

TEST

## 4. SNPs in Drug Metabolism Enzymes

| SNP                        | Genotype                             | Zygosity  | Clinical Significance                                                                                                                                                                                                                                                                                                             |
|----------------------------|--------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CYP2D6*10<br>rs1065852     | G/A                                  | Wild Type | Cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of multiple drugs. Genetic polymorphisms cause substantial variation in CYP2D6 activity and serve as biomarkers guiding drug therapy. The *10 heterozygous variant alleles have partial activity and the exact effect on enzymatic activity is difficult to determine. |
| DPYD*13<br>rs55886062      | A/A                                  | Wild Type | DPD deficiency is associated with increased toxicity of fluorouracil (5-FU, capecitabine, or tegafur). Individuals with wild type DPD have normal DPD expression.                                                                                                                                                                 |
| DPYD*2846A>T<br>rs67376798 | T/T                                  | Wild Type | DPD deficiency is associated with increased toxicity of fluorouracil (5-FU, capecitabine, or tegafur). Individuals with wild type DPD have normal DPD expression.                                                                                                                                                                 |
| DPYD*2A<br>rs3918290       | C/C                                  | Wild Type | DPD deficiency is associated with increased toxicity of fluorouracil (5-FU, capecitabine, or tegafur). Individuals with wild type DPD have normal DPD expression.                                                                                                                                                                 |
| UGT1A1*28<br>rs8175347     | (TA) <sub>6</sub> /(TA) <sub>7</sub> | Wild Type | UGT1A1-specific polymorphisms are associated with<br>increased irinotecan toxicity. The precise dose reduction<br>in heterozygous carriers of the variants UGT1A1*28 is not<br>known and subsequent dose modifications should be<br>considered based on the tolerance of individual patient.                                      |
| UGT1A1*6<br>rs4148323      | G/G                                  | Wild Type | UGT1A1-specific polymorphisms are associated with increased irinotecan toxicity. It is less likely for individuals with wild-type UGT1A1 to have irinotecan-related toxicity.                                                                                                                                                     |





**Note :** The figure above shows the copy number distribution for all detected genes. Each dot represents an interval from captured gene regions, and the highlighted dots represent those genes focused on copy number alterations. The horizontal axis represents the chromosome where a gene is located, and the vertical axis represents the copy number calculated based on the NGS data (the red horizontal line represents the normal copy number of a gene. Copy number

| 一<br>燃<br>石<br>医<br>学<br>Burning Rock Dx | Specimen ID   | Report Date   | TEST             |
|------------------------------------------|---------------|---------------|------------------|
|                                          | RS19058620FFP | 2019/11/19 PM | OncoScreen Plus™ |

obtained by this test cannot completely represent the gene copy number in tumor cells due to the dilution of normal cells.

Specimen IDReport DateTEST燃石医学<br/>Burning Rock DxRS19058620FFP2019/11/19 PMOncoScreen Plus™

## **APPENDIX1 : QUALITY CONTROL**

|                          | Quality Parameters                     | Value    | Criteria |
|--------------------------|----------------------------------------|----------|----------|
| Pathology                | Tumor Purity (%) <sup>1</sup>          | -        | ≥10%     |
|                          | DNA Quantity(ng) <sup>2</sup>          | 838      | ≥30      |
| DNA Quality              | DNA Degradation <sup>3</sup>           | А        | A-B-C    |
|                          | Pre-library Quantity (ng) <sup>4</sup> | 4490     | ≥300     |
|                          | Mean Depth <sup>5</sup>                | 1249     | ≥500     |
|                          | Library Diversity <sup>6</sup>         | 78%      | ≥20%     |
|                          | Insert Length (bp) <sup>7</sup>        | 242      | ≥150     |
| Data Quality             | Coverage Uniformity <sup>8</sup>       | 97%      | ≥90%     |
|                          | Mapping Ratio <sup>9</sup>             | 100%     | ≥95%     |
|                          | Q30 Percentage <sup>10</sup>           | 92%      | ≥80%     |
|                          | SNP Concordance <sup>11</sup>          | 99%      | ≥90%     |
| Overall QC <sup>12</sup> | Qu                                     | ualified |          |

**Note :** 1. Tumor Purity: Tumor purity was assessed by Burning Rock using HE staining. This step will be omitted if the sample does not meet the requirement for tumor content assessment. This assessment is not performed on cfDNA samples.

2. DNA Amount: the amount of DNA extracted from the submitted specimen.

3. DNA Degradation: the level of DNA degradation assessed by gel electrophoresis; A-D indicate different levels of DNA degradation, A indicates the lowest degradation and D indicates the highest degradation. This step will be omitted if a sample does not need such assessment. This assessment is not performed on cfDNA samples.

4. Pre-library Amount: the amount of libraries for sequencing after adapter-ligated DNA fragments are amplified and purified.

