_	B	efore Matching	After Matching (1:1)			
Characteristics	ACT	No ACT		ACT	No ACT	
	No. (%)	No. (%)	P-value	No. (%)	No. (%)	P-value
	(n=816)	(n=212)		(n=185)	(n=185)	
Sex			0.20			0.92
Male	490 (60.05%)	117 (55.19%)		108 (58.4)	106 (57.3)	
Female	326 (39.95%)	95 (44.81%)		77 (41.6)	79 (42.7)	
Age, mean \pm SD, years	57.10 ± 12.32	59.72 ± 12.41	0.006	59.14 ± 12.80	59.49 ± 12.23	0.79
BMI, mean \pm SD	22.59 ± 3.18	22.59 ± 3.52	0.98	22.67 ± 3.80	22.62 ± 3.50	0.90
T stage			< 0.001			0.66
T1	15 (1.84%)	32 (15.09%)		14 (7.6)	12 (6.5)	
T2	93 (11.40%)	79 (37.26%)		70 (37.8)	75 (40.5)	
T3	647 (79.29%)	91 (42.92%)		95 (51.4)	88 (47.6)	
T4	61 (7.48%)	10 (4.72%)		6 (3.2)	10 (5.4)	
N stage			< 0.001			0.45
N0	406 (49.75%)	160 (75.47%)		125 (67.6)	133 (71.9)	
N1	276 (33.82%)	37 (17.45%)		47 (25.4)	37 (20)	
N2	134 (16.42%)	15 (7.08%)		13 (7)	15 (8.1)	
Tumor differentiation			< 0.001			0.55
Well-moderate	492 (60.29%)	154 (72.64%)		133 (71.9)	135 (73)	
Poor-undifferentiated	280 (34.31%)	39 (18.40%)		43 (23.2)	37 (20)	
Unknown	44 (5.39%)	19 (8.96%)		9 (4.9)	13 (7)	
Mucinous type (Histolog	ical type)		0.71			
Yes	23 (2.82%)	5 (2.36%)		5 (2.7)	5 (2.7)	
No	793 (97.18%)	207 (97.64%)		180 (97.3)	180 (97.3)	

Table S3. Patients baseline characteristics before and after propensity score matching

Abbreviation: ACT, adjuvant chemotherapy; BMI, body mass index; SD, standard deviation.

Clinicopathologic	Train	ing set	Valida	- D 1	
Feature	No.	%	No.	%	P-value
Sex					0.559
Male	542	59.36	65	56.52	
Female	371	40.64	50	43.48	
Age, years					0.010
<65	633	69.33	66	57.39	
>65	280	30.67	49	42.61	
BMI					0.461
<24	620	67.91	82	71.30	
>24	293	32.09	33	28.70	
Surgical approach					0.318
OR	705	77.22	84	73.04	
LR	208	22.78	31	26.96	
Primary site	200		01	20.90	0 232
Colon	443	48.52	49	42.61	0.202
Rectal	470	51 48	66	57 39	
Tumor differentiation	170	21.10	00	51.59	<0.001
Well	46	5.04	55	47.83	0.001
Moderate	499	54 65	46	40.00	
Poor- undifferentiated	310	33.95	9	7.83	
Inknown	58	635	5	4 35	
Histological type	20	0.55	5	1.55	0 127
Adenocarcinomas	891	97 59	109	94 78	0.127
Mucinous adenocarcinomas	18	1 97	4	3 48	
Signet-ring cell carcinomas	4	0.44	2	1 74	
T stage		0.11	2	1.71	<0.001
T1	42	4 60	5	4 35	-0.001
T2	152	16 65	20	17 39	
T3	683	74.81	55	47.83	
T4	36	3 94	35	30.43	
N stage	50	5.74	55	50.45	0 866
NO	500	54 76	66	57 39	0.000
N1	280	30.67	33	28 70	
N2	133	14.57	16	13.01	
AICC 7 th ed stage	155	14.37	10	15.71	0.687
Stage I	156	17.09	20	17 30	0.007
Stage II	347	38.01	20 48	17.59	
Stage III	/10	14 Q1	40	41.74	
Tumor denosit	410	44.91	47	40.07	0.016
Vec	8/11	92.11	113	98 76	0.010
No	77	7 80	2115 2	1 74	
Postonerative CD/+ T calls pore	12 entage	1.07	2	1./4	0 022
Normal	170 AT	51 70	60	52 17	0.923
Abnormal	472 111	J1.70 18 20	55	JZ.1/ 17 02	
Dostonerative $CD4 \pm T$ calls corre	441 vt	40.30	55	47.03	0 945
Normal	n 020	00.01	102	00.25	0.843
Abnormal	020 02	90.91 0.00	103	90.33	
Autoritation Adjustence Autoritation	65	9.09	11	9.03	0 675
Aujuvant chemotherapy	702	70.10	02	00.07	0.675
	123	79.19	93	8U.8 /	
INO	190	20.81	22	19.13	

