DATA SUPPLEMENT

U-shaped association of high-density lipoprotein cholesterol with all-cause and cardiovascular mortality in patients with hypertension

Table S1. Threshold effect analysis of HDL-C on all-cause and cardiovascular mortality by subgroups

Figure S1. Kaplan-Meier curves of the event-free survival for all-cause mortality (A) and cardiovascular mortality (B) according to HDL-C categories.

Figure S2. Adjusted cubic spline model of the association between hazard ratio of all-cause mortality (A), cardiovascular mortality (B) and HDL-C levels in participants <65 years old.

Figure S3. Adjusted cubic spline model of the association between hazard ratio of all-cause mortality (A), cardiovascular mortality (B) and HDL-C levels in participants ≥ 65 years old.

Figure S4. Adjusted cubic spline model of the association between hazard ratio of all-cause mortality (A), cardiovascular mortality (B) and HDL-C levels in men.

Figure S5. Adjusted cubic spline model of the association between hazard ratio of all-cause mortality (A), cardiovascular mortality (B) and HDL-C levels in women.

Figure S6. Adjusted cubic spline model of the association between hazard ratio of all-cause mortality (A), cardiovascular mortality (B) and HDL-C levels in Non-white participants.

Figure S7. Adjusted cubic spline model of the association between hazard ratio of all-cause mortality (A), cardiovascular mortality (B) and HDL-C levels in white participants.

Table S1. Threshold effect analysis of HDL-C on all-cause and cardiovascular mortality by subgroups

	All-cause mortality			Cardiovascular mortality		
	Model I HR ($95 \% \mathrm{CI}$), P- value	Model II HR ($95 \% \mathrm{CI}$), P- value	Model III HR ($95 \% \mathrm{CI}$), P- value	Model I HR ($95 \% \mathrm{CI}$), P- value	Model II HR ($95 \% \mathrm{CI}$), P- value	Model III HR (95\%CI), P- value
Age ≥ 65 year						
HDL-C per mmol/L increment	0.91 (0.82, 1.01)	0.93 (0.83, 1.03)	1.05 (0.94, 1.17)	0.75 (0.61, 0.93)	0.79 (0.63, 0.99)	0.92 (0.73, 1.17)
	0.0674	0.1538	0.3928	0.0073	0.0383	0.5062
Inflection point, mmol/L	1.33	1.33	1.33	1.10	1.10	1.10
Each $1 \mathrm{mmol} / \mathrm{L}$ increase in participants with HDL-C $<$ inflection point	$\begin{aligned} & 0.51(0.39,0.65) \\ & <0.0001 \end{aligned}$	$\begin{aligned} & 0.51(0.40,0.66) \\ & <0.0001 \end{aligned}$	$\begin{aligned} & 0.65(0.50,0.85) \\ & 0.0015 \end{aligned}$	$\begin{aligned} & 0.21(0.09,0.48) \\ & 0.0002 \end{aligned}$	$\begin{aligned} & 0.21(0.09,0.47) \\ & 0.0002 \end{aligned}$	$\begin{aligned} & 0.28(0.12,0.66) \\ & 0.0035 \end{aligned}$
Each $1 \mathrm{mmol} / \mathrm{L}$ increase in participants with HDL-C > inflection point	$\begin{aligned} & 1.21(1.05,1.40) \\ & 0.0093 \end{aligned}$	$\begin{aligned} & 1.22(1.05,1.41) \\ & 0.0094 \end{aligned}$	$\begin{aligned} & 1.30(1.12,1.52) \\ & 0.0006 \end{aligned}$	$\begin{aligned} & 0.95(0.74,1.22) \\ & 0.6730 \end{aligned}$	$\begin{aligned} & 1.00(0.77,1.30) \\ & 0.9898 \end{aligned}$	$\begin{aligned} & 1.13(0.87,1.48) \\ & 0.3610 \end{aligned}$
P for log likelihood ratio test	<0.001	<0.001	<0.001	0.003	0.002	0.006
Age <65 year						
HDL-C per mmol/L increment	0.99 (0.83, 1.19)	1.05 (0.86, 1.27)	1.32 (1.08, 1.60)	0.76 (0.50, 1.16)	0.94 (0.61, 1.46)	1.37 (0.88, 2.12)
	0.9412	0.6506	0.0061	0.2001	0.7858	0.1627
Inflection point, mmol/L	1.74	1.74	1.74	0.83	0.83	0.83
Each $1 \mathrm{mmol} / \mathrm{L}$ increase in participants with HDL-C $<$ inflection point	$\begin{aligned} & 0.63(0.49,0.82) \\ & 0.0006 \end{aligned}$	$\begin{aligned} & 0.64(0.49,0.85) \\ & 0.0018 \end{aligned}$	$\begin{aligned} & 0.94(0.71,1.25) \\ & 0.6694 \end{aligned}$	$\begin{array}{lr} 1.13 & (0.01, \\ 144.82) & 0.9594 \end{array}$	$\begin{array}{lr} 1.09 & (0.01, \\ 168.62) & 0.9723 \end{array}$	$\begin{array}{lr} 6.96 & (0.04, \\ 1306.39) & 0.4674 \end{array}$
Each $1 \mathrm{mmol} / \mathrm{L}$ increase in participants with HDL-C > inflection point	$\begin{aligned} & 2.33(1.64,3.31) \\ & <0.0001 \end{aligned}$	$\begin{aligned} & 2.50(1.75,3.59) \\ & <0.0001 \end{aligned}$	$\begin{aligned} & 2.32(1.61,3.36) \\ & <0.0001 \end{aligned}$	$\begin{aligned} & 0.75(0.48,1.18) \\ & 0.2089 \end{aligned}$	$\begin{aligned} & 0.94(0.59,1.49) \\ & 0.7828 \end{aligned}$	$\begin{aligned} & 1.31(0.82,2.08) \\ & 0.2593 \end{aligned}$
P for log likelihood ratio test	<0.001	<0.001	0.002	0.868	0.953	0.520