5. Mean Sequencing Depth: the mean and median number of unique reads being mapped to a given nucleotide of a targeted gene

6. Library Diversity: the proportion of DNA libraries from the original DNA fragments.

7. Insert Length: the median length of the sequenced DNA fragments. For tissue samples, if the median insert length is less than 170bp, it indicates DNA degradation. This may introduce DNA degradation induced false positives. The insert length for cfDNA is 170bp.

8. Coverage Uniformity: the percentage of targeted base positions in which the read depth is greater than 0.2 times the mean coverage depth.

9. Mapping Ratio: the percentage of the number of sequences successfully aligned to the reference genome.

10. Q30 Percentage: the percentage of bases that have a Q-score above or equal to 30(below a probability of incorrect base calling of 1 in 1000).

11. SNP Concordance: the fraction of the genotype calls for SNPs from paired specimen.

12. Overall QC: the overall quality control based on multiple parameters; overall QC is divided into three levels: qualified, warning and fail. When the overall quality is warning or fail, the accuracy and sensitivity of this test may be affected.



Report Date 2019/11/19 PM

TEST OncoScreen Plus™

## **APPENDIX2 : METHODOLOGY AND LIMITATIONS**

## METHODOLOGY

This test performed hybrid capture-based next-generation sequencing (NGS) to detect genomic alterations. The detection method was independently developed, analyzed and validated by Burning Rock.Dx. Burning Rock has established CLIA-certified and CAP-accredited NGS laboratory, and passed the relevant quality assessment of National Center for Clinical Laboratories of China.

This test covers up to 20bp on either side of the intron/exon boundaries of the targeted genes. Variant types that this test can detect single nucleotide variation (SNV),small insertion or deletion, and some rearrangements.

## LIMITATIONS

1. This report only provides reference for clinical diagnosis and treatment decisions-making. Clinical diagnosis and treatment decisions should be made by the clinician in combination with the clinical information of patient.

2. The analysis and interpretation of results are based on available literature and databases. With the advancements of relevant research and updates of databases, the interpretation of mutations may change.

3. This test is only applicable to the detection of DNA mutations. DNA methylation, RNA-level or protienlevel modifications are not inferred by this test.

4. If no muation detected (negative reult), we cannot rule out the possibility of the presence of mutations which are below the limit of detection.

5. Due to the complexity of the tumorigenic mechanism, the results of this test alone cannot confirm or exclude the presence of malignant tumors.

6. Acquired mutations may occur during treatment and tumor development, resulting in the change of mutation spectrum. Tumors also have spataial and temporal heterogeneitytest. Therefore, results from different specimens of the same patient may differ. This test is only responsible for the specimen submitted.

7. This test cannot determine chromosomal polyploidy which may result in copy number variations (CNV). The sensitivity of CNV detection is affected by the proportion of tumor cells in a specimen. If the proportion of tumor cells is <20%, the detection sensitivity is limited.

8. The sensitivity of TMB detection is affected by the proportion of tumor cells in a specimen which is correlated with the maximum allelic fraction (maxAF). If the proportion of tumor cells is <10% or maxAF <5%, the detection sensitivity is limited.

9. The sensitivity of MSI detection is affected by the proportion of tumor cells in a specimen which is correlated with the maximum allelic fraction (maxAF). If the proportion of tumor cells is <20% or maxAF <10%, the detection sensitivity is limited.



Specimen ID RS19058620FFP Report Date

2019/11/19 PM

TEST

OncoScreen Plus™

## **APPENDIX3 : GENE LIST**

ABL1 NM\_005157.5 AKT1 NM\_001014432.1 AMER1 NM\_152424.3 **ARID1A** NM 006015.4 ASXL2 NM\_018263.4 AURKB NM 001284526.1 BAP1 NM\_004656.3 BCL2L1 NM 001317919.1 BCORL1 NM 021946.4 BRCA1 NM 007294.3 BRIP1 NM\_032043.2 CARD11 NM\_032415.5 CCND2 NM\_001759.3 CD79A NM\_001783.3 CDK12 NM 016507.3 CDKN1B NM\_004064.4 **CEBPA** NM\_004364.4 CHEK1 NM\_001274.5 CRLF2 NM\_022148.3 CTCF NM\_006565.3 CUL4A NM\_001008895.2 **DAXX** NM\_001141970.1 DIS3 NM 0149534 DOT1L NM\_032482.2 EIF4E NM 001130679.1 EPHA3 NM\_005233.5 ERBB2 NM 004448.3 ERCC3 NM 000122.1 ESR1 NM 000125.3 EZH2 NM 004456.4 FANCE NM\_021922.2 FANCM NM\_020937.3 FGF12 NM\_021032.4 FGF4 NM 002007.2 FGFR3 NM\_000142.4 FLT3 NM\_004119.2 FOXP1 NM\_001244810.1 GATA1 NM\_002049.3 **GEN1** NM\_001130009.2 **GNAO** NM 002072.4 GRM3 NM\_000840.2 HDAC1 NM 004964.2 HIST1H3A NM\_003529.2

