

Sup Figure 1

3dpf

Sup Figure2

4 dpf

Supporting Information Legends

Figure S1. Nd₂O₃ disturbed the cerebrovascular development at 3 dpf. A The

cerebrovascular images of wide type embryos. B The cerebrovascular images of embryos exposed to Nd_2O_3 (100 µg/ml). C The cerebrovascular images of embryos exposed to Nd_2O_3 (200 µg/ml). Scale bars, 100 µm.

Figure S2. Nd_2O_3 disturbed the development of cerebrovascular at 4 dpf. A, B, B' The cerebrovascular images of wide type embryo. C, D, D' The cerebrovascular images of embryos exposed to Nd_2O_3 (100 µg/ml). E, F, F' The cerebrovascular images of embryos exposed to Nd_2O_3 (200 µg/ml). Scale bars, 100 µm.

Movie S1 showed that Nd₂O₃ NPs can be ingested by embryos, related to Figure 1.

Movie S2-3 showed the heart rate of embryos treated with Nd_2O_3 reduced, related to Figure 3. Movie 2 showed the heart rate of wild-type embryos, related to Figure 3; Movie 3 showed the heart rate of embryos treated with Nd_2O_3 , related to Figure 3.

Movie S4-5 showed the heart dysfunction (arrhythmia) can be recorded in embryos exposed to Nd_2O_3 , related to Figure 3.

Movie S6-7 showed that cerebrovascular in Nd₂**O**₃ **embryos were vanished at 5 dpf, related to Figure 4.** Movie 6 showed cerebrovascular pattern of wide type embryos, related to Figure 4; Movie 7 showed cerebrovascular pattern of embryos treated with Nd₂O₃, related to Figure 4.

Movie S8-10 showed Nd₂O₃ disturbed vascular sprouting at 3 dpf, related to Figure 5. Movie 8 showed vascular sprouting of wide type embryos, related to Figure 5; Movie 9 showed vascular sprouting of embryos treated with Nd₂O₃ at 100 μ g/ml, related to Figure 5; Movie 10 showed vascular sprouting of embryos treated with Nd₂O₃ at 200 μ g/ml, related to Figure 5.