	All-cause mortality			Cardiovascular mortality		
	Model I HR ($95 \% \mathrm{CI}$), P- value	Model II HR ($95 \% \mathrm{CI}$), P - value	Model III HR ($95 \% \mathrm{CI}$), P- value	Model I HR ($95 \% \mathrm{CI}$), P- value	Model II HR (95\%CI), P- value	Model III HR (95\%CI), P- value
Male						
HDL-C per mmol/L increment	$\begin{aligned} & 1.26(1.11,1.43) \\ & 0.0005 \end{aligned}$	$\begin{aligned} & 1.06(0.92,1.21) \\ & 0.4385 \end{aligned}$	$\begin{aligned} & 1.26(1.09,1.45) \\ & 0.0015 \end{aligned}$	$\begin{aligned} & 1.00(0.77,1.30) \\ & 0.9999 \end{aligned}$	$\begin{aligned} & 0.81(0.61,1.07) \\ & 0.1420 \end{aligned}$	$\begin{aligned} & 1.01(0.76,1.35) \\ & 0.9453 \end{aligned}$
Inflection point, mmol/L	1.26	1.26	1.26	1.19	1.19	1.19
Each $1 \mathrm{mmol} / \mathrm{L}$ increase in participants with HDL-C < inflection point	$\begin{aligned} & 0.81(0.59,1.09) \\ & 0.1667 \end{aligned}$	$\begin{aligned} & 0.46(0.34,0.62) \\ & <0.0001 \end{aligned}$	$\begin{aligned} & 0.69(0.50,0.96) \\ & 0.0255 \end{aligned}$	$\begin{aligned} & 0.58(0.30,1.14) \\ & 0.1158 \end{aligned}$	$\begin{aligned} & 0.32(0.16,0.62) \\ & 0.0008 \end{aligned}$	$\begin{aligned} & 0.49(0.24,0.98) \\ & 0.0437 \end{aligned}$
Each $1 \mathrm{mmol} / \mathrm{L}$ increase in participants with HDL-C > inflection point P for log likelihood ratio test	$\begin{aligned} & 1.58(1.31,1.90) \\ & <0.0001 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 1.69(1.39,2.06) \\ & <0.0001 \\ & <0.001 \end{aligned}$	$\begin{aligned} & 1.73(1.41,2.11) \\ & <0.0001 \\ & <0.001 \end{aligned}$	$\begin{aligned} & 1.27(0.88,1.83) \\ & 0.2052 \\ & 0.094 \end{aligned}$	$\begin{aligned} & 1.27(0.86,1.87) \\ & 0.2330 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 1.40(0.94,2.07) \\ & 0.0938 \\ & 0.028 \end{aligned}$
Female						0.028
HDL-C per mmol/L increment	$\begin{aligned} & 1.16(1.02,1.31) \\ & 0.0193 \end{aligned}$	$\begin{aligned} & 0.89(0.78,1.01) \\ & 0.0660 \end{aligned}$	$\begin{aligned} & 1.00(0.87,1.14) \\ & 0.9672 \end{aligned}$	$\begin{aligned} & 1.15(0.88,1.50) \\ & 0.2907 \end{aligned}$	$\begin{aligned} & 0.84(0.64,1.11) \\ & 0.2226 \end{aligned}$	$\begin{aligned} & 0.93(0.69,1.24) \\ & 0.6071 \end{aligned}$
Inflection point, mmol/L	1.71	1.71	1.71	1.66	1.66	1.66
Each $1 \mathrm{mmol} / \mathrm{L}$ increase in participants with HDL-C < inflection point	$\begin{aligned} & 0.86(0.70,1.06) \\ & 0.1548 \end{aligned}$	$\begin{aligned} & 0.58(0.47,0.72) \\ & <0.0001 \end{aligned}$	$\begin{aligned} & 0.68(0.55,0.85) \\ & 0.0005 \end{aligned}$	$\begin{aligned} & 0.94(0.58,1.52) \\ & 0.8014 \end{aligned}$	$\begin{aligned} & 0.59(0.36,0.98) \\ & 0.0395 \end{aligned}$	$\begin{aligned} & 0.68(0.41,1.13) \\ & 0.1343 \end{aligned}$
Each $1 \mathrm{mmol} / \mathrm{L}$ increase in participants with HDL-C > inflection point P for log likelihood ratio test	$\begin{aligned} & 1.64(1.32,2.04) \\ & <0.0001 \\ & <0.001 \end{aligned}$	$\begin{aligned} & 1.51(1.20,1.91) \\ & 0.0004 \\ & <0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.59(1.26,2.01) \\ & <0.0001 \\ & <0.001 \end{aligned}$	$\begin{aligned} & 1.43(0.88,2.31) \\ & 0.1469 \\ & 0.326 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.23(0.74,2.05) \\ & 0.4199 \\ & 0.104 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.29(0.77,2.16) \\ & 0.3262 \\ & 0.149 \\ & \hline \end{aligned}$