### HIST1H3G NM\_003534.2

HIST3H3 NM\_003493.2

HOXB13 NM\_006361.5

ID3 NM\_002167.4 IGF1R NM\_000875.4 IL7R NM\_002185.3 INSR NM\_000208.3 JAK1 NM\_001320923.1 KDM5A NM\_001042603.2 KEL NM\_000420.2 KMT2C NM\_170606.2 ABL2 NM\_007314.3 AKT2 NM\_001626.5 **APC** NM\_000038.5 **ARID1B** NM 020732.3 **ATM** NM\_000051.3 **AXIN1** NM 003502.3 BARD1 NM\_000465.3 BCL2L11 NM\_001204107.1 BIRC3 NM 001165.4 BRCA2 NM 000059.3 BTG1 NM\_001731.2 CASP8 NM\_001228.4 CCND3 NM\_001760.4 CD79B NM\_000626.3 CDK4 NM 000075.3 CDKN1C NM\_000076.2 **CENPA** NM\_001809.3 CHEK2 NM\_007194.3 CSF1R NM\_001288705.1 CTLA4 NM\_005214.4 CXCR4 NM\_003467.2 DCUN1D1 NM\_020640.3 **DNAJB1** NM 006145.2 **DPYD** NM\_000110.3 EMSY NM\_001300942.1 EPHA5 NM\_001281765.2 ERBB3 NM 001982.3 ERCC4 NM 005236.2 ETV4 NM 001079675.2 **EZR** NM\_001111077.1 FANCF NM\_022725.3 FAS NM\_000043.5 FGF14 NM\_175929.2 FGF6 NM 020996.2 FGFR4 NM\_002011.4 FLT4 NM\_182925.4 FRS2 NM\_001042555.2 GATA2 NM\_001145661.1 GID4 NM\_024052.4 **GNAS** NM 080425.3 **GSK3B** NM\_002093.3 HDAC2 NM 001527.3 HIST1H3B NM\_003537.3 HIST1H3H NM\_003536.2 HLA-A NM 001242758.1

IDH1 NM\_005896.3 IGF2 NM\_000612.5 INHA NM\_002191.3 IRF2 NM\_002199.3 JAK2 NM\_004972.3 KDM5C NM\_004187.3 KIT NM\_000222.2 KMT2D NM\_003482.3

HRAS NM\_005343.3

**ABRAXAS1** NM\_139076.2 AKT3 NM\_005465.4 **AR** NM\_000044.3 **ARID2** NM 152641.2 **ATR** NM\_001184.3 AXIN2 NM 004655.3 BBC3 NM\_001127240.2 BCL2L2 NM 001199839.1 BLM NM 000057.3 BRD4 NM 058243.2 BTG2 NM\_006763.2 **CBFB** NM\_022845.2 CCNE1 NM\_001238.3 CDC73 NM\_024529.4 CDK6 NM 001145306.1 CDKN2A NM\_000077.4 CHD1 NM\_001270.2 **CIC** NM\_015125.4 CSF3R NM\_156039.3 **CTNNA1** NM\_001323982.1 **CYLD** NM\_015247.2 DDR1 NM\_013994.2 **DNMT1** NM 001130823.2 **EED** NM\_001308007.1 **EP300** NM 001429.3 EPHA7 NM\_004440.3 ERBB4 NM\_005235.2 ERCC5 NM 000123.3 ETV5 NM 004454.2 FANCA NM\_000135.2 FANCG NM\_004629.1 FAT1 NM\_005245.3 FGF19 NM\_005117.2 FGF7 NM 002009.3 FH NM\_000143.3 FOXA1 NM\_004496.3 FUBP1 NM\_003902.4 GATA3 NM\_001002295.1 GLI1 NM\_005269.2 GPS2 NM 004489.4 H3F3A NM\_002107.4 HGF NM 000601.5 HIST1H3C NM\_003531.2 HIST1H3I NM\_003533.2 HLA-B NM 005514.7 HSD3B1 NM\_000862.2 IDH2 NM\_002168.3 **IKBKE** NM 014002 3 **INHBA** NM\_002192.3 IRF4 NM\_002460.3 JAK3 NM 000215.3 **KDM6A** NM\_001291415.1

