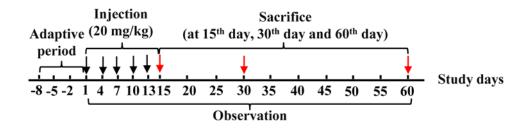
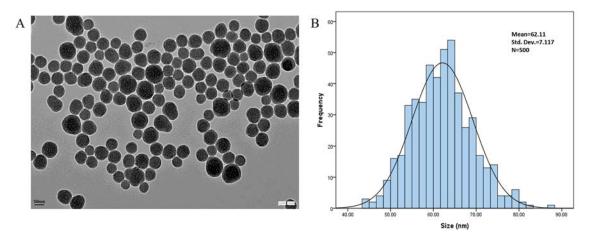
Supplementary Information

Repeated intravenous administration of silica nanoparticles induce pulmonary inflammation and collagen accumulation via JAK2/STAT3 and TGF- β /Smad3 pathways in vivo

Yang Yu^{a,b}, Tingting Zhu^a, Yang Li^{a,b}, Li Jing^{a,b}, Man Yang^{a,b}, Yanbo Li^{a,b}, Junchao Duan^{a,b,*}, Zhiwei Sun^{a,b,*}


a Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, P.R. China

b Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China


*Corresponding authors:

Zhiwei Sun, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing100069, P.R. China. Tel: +86 010 83911507. E-mail: zwsun@ccmu.edu.cn

Junchao Duan, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing100069, P.R. China. Tel: +86 010 83911868. E-mail: jcduan1128@ccmu.edu.cn

FigureS1.Experimental design of repeated exposure of SiNPs in ICRmice.Black arrows: SiNPs injection from 1st day to 13th day; Red arrows: scarification at 15thday, 30th day and 60thday.

Figure S2. Characterization of SiNPs. (A) The SiNPs exhibited a near-spherical shape and were well dispersed. Scale bar: 50 nm. (B) The average diameter of SiNPs was 62 ± 7.1 nm.

Table S1 . Hydrodynamic size and Zeta potential of SiNPs in dispersion media.

	Distilled water		Physiological saline		DMEM	
	Diameter (nm)	Zeta potential(mV)	Diameter (nm)	Zeta potential (mV)	Diameter (nm)	Zeta potential (mV)
1h	109.02 ± 3.54	-43.51 ± 4.67	110.26 ± 4.81	-39.44 ± 3.69	108.01 ± 1.43	-40.13 ± 4.29
3h	107.92 ± 3.31	-40.20 ± 2.13	108.93 ± 2.79	-37.26 ± 2.50	109.22 ± 3.10	-38.62 ± 2.76
6h	108.10 ± 2.23	-42.53 ± 3.84	107.64 ± 2.33	-40.30 ± 2.47	107.51 ± 2.07	-40.05 ± 3.60
12h	106.34 ± 1.67	-43.11 ± 4.06	105.42 ± 3.01	-38.11 ± 3.45	106.27 ± 4.09	-38.74 ± 2.91
24h	105.79 ± 2.51	-44.45 ± 3.71	105.65 ± 2.18	-37.70 ± 3.02	105.70 ± 2.44	-39.10 ± 2.83

Data are expressed as means \pm S.D. from five independent experiments.

Table S2. Endotoxin detection by LAL assay

Dosage	Sample	Sample+Positive control	Positive control	Negative control
0.5 mg/mL	-	+	+	-
1 mg/mL	-	+	+	-
3 mg/mL	-	+	+	-
6 mg/mL	-	+	+	-
12 mg/mL	-	+	+	-