	All-cause mortality			Cardiovascular mortality		
	Model I HR (95\%CI), Pvalue	Model II HR (95\%CI), Pvalue	Model III HR ($95 \% \mathrm{CI}$), $\mathrm{P}-$ value	Model I HR (95\%CI), Pvalue	Model II HR ($95 \% \mathrm{CI}$), Pvalue	Model III HR ($95 \% \mathrm{CI}$), P value
Non-white						
HDL-C per mmol/L increment	1.13 (0.99, 1.30)	1.11 (0.96, 1.29)	1.26 (1.08, 1.46)	1.14 (0.85, 1.51)	1.17 (0.87, 1.58)	1.29 (0.95, 1.76)
	0.0770	0.1536	0.0028	0.3775	0.2953	0.1058
Inflection point, mmol/L	1.32	1.32	1.32	0.93	0.93	0.93
Each $1 \mathrm{mmol} / \mathrm{L}$ increase in participants	0.72 (0.50, 1.04)	0.67 (0.46, 0.97)	0.85 (0.58, 1.23)	5.23 (0.20,	7.60 (0.31,	6.57 (0.24,

with HDL-C < inflection point	0.0784	0.0340	0.3851	135.19) 0.3191	185.30) 0.2135	182.93) 0.2675
Each $1 \mathrm{mmol} / \mathrm{L}$ increase in participants	1.37 (1.13, 1.66)	1.37 (1.13, 1.67)	1.48 (1.21, 1.80)	1.07 (0.79, 1.47)	1.09 (0.79, 1.51)	1.22 (0.87, 1.70)
with HDL-C > inflection point	0.0012	0.0014	0.0001	0.6530	0.5976	0.2457
P for log likelihood ratio test	0.010	0.004	0.027	0.327	0.216	0.309
White						
HDL-C per mmol/L increment	1.05 (0.94, 1.17)	0.87 (0.77, 0.98)	0.99 (0.87, 1.13)	0.78 (0.62, 0.98$)$	0.66 (0.51, 0.86)	0.81 (0.62, 1.07)
	0.3852	0.0236	0.8977	0.0339	0.0017	0.1367
Inflection point, mmol/L	2.15	2.15	2.15	1.17	1.17	1.17
Each $1 \mathrm{mmol} / \mathrm{L}$ increase in participants	0.90 (0.80, 1.03)	0.70 (0.60, 0.80)	$0.81(0.70,0.94)$	0.34 (0.17, 0.70)	0.15 (0.07, 0.32)	0.25 (0.12, 0.53)
with HDL-C < inflection point	0.1220	<0.0001	0.0066	0.0033	<0.0001	0.0003
Each $1 \mathrm{mmol} / \mathrm{L}$ increase in participants	2.93 (1.85, 4.64)	3.91 (2.45, 6.26)	3.62 (2.24, 5.84)	1.01 (0.74, 1.37)	1.02 (0.74, 1.41)	1.14 (0.82, 1.58)
with HDL-C $>$ inflection point	<0.0001	<0.0001	<0.0001	0.9681	0.8917	0.4264
P for log likelihood ratio test	<0.001	<0.001	<0.001	0.021	<0.001	0.001

