Methods

Search strategy

We searched PubMed and Medline databases in September 2018 to identify previous articles related to adult/ adolescence reward processing and addiction. We excluded any grey literature.

Our initial search used the following terms: ((adult OR adolescence)) AND (reward, addiction, (hedonic OR incentive OR impulsive), (substance OR drug)).

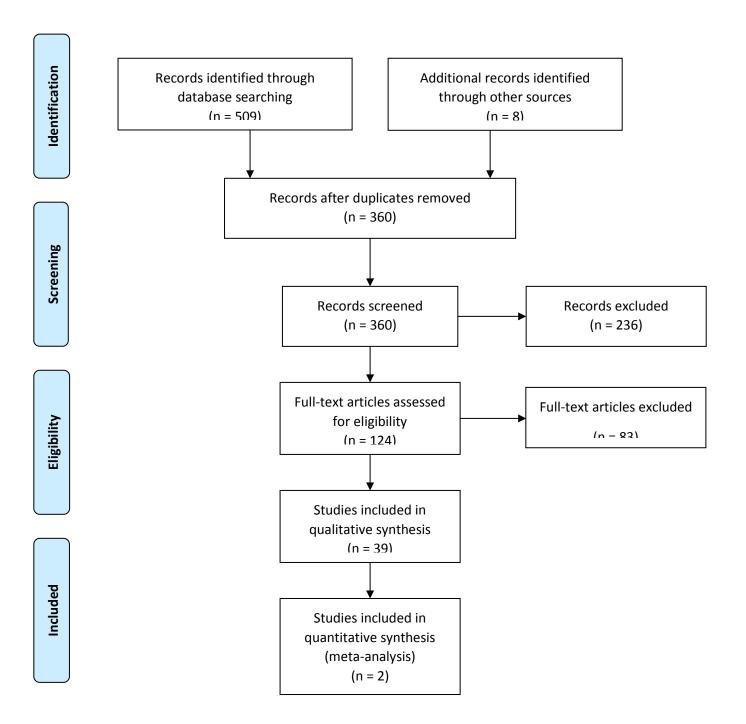
Selection of literature

We discarded duplicates and non-English papers due to lack of resources to translate. Any articles that were clearly irrelevant were discarded immediately. We also discarded reviews, opinion pieces, conference/ poster abstracts, case reports and commentaries which did not contain original research.

All authors then read the title and abstract of each remaining article to check for relevance to our review. We also searched the references of relevant papers and identified further publications which were not captured within our original search but were still relevant to our discussion. FK then reviewed all identified articles to ensure they were relevant to our review.

Articles that were deemed relevant were those which contained quantitative or qualitative research on addition or reward in animal models or human volunteers. We excluded papers in which the outcomes discussed were not related to addiction or reward. We did not exclude articles if there was no mention to substance or drug misuse – articles focused on other forms of addiction (e.g. gambling) or reward mechanisms (e.g. sex) still contain relevant findings on this behavior's neurocircuitry.

Data extraction


For each article, we extracted the reference, type of study, whether animal or human models, sample size and the relevant findings.

<u>Results</u>

Supplementary Figure 1 shows the search and exclusion process according to PRISMA guidelines.

The search initially yielded 509 articles, 141 of which were duplicates or non-English. A further 8 were added after searching article references. Examination of abstracts and titles led to the exclusion of 236 articles, leaving 124 full texts to be examined for relevance. Of these, 41 articles (including 2 meta-analyses) met inclusion criteria, with 28 studies on animal models and 16 on humans. This is summarized in Supplementary Table 1.