Table S2. Baseline characteristics of patients in the training and validation sets

Note: BMI, body mass index; LR, laparoscopic resection; OR, open resection.

Supplementary methods:

Flow cytometry of CD4+ T cell subsets

1. Main instruments and reagents The test instruments are Beckman Coulter DxFLEX Flow Cytometer (center 1, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University) and BD Biosciences FACS Canto II Flow Cytometer (center 2, the First Affiliated Hospital of Kunming Medical University). Reagents: CD45-FITC, CD3-PC5.5, CD4-PE, Flowcount-PC7 (purchased from BD, USA), hemolysin.

2. Method

(1) Specimen collection: After admission, the patients who met the inclusion criteria were collected 2 ml of fasting venous blood with heparin anticoagulant tube at 6:00-8:00 on the morning. The blood was mixed upside down, and sent for examination within 2 hours.

(2) CD4+ T lymphocyte subsets flow cytometry test: 70ul of anticoagulated whole blood was taken into the sample tube, and the antibody CD45-FITC /CD3-PC5.5 /CD4-PE, 10ul per antibody, were in turn added, which were mixed gently with a mixing, and reacted at room temperature for 15 min in the darkness. Then, 2ml of hemolysin was added to dissolve red blood cells, and reacted again at room temperature for 15 min in the darkness after gently mixing. Finally, 70ul of Flowcount-PC7 for absolute counting and measure by flow cytometry was added to get the percentages and absolute values of CD3, and CD4 in the lymphocyte subsets.

Reference Range of Adult Peripheral Blood CD4+ T cell for Yunnan Province Population in China

Some regional data of lymphocyte phenotypes show variations due to the influence of gender, age, ethnicity, and lifestyle differences.¹⁻³ These data indicate that different regional populations should have their own defined reference values for peripheral lymphocyte subsets.¹⁻³ In order to better interpret the results of lymphocyte immunophenotyping in clinical practice, it is necessary to establish a reliable reference value of lymphocyte subsets in healthy people of Yunnan province in China.

We enrolled 631 normal healthy population were recruited among the family members of patients and other volunteers between January 2003 and January 2004 at Yunnan Cancer Center, China.

The enrollment was conducted according to the defined criteria from the SENIEUR protocol guideline.⁴ The inclusion criteria was people with age of 18-80 years, and the exclusion criteria was people with testing positive to HIV, systemic infection, connective tissue disease, abnormal tumor marker or cancer.

631 healthy adults included 429 males (67.98%) and 202 females (32.02%). Their mean age was52. Reference range of T lymphocyte subsets were showed in the Table S3.