ACVR1 NM\_001105.4 ALK NM\_004304.4 **ARAF** NM\_001256196.1 **ARID5B** NM 032199.2 ATRX NM\_000489.4 **AXL** NM 021913.4 BCL10 NM\_003921.4 BCL6 NM 001130845.1 BMPR1A NM 004329.2 BRD7 NM 001173984.2 BTK NM\_000061.2 **CBL** NM\_005188.3 CD274 NM\_014143.3 CDH1 NM\_004360.4 CDK8 NM 001260.2 **CDKN2B** NM\_004936.3 CHD2 NM\_001271.3 **CREBBP** NM\_004380.2 **CSMD1** NM\_033225.5 CTNNB1 NM\_001904.3 CYP17A1 NM\_000102.3 DDR2 NM\_001014796.1 **DNMT3A** NM 022552.4 EGFR NM\_005228.3 **EPCAM** NM 002354.2 **EPHB1** NM\_004441.4 ERCC1 NM\_202001.2 ERG NM 001136154.1 ETV6 NM 001987.4 FANCC NM\_000136.2 FANCI NM\_001113378.1 FBXW7 NM\_033632.3 FGF23 NM\_020638.2 FGFR1 NM\_023110.2 FLCN NM\_144997.5 FOXL2 NM\_023067.3 FYN NM\_002037.5 GATA4 NM\_001308093.1 GNA11 NM\_002067.4 **GREM1** NM 013372.6 H3F3B NM\_005324.4 HIST1H1C NM 005319.3 HIST1H3D NM\_003530.4 HIST1H3J NM\_003535.2 HLA-C NM 001243042.1 HSP90AA1 NM 001017963 2 IFNGR1 NM\_000416.2 IKZF1 NM\_006060.5 **INPP4A** NM\_001134224.1 IRS1 NM\_005544.2 JUN NM 002228.3

**KDR** NM\_002253.2

KLHL6 NM\_130446.2

LATS1 NM\_004690.3

ACVR1B NM\_020328.3 ALOX12B NM\_001139.2 **ARFRP1** NM\_001267547.2 **ASXL1** NM 015338.5 AURKA NM\_001323303.1 B2M NM 004048.2 BCL2 NM\_000633.2 BCOR NM 001123383.1 BRAF NM 004333.4 BRINP3 NM 199051.2 CALR NM\_004343.3 CCND1 NM\_053056.2 **CD74** NM\_001025159.2 CDH18 NM\_001291956.1 CDKN1A NM 001291549.1 CDKN2C NM\_001262.2 CHD4 NM\_001273.3 CRKL NM\_005207.3 **CSMD3** NM\_198123.1 CUL3 NM\_001257198.1 CYP2D6 NM\_000106.5 DICER1 NM\_177438.2 DNMT3B NM 006892.3 EIF1AX NM\_001412.3 EPHA2 NM 004431.4 EPHB4 NM\_004444.4 ERCC2 NM 000400.3 ERRFI1 NM 018948.3 EWSR1 NM 013986.3 FANCD2 NM\_001018115.2 FANCL NM\_018062.3 FGF10 NM\_004465.1 FGF3 NM\_005247.2 FGFR2 NM 000141.4 FLT1 NM\_002019.4 FOXO1 NM\_002015.3 GABRA6 NM\_000811.2 GATA6 NM\_005257.5 GNA13 NM\_006572.5 GRIN2A NM 000833.4 H3F3C NM\_001013699.2 HIST1H2BD NM 021063.3 HIST1H3E NM\_003532.2 HIST2H3D NM\_001123375.2 HNF1A NM 000545.6 ICOSLG NM\_001283050.1

IGF1 NM\_001111285.2 IL10 NM\_000572.2 INPP4B NM\_001101669.1 IRS2 NM\_003749.2 KAT6A NM\_006766.4 KEAP1 NM\_012289.3 KMT2A NM\_001197104.1 LATS2 NM\_014572.2

10 / 13

KLF4 NM\_001314052.1

KRAS NM\_033360.3

| MATE MATE MATERIA |
|-------------------|
|-------------------|

LMO1 NM 002315.2 MAGI2 NM\_012301.3 MAP3K1 NM\_005921.1 MCL1 NM\_021960.4 MEF2B NM\_001145785.1 MIR21 NR 029493.1 **MPL** NM 005373.2 MST1 NM\_020998.3 MYC NM\_002467.4 NAV3 NM\_001024383.1 NEGR1 NM\_173808.2 NKX2-1 NM\_001079668.2 NOTCH4 NM\_004557.3 NSD2 NM\_001042424.2 NTRK2 NM\_006180.4 PAK1 NM\_001128620.1 PARP2 NM\_005484.3 PDCD1 NM 005018.2 PGR NM\_000926.4 PIK3CA NM 006218.3 PIK3R2 NM\_005027.3 PMS1 NM\_000534.4 **PPARG** NM\_015869.4 PRDM1 NM 001198.3 **PRKN** NM 004562.2 PTPRO NM 030667.2 RAC1 NM\_018890.3 RAD51C NM\_058216.2 RARA NM\_000964.3 **REL** NM 002908.3 **RIT1** NM 001256821.1 **RPS6KB2** NM\_003952.2 SDC4 NM\_002999.3 **SDHD** NM\_003002.3 SH2D1A NM\_002351.4 SMAD2 NM\_001003652.3 SMARCD1 NM 003076.4 SOX17 NM\_022454.3 SPTA1 NM 003126.2 **STAT4** NM\_001243835.1 SUFU NM\_016169.3 TCF7L2 NM\_001146274.1 TFT1 NM 030625.2 TMEM127 NM 017849.3 **TOP2A** NM\_001067.3 TRIM58 NM\_015431.3 TYRO3 NM\_006293.3 VHL NM\_000551.3 XPO1 NM 003400.3 **ZBTB16** NM\_001018011.1