HR, hazard ratio; CI, confidence interval; HDL-C, high density lipoprotein cholesterol.
Model I adjust for none
Model II adjust for age, gender, and race
Model III adjust for age, gender, race, education level, smoking, body mass index, energy, systolic blood pressure, estimated glomerular filtration rate, Creactive protein, total cholesterol, diabetes, cardiovascular disease, antihypertensive drugs, hypoglycemic agents, antiplatelet drugs, and lipid-lowering drugs except the variable itself.

Figure S1. Kaplan-Meier curves of the event-free survival for all-cause mortality (A) and cardiovascular mortality (B) according to HDL-C categories.

Figure S2. Adjusted cubic spline model of the association between hazard ratio of all-cause mortality (A), cardiovascular mortality (B) and HDL-C levels in participants <65 years old.

Models were adjusted for age, gender, race, education level, smoking, body mass index, energy, systolic blood pressure, estimated glomerular filtration rate, C-reactive protein, total cholesterol, diabetes, cardiovascular disease, antihypertensive drugs, hypoglycemic agents, antiplatelet drugs, and lipidlowering drugs.

Figure S3. Adjusted cubic spline model of the association between hazard ratio of all-cause mortality (A), cardiovascular mortality (B) and HDL-C levels in participants ≥ 65 years old.

Models were adjusted for age, gender, race, education level, smoking, body mass index, energy, systolic blood pressure, estimated glomerular filtration rate, C-reactive protein, total cholesterol, diabetes, cardiovascular disease, antihypertensive drugs, hypoglycemic agents, antiplatelet drugs, and lipidlowering drugs.

Figure S4. Adjusted cubic spline model of the association between hazard ratio of all-cause mortality (A), cardiovascular mortality (B) and HDL-C levels in men.

Models were adjusted for age, gender, race, education level, smoking, body mass index, energy, systolic blood pressure, estimated glomerular filtration rate, C-reactive protein, total cholesterol, diabetes, cardiovascular disease, antihypertensive drugs, hypoglycemic agents, antiplatelet drugs, and lipidlowering drugs.

Figure S5. Adjusted cubic spline model of the association between hazard ratio of all-cause mortality (A), cardiovascular mortality (B) and HDL-C levels in participants in women.

Models were adjusted for age, gender, race, education level, smoking, body mass index, energy, systolic blood pressure, estimated glomerular filtration rate, C-reactive protein, total cholesterol, diabetes, cardiovascular disease, antihypertensive drugs, hypoglycemic agents, antiplatelet drugs, and lipidlowering drugs.

Figure S6. Adjusted cubic spline model of the association between hazard ratio of all-cause mortality (A), cardiovascular mortality (B) and HDL-C levels in Non-white participants.

Models were adjusted for age, gender, race, education level, smoking, body mass index, energy, systolic blood pressure, estimated glomerular filtration rate, C-reactive protein, total cholesterol, diabetes, cardiovascular disease, antihypertensive drugs, hypoglycemic agents, antiplatelet drugs, and lipidlowering drugs.

Figure S7. Adjusted cubic spline model of the association between hazard ratio of all-cause mortality (A), cardiovascular mortality (B) and HDL-C levels in white participants.

Models were adjusted for age, gender, race, education level, smoking, body mass index, energy, systolic blood pressure, estimated glomerular filtration rate, C-reactive protein, total cholesterol, diabetes, cardiovascular disease, antihypertensive drugs, hypoglycemic agents, antiplatelet drugs, and lipidlowering drugs.