Supplementary Figure 1

Supplementary table 1

Study	Design	Model	Participants	Relevant findings
Harden (2011)⁵	Longitudinal cohort study	Human	7,640 aged between 12 – 24 years	Impulsivity and sensation seeking showed substantial individual person-to-person differences. The correlation between age-related changes in these behaviors was not significant
Urošević (2012) ⁶	Longitudinal cohort study	Human	184 aged between 9 to 24 years	Increased reward sensitivity from early to late adolescence and decline in early twenties (associated with decrease nucleus accumbens volume)
Ersche (2013) ⁹	Randomized control trial	Human	50 biological sibling pairs	Increased sensation-seeking traits associated with abnormal orbitofrontal and parahippocampal volume in individuals dependent on stimulant drugs/ used cocaine
Belin (2008) ¹⁰	Randomized control trial	Animal	40 adult rats	Evidence that a shift from impulsivity to compulsivity occurs during the development of addictive behavior
Berridge (1998) ²¹	Randomized control trial	Animal	38 rats	Affective reaction patterns remain normal even after complete depletion of dopamine from striatal/ accumbens dopamine systems
	Randomized control trial	Animal	8 rats	Severe dopamine depletion did not disrupt the acquisition/ expression of a shift from hedonic reactions to aversion
	Randomized control trial	Animal	6 rats	Diazepam did not alter aversive or hedonic reactions
Wassum (2011) ²²	Randomized control trial	Animal	29 rats	Infusion of mu opioid receptor antagonist into basolateral amygdala (BLA) blocked the normal increase in sucrose-seeking response. Similar treatment with other antagonists were without effect. Thus, shifts in endogenous opioid transmission in the BLA mediate changes in incentive value and compulsive behavior
	Randomized control trial	Animal	35 rats	
	Randomized control trial	Animal	32 rats	
L	Randomized control trial	Animal	23 rats	
Hernandez (2007) ²⁴	Randomized control trial	Animal	6 male rats	Tonic DA signaling is insensitive to the predictability of rewards
Di Chiara (1988) ²⁵	Randomized control trial	Animal	Unspecified	Drugs that are rewarding in animals and humans preferentially increase synaptic dopamine concentrations in the mesolimbic system
Pfaus (1999) ²⁶	Randomized control trial	Animal	6 male, 6 female rats	Dopamine increased in the accumbens when males were placed in a novel mating chamber and increased in the striatum during copulation
Hoebel (1983) ²⁷	Randomized control trial	Animal	20 rats	Amphetamine in the nucleus accumbens activates a local mechanism for response reinforcement
Yokel & Wise (1976) ²⁸	Randomized control trial	Animal	53 male rats	Dopamine receptor blockade interfered with the reinforcing effects of amphetamine

Ettenberg	Randomized	Animal	25 male rats	Pretreatment with either naltrexone or
(1982) ²⁹	control trial			flupenthixol increased heroine and cocaine self-
、				administration, suggesting independent neural
				substrates are responsible for the reinforcing
				actions of both drugs
Pecina	Randomized	Animal	8 male rats	Pimozide produces a sensorimotor impairment of
(1997) ³¹	control trial	/	o mare rats	taste reactivity patterns but does not shift taste
(1557)	control that			palatability toward anhedonia or aversion.
Doyle	Randomized	Animal	12 rats	Morphine enhances feeding by increasing the
(1993) ³²	control trial	Allilla	12 1815	
(1993)-	control trial			hedonic palatability of food (no change to
Lizzino	Dendensized		10. a god	aversion)
Liggins	Randomized	Human	49 aged	The results suggest that dopamine
(2012) ³³	control trial		21.9±3.7	neurotransmission does not directly influence
			years	positive mood in humans
Difeliceanton	Randomized	Animal	81 female	Opioid/ dopamine injection into neostriatum
io (2012) ³³	control trial		rats	amplified incentive towards previously learned
				Pavlovian cue
Wassum	Randomized	Animal	Rats	Changes in palatability and in the incentive value
(2009) ³⁸	control trial		(unspecified)	assigned to rewarding events seem to be mediated
				by distinct neural processes.
Castro	Randomized	Animal	84 male rats	A rostrodorsal hotspot in the nucleus accumbens
(2014) ³⁹	control trial			generates opioid-induced hedonic behavior and a
				separate coldspot mediates hedonic suppression
Ziauddeen	Multi center	Human	63 aged	Treatment with a mu-opioid receptor antagonist
(2013) ⁴¹	group study		between 18-	caused reduction in hedonic responses to dairy
			60 years	products and reduced caloric intake
Giuliano	Randomized	Animal	74 adult rats	μ-opioid receptor antagonist treatment caused a
(2013) ⁴³	control trial			decrease in cocaine seeking and may be a target
、				for addiction treatment
Brauer	Randomized	Human	15 between	A dopamine antagonist did not affect responses to
(1996) ⁴⁶	control trial		21 and 35	amphetamine, suggesting they do not interact at
(2000)			years	the receptor level
Colasanti	Randomized	Human	12 aged	Amphetamine administration induces endogenous
(2012) ⁴⁷	control trial	inaman	36.5±11.9	opioid release in different areas of human brain e.g
(2012)	control that		years	basal ganglia, frontal cortex areas, and thalamus
Giuliano	Randomized	Animal	12 Rats	Addition of a μ -opioid receptor antagonist reduced
(2012) ⁴⁸	control trial	Annua	12 1013	the impact of high hedonic value on binge eating
Cambridge	Randomized	Human	63 aged 18	Addition of a μ -opioid receptor antagonist
(2013) ⁵⁰	control trial	numan	to 60 years	significantly reduced pallidum/putamen responses
(2013)			to ob years	
				to pictures of high-calorie food and a reduction in
Duration	Dendensized	Animaal		motivation to view images of high-calorie food
Burton	Randomized	Animal	10 juvenile	Amphetamine injections reduced response to a
(2013) ⁵¹	control trial		and adult	conditioned stimulus (no difference with age)
			rats	Injections of D1 and D2 dopamine receptor
				antagonists diminished incentive motivation in
				adolescent rats more than in juveniles
Silverman	Meta-analysis	Human	830	fMRI results reveal regions involved in adolescent
(2016) ⁵²			participants	reward processing are similar to that found in
			in 26 studies	adults – ventral and dorsal striatum, insula, and
				posterior cingulate cortex. Unlike adolescents,