Specimen ID RS19058620FFP LRP1B NM 018557.2 MALT1 NM\_006785.3 MAP3K13 NM 0012423141 MAPK1 NM 0027454 MDC1 NM\_014641.2 MEN1 NM\_000244.3 MITF NM\_000248.3 MRE11 NM 005591.3 MST1R NM\_002447.3 MYCL NM 001033082.2 NBN NM\_002485.4 NF1 NM\_000267.3 NKX3-1 NM\_006167.3 NPM1 NM\_002520.6 NSD3 NM\_023034.1 NTRK3 NM\_001012338.2 PAK3 NM\_001128168.2 **PARP3** NM\_001003931.3 PDCD1LG2 NM 025239.3 PHOX2B NM\_003924.3 **PIK3CB** NM 006219.2 PIK3R3 NM\_001303427.1 PMS2 NM\_000535.6 **PPM1D** NM\_003620.3 PREX2 NM 024870.3 PTCH1 NM 000264.3 PTPRS NM\_002850.3 RAD21 NM\_006265.2 RAD51D NM\_002878.3 RASA1 NM\_002890.2 **RET** NM 020975.4 RNF43 NM 017763.5 **RPTOR** NM\_020761.2 **SDHA** NM\_004168.3 SETD2 NM\_014159.6 SHQ1 NM\_018130.2 SMAD3 NM\_005902.3 SMO NM 005631.4 SOX2 NM\_003106.3 **SRC** NM 198291.2 **STAT5A** NM\_001288718.1 **SYK** NM 001174167.2 TEK NM\_000459.4 TET2 NM 001127208.2 TMPRSS2 NM\_001135099.1 TNFAIP3 NM\_001270507.1 TP53 NM\_000546.5 TRPC5 NM\_012471.2 **U2AF1** NM\_001025203.1 WISP3 NM\_198239.1 XRCC2 NM\_005431.1 **ZBTB2** NM\_020861.2

2019/11/19 PM LTK NM 002344.5 MAP2K1 NM\_002755.3 MDM2 NM\_002392.5 MERTK NM\_006343.2 MKNK1 NM\_003684.5 MSH2 NM 000251.2 MTAP NM\_002451.3 MYCN NM\_001293228.1 NCOA3 NM\_181659.2 NF2 NM\_000268.3 NOTCH1 NM\_017617.4 NRAS NM\_002524.4 NT5C2 NM\_001134373.2 NUP93 NM\_014669.4 PAK5 NM\_020341.3 PAX5 NM\_016734.2 **PDGFRA** NM 006206.4 PIK3C2B NM\_002646.3 PIK3CD NM\_005026.3 PIM1 NM\_001243186.1 **PNRC1** NM 006813.2 **PPP2R1A** NM\_014225.5 **PRKAR1A** NM 002734.4 **PTEN** NM 000314.6 **PTPRT** NM 133170.3 RAD50 NM\_005732.3 RAD52 NM\_001297419.1 **RB1** NM\_000321.2 **RHEB** NM 005614.3 ROS1 NM 002944.2 RSPO2 NM\_178565.4 **SDHAF2** NM\_017841.2 SF3B1 NM\_012433.3 SLC34A2 NM\_006424.2 SMAD4 NM\_005359.5 **SNCAIP** NM 001308100.1 **SOX9** NM\_000346.3 SRSF2 NM 003016.4 **STAT5B** NM\_012448.3 TAF1 NM\_001286074.1 TENT5C NM\_017709.3 **TGFBR1** NM 001306210.1 **TP63** NM 003722.4 TSC1 NM 000368.4 UGT1A1 NM\_000463.2 WRN NM\_000553.4 XRCC3 NM\_001100118.1 ZNF217 NM\_006526.2

Report Date

TEST

OncoScreen Plus™ LYN NM 002350.3 MAP2K2 NM\_030662.3 MAPK3 NM 0027462 MDM4 NM\_002393.4 MET NM\_000245.3 MLH1 NM\_000249.3 MSH3 NM 002439.4 MTOR NM\_004958.3 MYD88 NM\_002468.4 NCOR1 NM\_006311.3 NFE2L2 NM\_006164.4 NOTCH2 NM\_024408.3 NRG1 NM\_001322205.1 NTHL1 NM\_002528.6 **NUTM1** NM\_001284292.1 PALB2 NM\_024675.3 **PBRM1** NM\_018313.4 **PDGFRB** NM 002609.3 PIK3C2G NM\_001288772.1 PIK3CG NM 001282426.1 PLCG2 NM\_002661.4 POLD1 NM\_001256849.1 PPP2R2A NM\_002717.3 **PRKCI** NM 002740.5 PTPN11 NM 002834.3 **QKI** NM\_006775.2 RAD51 NM\_001164269.1 RAD54L NM\_003579.3 RBM10 NM\_001204468.1 **RHOA** NM\_001664.3 **RPA1** NM 002945.3 RUNX1 NM\_001754.4 **SDHB** NM\_003000.2 SGK1 NM\_001143676.1 SLIT2 NM\_004787.3 SOCS1 NM 003745.1 **SPEN** NM\_015001.2 STAG2 NM 001042749.2 **STK11** NM\_000455.4 TBX3 NM 016569.3 TERC NR\_001566.1 TGFBR2 NM 001024847.2 TNFRSF14 NM 003820.3 TRAF2 NM\_021138.3 TSC2 NM\_000548.4 VEGFA NM\_001025366.2 WT1 NM\_024426.4 **YAP1** NM\_001282101.1 ZNF703 NM\_025069.2