Parameters	Mean \pm SD	95%CI	99%CI
CD3+CD4+ counts (cells/ul)	874 ± 270	345-1402	177-1570
CD3+CD4+/CD3+ (%)	37.6 ± 3.2	31.4-43.8	29.3-45.9

Table S1. Reference range of CD4+T Cell in healthy adults of Yunnan province

						Tumor tissue	Validation		PI across each
Study	Year	N	Sides	pStage	Maker	VS oirculating	ophort	Prognostic impact (PI)	stage/TNM
						v 5 circulating	conort		addressed
Zhu et al. ⁵	2018	267	Colon and rectum	I-IV	CD8 +	Tumor tissue	Yes	Independent PI	Yes
Pagès et al. ⁶	2018	3539	Colon	I-III	CD3+,CD8+	Tumor tissue	Yes	Score of CD3+ and CD8+ independent PI	No
Taylor et al. ⁷	2018	95/32	Colon and rectum	I-IV	CD69+ CD4+ IFN-γ-producing CD4+(95) IL-2-producing T cell(32)	Tumor tissue	No	CD69+ CD4+ associated with disease recurrence(95) IFN-γ-producing CD4+ associated with positive patient outcomes(95) IL-2-producing T cell significant PI in univariate with DFS as end point(32)	Yes
Shibutani et al. ⁸	2017	90	Colon and rectum	II-III	PD-1+ TILs PD-1/CD8+	Tumor tissue	No	Number of PD-1+ TILs not Pl univariate PD-1/CD8+ ratio independent PI	No
Emile et al.9	2017	744	Colon	III	CD3+	Tumor tissue	No	Independent PI	stage III only
Yoshida et al. ¹⁰	2016	199	Colon and rectum	II-III	Th1, Th2, Th17, FOXP3+	Tumor tissue	No	Th17/ CD3+ independent PI	No
Kwak et al. ¹¹	2016	196	Colon and rectum	IV	CD3+, CD4+, CD8+, FOXP3+, CD68+, CD163+	Tumor tissue	No	Score of CD3+ and CD8+ independent PI	Stage IV only
Weixler et al. ¹²	2015	657	Colon and rectum	I-III	OX40+/CD8+, OX40+/CD4+,CD4+/CD8+	Tumor tissue	No	OX40+/CD8+ independent PI	No
Ling et al. ¹³	2014	278	Colon	I-IV	CD8+, FOXP3(+)	Tumor tissue	No	CD8+ significant PI in univariate FOXP3+ independent PI	Yes
Anitei et al.14	2014	111	Rectum	I-IV	CD3+, CD8+	Tumor tissue	No	Score of CD3+ and CD8+ independent PI	Yes
Zeestraten et al. ¹⁵	2013	76	Colon and rectum	I-III	FOXP3+, CD8+/FOXP3+	Tumor tissue	No	CD8+/FOXP3+ independent PI	No
Borda et al. ¹⁶	2012	251	Colon and rectum	I-IV	CD3+	Tumor tissue	No	Score of CD3 and CD8 independent PI	Yes

Table S4. Characteristics of colorectal cancer studies between 2005 and July 2019 with focus on the clinical prognostic impact of T cell subsets

Dahlin et al. ¹⁷	2011	484	Colon and rectum	I-IV	CD3+	Tumor tissue	No	Independent PI	Yes
Mlecnik et al.18	2011	599	Colon and rectum	I-IV	CD8+, CD45RO+	Tumor tissue	Yes	Score of CD45RO+ and CD8+ independent PI	Yes
Tosolini et al.19	2011	646	Colon and rectum	I-IV	Th1, Th2, Treg, Th17	Tumor tissue	Yes	Th1, Th17 independent PI	Yes
Suzuki et al.20	2010	94	Colon and rectum	I-IV	CD8+, FOXP3+, CD8+T/FOXP3+	Tumor tissue	No	CD8+/FOXP3+ independent PI	Yes
Simpson et al.21	2010	462	Colon and rectum	I-IV	CD3+	Tumor tissue	No	Independent PI	Yes
Nosho et al. ²²	2010	768	Colon and rectum	I-IV	CD3+, CD8+, CD45RO+, FOXP3+	Tumor tissue	No	CD3+, CD8+, FOXP3+ significant PI in univariate CD45RO+ independent PI	Yes
Sinicrope et al. ²³	2009	160	Colon	11-111	FOXP3+, CD3+, CD3+/FOXP3+	Tumor tissue	No	CD3+/FOXP3+ independent PI CD3+independent PI	No
Qiu et al. ²⁴	2009	235	Colon and rectum	I-IV	CD3+, CD4+, CD8+, CD4+/CD8+, NK	Circulating	No	CD3+, CD4+/CD8+, NK independent PI	Yes
Laghi et al. ²⁵	2009	286	Colon and rectum	II-III	CD3+	Tumor tissue	No	Independent PI	No
Pages et al.26	2009	602	Colon and rectum	I-II	CD8+, CD45RO+	Tumor tissue	Yes	Score of CD45RO+ and CD8+ independent PI	No
Zlobec et al.27	2008	269	Colon	I-III	CD8+	Tumor tissue	No	Independent PI	No
Galon et al.28	2006	490	Colon and rectum	I-IV	CD3+, CD8+, GZMB+, CD45RO+	Tumor tissue	Yes	CD3+ independent PI	Yes
Milasiene et al. ²⁹	2005	40	Colon and rectum	II-IV	CD3+, CD4+, CD8+, CD4+/CD8+, CD20+, CD16+, NK	Circulating	No	Number of CD3+ , CD4+ , CD8 ,CD16+ significant PI in univariate	No