				adults also activate executive control regions of the
Alexaén	Longitudinal		107	frontal and parietal lobes during motivated activity
Alarcón	Longitudinal	Human	167	Increased motivation and salience of reinforcers is
(2017) ⁵⁴	study			linked with more robust striatal blood oxygen
				level-dependent response, independent of sex
				hormone levels.
Cohen	Randomized	Human	67 aged	Found increased reward-related neural activity
(2010)55	control trial		between 8	during adolescence by demonstrating that this
			and 30 years	finding is specific to prediction error, reflecting
				phasic dopamine signaling
Bjork	Randomized	Human	48, 24 aged	Maturational differences in incentive-motivational
(2010) ⁵⁶	control trial		12 – 17, 24	neurocircuitry: 1) may be sensitive to nuances of
			aged 22 – 42	incentive tasks or stimuli, such as behavioral or
				learning contingencies, and 2) may be specific to
				the component of the instrumental behavior
Geier	Randomized	Human	34, 18 aged	Found limitations during adolescence in reward
(2010) ⁵⁷	control trial		13 – 17, 16	assessment and heightened reactivity in
			aged 18 – 30	anticipation of reward compared with adults.
				heightened activity in the frontal cortex along the
				precentral sulcus was also observed in adolescents
				during reward-trial response preparation,
				suggesting reward modulation of oculomotor
				control regions supporting correct inhibitory
				responding.
Luijten	Meta-analysis	Human	643	During reward anticipation, individuals with
(2017) ⁵⁸			individuals	substance and gambling addictions showed
. ,			across 25	decreased striatal activation compared with
			studies	healthy control individuals. During reward
				outcome, individuals with substance addiction
				showed increased activation in the ventral
				striatum, whereas individuals with gambling
				addiction showed decreased activation in the
				dorsal striatum compared with healthy control
				individuals.
Besson	Randomized	Animal	144 juvenile	High impulsivity (cocaine) rats exhibited decreased
(2013) ⁶⁶	control trial		rats	dopamine mRNA in the mesolimbic pathway and 5-
(====;				HT mRNA in striatal and prefrontal areas
Besson	Randomized	Animal	96 rats	Dopamine D2/3 receptor antagonist increased the
$(2009)^{67}$	control trial			level of impulsivity when infused into the nucleus
(2003)				accumbens core but decreased impulsivity when
				injected into accumbens shell
Olmstead	Randomized	Animal	96 μ and δ	Results suggest that mu-opioid receptors enhance,
(2009) ⁶⁸	control trial	,ai	opioidR KO	whereas delta-opioid receptors inhibit, motor
(2005)	control that		mice	impulsivity
Boileau	Longitudinal	Human	10 aged	Sensitization to amphetamine can be achieved in
(2006) ⁷¹	study	Turnan	25.8±1.8	healthy men in the laboratory. This phenomenon is
(2000)	study			associated with increased dopamine release and
			years	persists for at least one year.
Di Ciano	Randomized	Animal	39 naive rats	Administration of a D3 dopamine receptor
(2003) ⁷²		Animal	Se naive rats	· · · ·
(2003)-	control trial			antagonist decreased impulse for cocaine,

				suggesting a selective role of these receptors in motivational aspect of conditioned stimuli
Belin (2011) ⁷³	Randomized control trial	Animal	40 adult rats	Addiction is sustained by two vulnerable phenotypes: a 'drug use prone' phenotype which brings an individual to develop drug use and an 'addiction prone' phenotype, which facilitates the shift from sustained to compulsive drug intake and addiction
Corbit (2012) ⁷⁴	Randomized control trial	Animal	19 rats	Extended alcohol self-administration produces habit-like responding and that response control shifts from the dorsomedial to the dorsolateral striatum
Zapata (2010) ⁷⁵	Randomized control trial	Animal	Rats	With more prolonged drug experience, animals transitioned to habitual cocaine seeking. When the dorsolateral striatum (involved in habit learning) was inactivated, drug-seeking reverted to a goal- directed system
Molander (2011) ⁷⁸	Randomized control trial	Animal	48 rats	Behavioral impulsivity in rats on a test, which predicts vulnerability for cocaine addiction, is distinct from anxiety, novelty reactivity and novelty-induced stress responses, and thus has relevance for the etiology of drug addiction
Conrod (2010) ⁸⁰	Randomized control trial	Human	5302 aged between 13 to 16 years	Brief, personality-targeted interventions can prevent the onset and escalation of substance misuse in high-risk adolescents