MAF NM 005360.4 MAP2K4 NM\_001281435.1 MAX NM\_002382.4 MED12 NM\_005120.2 MGA NM\_001164273.1 MLH3 NM 001040108.1 MSH6 NM 000179.2 MUTYH NM\_001128425.1 MYOD1 NM\_002478.4 NCOR2 NM\_006312.5 NFKBIA NM\_020529.2 NOTCH3 NM\_000435.2 NSD1 NM\_022455.4 NTRK1 NM\_001007792.1 P2RY8 NM\_178129.4 PARP1 NM\_001618.3 PCDH11X NM\_032968.4 PDK1 NM 001278549.1 PIK3C3 NM\_002647.3 PIK3R1 NM 181523.2 PLK2 NM\_006622.3 POLE NM\_006231.3 **PPP6C** NM\_001123355.1 **PRKDC** NM 006904.6 PTPRD NM 002839.3 RAB35 NM\_006861.6 RAD51B NM\_133509.3 RAF1 NM\_002880.3 RECQL4 NM\_004260.3 **RICTOR** NM\_001285439.1 RPS6KA4 NM 003942.2 RUNX1T1 NM\_001198679.1 **SDHC** NM\_003001.3 SH2B3 NM\_005475.2 SLX4 NM\_032444.2 SMARCA4 NM\_001128849.1 SMARCB1 NM\_003073.4 SOX10 NM 006941.3 **SPOP** NM\_001007226.1 **STAT3** NM 139276.2 STK40 NM\_001282546.1 TCF3 NM\_003200.3 TERT NM\_198253.2 TIPARP NM\_001184717.1 TOP1 NM 003286.2 TRAF7 NM 032271.2 **TSHR** NM\_000369.2 VEGFB NM\_003377.4 **XIAP** NM\_001167.3 YES1 NM\_005433.3 **ZNRF3** NM\_001206998.1

Note : The NM number after the gene name is the transcript number (RefSeq) used when analyzing.

#### **Gene List Focused on Rearrangements** ALK BRAF CD274 **CD74** ETV4 ETV5 ETV6 EWSR1 EZR FGFR1 FGFR2 FGFR3 NRG1 NTRK1 NTRK2 NTRK3 RAF1 RET

|            | Specimen ID   | Report Date   | TEST             |  |
|------------|---------------|---------------|------------------|--|
|            | RS19058620FFP | 2019/11/19 PM | OncoScreen Plus™ |  |
| ROS1 RSPO2 | SDC4          | SLC34A2       | TMPRSS2          |  |



Report Date 2019/11/19 PM

## **APPENDIX4 : REFERENCE**

- 1. NCCN Clinical Practice Guidelines in Oncology ( NCCN Guidelines  $\ensuremath{\mathbb{R}}$  )
- 2. Li MM et al. (2017) Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn [PMID: 27993330]
- 3. Kalia SS et al. (2017) Recommendations for reporting of secondary findings in clinical exome and genome sequencin g, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Gen et. Med. [PMID: 27854360]
- 4. Richards S et al. (2016) Standards and guidelines for the interpretation of sequence variants: a joint consensus recom mendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. [PMID: 25741868]
- 5. Ng KP et al. (2012) A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyr osine kinase inhibitors in cancer. Nat. Med. [PMID: 22426421]



Specimen ID: RS19058622FFP

# PD-L1 (Antibody Clone 22C3) Report

Burning Rock Dx | a CLIA certified lab

Report Serial Number 3131901668 Dat2019/11/15 AM

Anti-Forgery Port

|                           | - 224                   | Specimen ID   | Date          | Test        | 版本号: 2.0 生 | 效日期:2020.09.30 |
|---------------------------|-------------------------|---------------|---------------|-------------|------------|----------------|
|                           | s <del>3</del><br>ck Dx | RS19058622FFP | 2019/11/15 AM | PD-L1 (22C3 | 3)         |                |
| Patient In                | formation               |               |               |             |            |                |
| Name                      | 吴成云                     | Specimen ID   | RS19058622FFP | Applicatio  | on Form    | A00144592      |
| Gender                    | Male                    | Specimen Type | Section       | Accession   | Date       | 2019/11/11     |
| Age                       | 67                      | Biopsy Type   | Puncture      | Specimen    | Received   | 2019/11/13 AM  |
| Patient ID                | 3209211952**<br>1       | Specimen Site | Lung          | Report Da   | ate        | 2019/11/15 AM  |
| Tumor Type                | Unknown                 | Hospital      | 江苏省人民医院       |             |            |                |
| Additional<br>Information | Not provided            |               |               |             |            |                |

\*NOTE: Patient information was provided by the patient upon sample receiving. Above information is not conferred from this report therefore, this report is not responsible for the accuracy of the above information.