Note: DFS, disease-free survival; IFN, Interferon; IL, interleukin; NK, natural killer; PD1, programmed death-1; PI, prognostic impact; Th, helper T; TILs, tumor-infiltrating lymphocytes;

REFERENCES:

- Chng WJ, Tan GB, Kuperan P. Establishment of adult peripheral blood lymphocyte subset reference range for an Asian population by single-platform flow cytometry: influence of age, sex, and race and comparison with other published studies. *Clin Diagn Lab Immunol.* 2004;11(1):168-173.
- Valiathan R, Deeb K, Diamante M, Ashman M, Sachdeva N, Asthana D. Reference ranges of lymphocyte subsets in healthy adults and adolescents with special mention of T cell maturation subsets in adults of South Florida. *Immunobiology*. 2014;219(7):487-496.
- 3. Qin L, Jing X, Qiu Z, et al. Aging of immune system: Immune signature from peripheral blood lymphocyte subsets in 1068 healthy adults. *Aging (Albany NY)*. 2016;8(5):848-859.
- 4. Ligthart GJ, Corberand JX, Fournier C, et al. Admission criteria for immunogerontological studies in man: the SENIEUR protocol. *Mech Ageing Dev.* 1984;28(1):47-55.
- Zhu B, Zhang P, Liu M, Jiang C, Liu H, Fu J. Prognostic Significance of CSN2, CD8, and MMR Status-Associated Nomograms in Patients with Colorectal Cancer. *Transl Oncol.* 2018;11(5):1202-1212.
- Pages F, Mlecnik B, Marliot F, et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. *Lancet*. 2018;391(10135):2128-2139.
- Taylor ES, McCall JL, Shen S, et al. Prognostic roles for IL-2-producing and CD69(+) T cell subsets in colorectal cancer patients. *Int J Cancer*. 2018;143(8):2008-2016.
- Shibutani M, Maeda K, Nagahara H, et al. The Prognostic Significance of the Tumor-infiltrating Programmed Cell Death-1(+) to CD8(+) Lymphocyte Ratio in Patients with Colorectal Cancer. *Anticancer Res.* 2017;37(8):4165-4172.
- Emile JF, Julie C, Le Malicot K, et al. Prospective validation of a lymphocyte infiltration prognostic test in stage III colon cancer patients treated with adjuvant FOLFOX. *Eur J Cancer*. 2017;82:16-24.
- Yoshida N, Kinugasa T, Miyoshi H, et al. A High RORgammaT/CD3 Ratio is a Strong Prognostic Factor for Postoperative Survival in Advanced Colorectal Cancer: Analysis of Helper T Cell Lymphocytes (Th1, Th2, Th17 and Regulatory T Cells). *Ann Surg Oncol.* 2016;23(3):919-927.
- Kwak Y, Koh J, Kim DW, Kang SB, Kim WH, Lee HS. Immunoscore encompassing CD3+ and CD8+ T cell densities in distant metastasis is a robust prognostic marker for advanced colorectal cancer. *Oncotarget*. 2016;7(49):81778-81790.
- Weixler B, Cremonesi E, Sorge R, et al. OX40 expression enhances the prognostic significance of CD8 positive lymphocyte infiltration in colorectal cancer. *Oncotarget.* 2015;6(35):37588-37599.
- Ling A, Edin S, Wikberg ML, Oberg A, Palmqvist R. The intratumoural subsite and relation of CD8(+) and FOXP3(+) T lymphocytes in colorectal cancer provide important prognostic clues. *Br J Cancer.* 2014;110(10):2551-2559.
- 14. Anitei MG, Zeitoun G, Mlecnik B, et al. Prognostic and predictive values of the immunoscore in patients with rectal cancer. *Clin Cancer Res.* 2014;20(7):1891-1899.
- 15. Zeestraten EC, Van Hoesel AQ, Speetjens FM, et al. FoxP3- and CD8-positive Infiltrating

