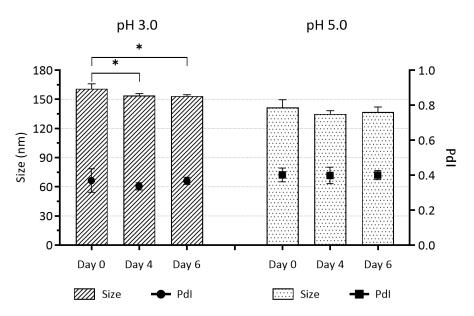

In vitro intestinal uptake and permeability of fluorescently-labelled hyaluronic acid nanogels

Miguel Xavier,^a Lorena García-Hevia,^a Isabel R. Amado,^{a,b} Lorenzo Pastrana^a & Catarina Gonçalves^a ^a International Iberian Nanotechnology Laboratory, Department of Life Sciences, Nano4Food Unit. Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal. ^b Department of Food and Analytical Chemistry, Faculty of Sciences, University of Vigo. Campus As Lagoas s/n, 32004, Ourense, Spain.

Electronic Supplementary Information



ESI Figure 1 – ¹H NMR spectrum of the C16-HyA conjugates dispersed in D_2O at 10 mg·mL⁻¹ obtained using a Varian Unity Plus 300 spectrometer operating at 299.94 MHz and 25 °C.

ESI Figure 2 – Fluorescence emission spectra (λ ex=650 nm) of the C16-HyA-Cy5.5 conjugates before and after filtration through the 0.45µm PVDF syringe filters.

Xavier *et al.* 2019 *In vitro* intestinal uptake and permeability of fluorescently-labelled hyaluronic acid nanogels – Electronic Supplementary Information

ESI Figure 3 – Average size and polydispersity index (PdI) of the C16-HyA nanogels at pH 3.0 and 5.0 measured by dynamic light scattering before and after storage for up to 6 days at 4 °C. Values show Mean \pm SD (N=6; *p < 0.05 with p-values obtained using a two-way ANOVA with Tukey's post-hoc test).