# **Introduction of Products**

| Protein | Clone<br>number | Method | Reagent                | <b>Clinical interpretation</b>        |
|---------|-----------------|--------|------------------------|---------------------------------------|
| 1 ו_חפ  | 2263            | шс     | Mouse anti-Human PD-L1 | Keytruda (Pembrolizumab) Antibody for |
| FD-LI   | PD-L1 22C3 IHC  |        | Monoclonal Antibody    | <b>Companion Diagnostics</b>          |

This report is only responsible for the detection of this specimen, and the results are only for medical reference.



Thechnician: 梁丽仪



# **Quality Control (QC)**

| Quality Parameter             |                           | Value     | QC Standard |
|-------------------------------|---------------------------|-----------|-------------|
| Pathological Assessment       | Number of malignant cells | ≥100      | ≥100        |
| Overall Quality<br>Assessment |                           | Qualified |             |

## Result

| Evaluation<br>Protein | TPS | CPS |
|-----------------------|-----|-----|
| PD-L1                 | 90% | /   |

NOTE Please refer to the results of PD-L1 protein expression according to the corresponding instructions of immunotherapy treatments and the evaluation criteria of different types of tumors.

## **Result Analytical Reference:**

## Methods:

TPS: PD-L1 stained tumor cell /total tumor cell (PD-L1 stained and non-stained) x100%

```
CPS: PD-L1 stained cell (tumor cell, lymphocyte, macrophage)/total tumor cell (PD-L1 stained and non-
```

stained) x100

## Limitations:

The following samples are not suitable for CPS evaluation

- a. Cytological samples
- b. Shredded tissue samples
- c. Decalcification samples of bone metastases

## Definition of boundary value:

Negative: < 1%

Low expression: 1-49%

High expression:  $\geq 50\%$ 

NOTE This threshold is the definition of TPS test results for NSCLC samples.

NOTE 1. Due to tumor heterogeneity (temporal and spatial), and the way of sample preservation, the results only reflect the specimen sent for examination.

| MACE学<br>Burning Rock Dx | Specimen ID   | Date          | Test     | 版本号: 2.0 生效日期: 2020.09.30 |
|--------------------------|---------------|---------------|----------|---------------------------|
|                          | RS19058622FFP | 2019/11/15 AM | PD-L1 (2 | 2C3)                      |

2. If the number of malignant tumor cells is less than 100, the accuracy of the detection may be affected.

3. The pharmacokinetics and the effect of its in vivo process are complex, and there are many factors affecting the efficacy and toxicity of the drug. Thus, doctors should consider the following factors prior to treatment decision-making, including but not limited to the pathophysiological characteristics of the patient, clinical manifestations, adjuvant therapy that is being used or to be used. This report serves as a reference for treatment-guidance based on the results of this test. Do not use this result as the sole basis for treatment-guidance.

| Specimen ID   | Date          | Test       | 版本号: 2. | 0 生效日期: | 2020.09.30 |
|---------------|---------------|------------|---------|---------|------------|
| RS19058622FFP | 2019/11/15 AM | PD-L1 (22C | 3)      |         |            |

# **Result chart**

Sample results:



TPS

NA

CPS

QC sample results:



Positive Control



Negative Control

|  | Specimen ID   | Date          | Test       | 版本号: | 2.0 生效日期: | 2020.09.30 |
|--|---------------|---------------|------------|------|-----------|------------|
|  | RS19058622FFP | 2019/11/15 AM | PD-L1 (22) | C3)  |           |            |

## **PD-L1** INTRODUCTION

PD-L1 (Programmed death-ligand 1, B7-H1 or CD274) protein, a type I transmembrane protein with a molecular weight of 40 kDa, is the ligand of PD-1 (programmed death-1). The encoding gene of PD-L1 is located on human chromosome 9p24.2 and its extracellular region of PD-L1 contains Ig-V and Ig-C-like domains. PD-1 is expressed in a wide range of cells, including T cells, B cells, dendritic cells, macrophages, mast cells, fibroblasts, and mesenchymal stem cells. PD-L1 is also widely expressed on the cell surface of tumor cells, and is proposed to be responsible for promoting tumor immune escape.