Immune Cells Together Determine Clinical Outcome in Colorectal Cancer. *Cancer Microenviron.* 2013;6(1):31-39.

- Borda F, Martinez-Penuela JM, Borda A, Munoz-Navas M, Jimenez J, Carretero C. Predictive value of intraepithelial (CD3) T-lymphocyte infiltration in resected colorectal cancer. *Gastroenterol Hepatol.* 2012;35(8):541-550.
- 17. Dahlin AM, Henriksson ML, Van Guelpen B, et al. Colorectal cancer prognosis depends on Tcell infiltration and molecular characteristics of the tumor. *Mod Pathol.* 2011;24(5):671-682.
- Mlecnik B, Tosolini M, Kirilovsky A, et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. *J Clin Oncol.* 2011;29(6):610-618.
- Tosolini M, Kirilovsky A, Mlecnik B, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. *Cancer Res.* 2011;71(4):1263-1271.
- 20. Suzuki H, Chikazawa N, Tasaka T, et al. Intratumoral CD8(+) T/FOXP3 (+) cell ratio is a predictive marker for survival in patients with colorectal cancer. *Cancer Immunol Immunother*. 2010;59(5):653-661.
- Simpson JA, Al-Attar A, Watson NF, Scholefield JH, Ilyas M, Durrant LG. Intratumoral T cell infiltration, MHC class I and STAT1 as biomarkers of good prognosis in colorectal cancer. *Gut.* 2010;59(7):926-933.
- Nosho K, Baba Y, Tanaka N, et al. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. *J Pathol.* 2010;222(4):350-366.
- Sinicrope FA, Rego RL, Ansell SM, Knutson KL, Foster NR, Sargent DJ. Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. *Gastroenterology*. 2009;137(4):1270-1279.
- Qiu H, Xiao-Jun W, Zhi-Wei Z, et al. The prognostic significance of peripheral T-lymphocyte subsets and natural killer cells in patients with colorectal cancer. *Hepatogastroenterology*. 2009;56(94-95):1310-1315.
- Laghi L, Bianchi P, Miranda E, et al. CD3+ cells at the invasive margin of deeply invading (pT3-T4) colorectal cancer and risk of post-surgical metastasis: a longitudinal study. *Lancet* Oncol. 2009;10(9):877-884.
- 26. Pages F, Kirilovsky A, Mlecnik B, et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. *J Clin Oncol.* 2009;27(35):5944-5951.
- Zlobec I, Terracciano LM, Lugli A. Local recurrence in mismatch repair-proficient colon cancer predicted by an infiltrative tumor border and lack of CD8+ tumor-infiltrating lymphocytes. *Clin Cancer Res.* 2008;14(12):3792-3797.
- 28. Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. *Science*. 2006;313(5795):1960-1964.
- 29. Milasiene V, Stratilatovas E, Norkiene V, Jonusauskaite R. Lymphocyte subsets in peripheral blood as prognostic factors in colorectal cancer. *J BUON*. 2005;10(2):261-264.