When binding to its ligand PD-L1, PD-1 can activate intracellular signaling pathways and inhibit the activity of killer T lymphocytes, thereby reducing the secretion of cytokines by immune cells. During infection and inflammation, interaction of PD-1 with PD-L1 helps to prevent autoimmunity to maintain immune homeostasis. In the tumor microenvironment, after binding to PD-L1 on the cell surface of tumor cells, PD-1 on the surface of tumor specific cytolytic T lymphocytes (CTL) can inhibit the activation of CTLs, and even promote the apoptosis of CTLs, ultimately leading to tumor immune escape.

Since the PD-L1/PD-1 signaling pathway plays a vital role in tumor immune escape, it becomes an important target of immunotherapy. Anti-PD-1 monoclonal antibodies (such as nivolumab and pembrolizumab) and anti-PD-L1 monoclonal antibodies (such as atezolizumab, durvalumab, and avelumab) could potentially restore the immune response of cytolytic T lymphocytes to tumor cells by blocking the PD-L1/PD-1 signaling pathway so as to prevent tumors from achieving immune evasion, and thus improve the prognosis of patients. Several antibodies targeting the PD-L1-PD-1 axis have been approved by the FDA for multiple cancers, including malignant melanoma(MM), non-small cell lung cancer (NSCLC), renal cell carcinoma(RCC), urothelial carcinoma, head and neck carcinoma, Hodgkin lymphoma, gastric cancer, hepatocellular carcinoma(HCC), small cell lung cancer and solid tumors with microsatellite instability-high(MSI-H). In addition, a large number of antibodies targeting the PD-L1-PD-1 axis are in clinical development.

Expression of PD-L1 is one of the more promising prognostic biomarker for predicting response to monotherapies blocking the PD-L1-PD-1 axis. In several clinical trials of antagonistic drugs designed to block PD-L1/PD-1, PD-L1 expression in tumor cells+/- immune cells has been used for stratifying patients. In addition, PD-L1 IHC is used as either the companion or the complementary diagnostic assay for several approved indications of PD-1/PD-L1 monoclonal antibodies.

Monoclonal antibody PD-L1 IHC 22C3 is the companion diagnostic antibody used in multiple registered clinical trials of pembrolizumab (KEYTRUDA) . It is also the first PD-L1 antibody approved for companion diagnosis of PD-1/PD-L1 immunotherapy in following indications: NSCLC, gastric or esophagogastric junction adenocarcinoma (GEJ), esophageal squamous cell carcinomas, cervical cancer, urothelial carcinoma, and head and neck cancers. In NSCLC, PD-L1 protein expression is accessed by tumor proportion score (TPS), which refers to percentage of complete or partial cell membrane staining of tumor cells with any intensity over total tumor cells in the denominator. PD-L1 positive is defined as TPS  $\geq$  1% and high PD-L1 expression as TPS defin. While in

gastric or esophagogastric junction adenocarcinoma(GEJ), esophageal squamous cell carcinomas, cervical cancer, urothelial carcinoma, and head and neck cancers, PD-L1 expression is categorized by combined proportion score (CPS), which is defined as the sum of PD-L1 stained tumor cell and surrounding lymphocytes and macrophages divided by the total number of viable tumor cells multiplied by 100. In gastric or esophagogastric junction adenocarcinoma(GEJ), cervical cancer, and head and neck cancers, PD-L1 positive is defined as CPS  $\geq$  1, and in esophageal squamous cell carcinomas and urothelial carcinoma, positive threshold is CPS  $\geq$  10.

There is a lack of consensus on the correlation of the level of PD-L1 and efficacy of PD-1/PL-D1 inhibitors in solid tumors due to the presence of various anti-PD-L1 antibodies and multiple platforms for PD-L1 detection. Multiple clinical trials show that high expression of PD-L1 is a favorable prognostic biomarker, but regardless of how cutoff is defined, there is no definitive indication of whether the patient will benefit from the therapy. Thus, selecting threshold of positive PD-L1 expression for different cancer patients should be based on expected clinical benefit, patients 'ability to shoulder economically, and other factors, particularly for therapies that PD-L1 detection has not been approved as companion diagnostics.

Clinical trials suggested that expression of PD-L1 is not an optimal prognostic biomarker for predicting response to PD-L1/PD-1 immunotherapy. Patients with positive or high PD-L1 expression have a higher objective response rate compared with those with negative or low PD-L1 expression. Many PD-L1-positive tumors, however, do not respond, and a few PD-L1-negative tumors do respond to PD-L1/PD-1 immunotherapy. Thus, detection and assessment of PD-L1 expression in the ongoing clinical trials is just the first step in exploring the prognostic marker for predicting response of PD-1/PD-L1 inhibitors and it should not be the prerequisite and the only standard for selecting candidate patients receiving PD-1/PD-L1 immunotherapy.



Figure 1. PD-L1 positive patients had better objective response to anti-PD-1/PD-L1 therapy than PD-L1 negative patients. (Graph was cited from Joel Sunshine, Janis M Taube. PD-1/PD-L1 inhibitors. Current Opinion in Pharmacology 2015,23:32-38)