
Supplementary Materials

I. Supplementary Figures

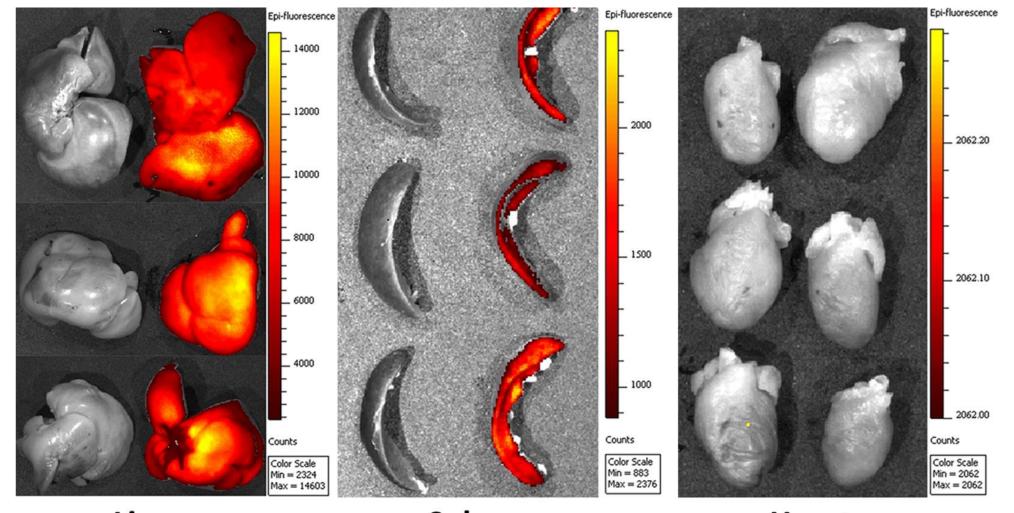
(not sampled)

Mesenteric LN (not sampled)

Mandibular LN

(not sampled)

Figure S1. Histopathology processing of rats' tissues.


Note: (A) rectangles through the tissue denote cross sections. Rectangles with arrows indicate longitudinal sections. (B) Tissues were embedded in the mold as viewed from this perspective. At microtomy, tissues on the slide were "mirrored" when compared to these images. **Abbreviations:** RA, right atria; LA, left atria; RV, right ventricle; LV, left ventricle; LN, lymph node.

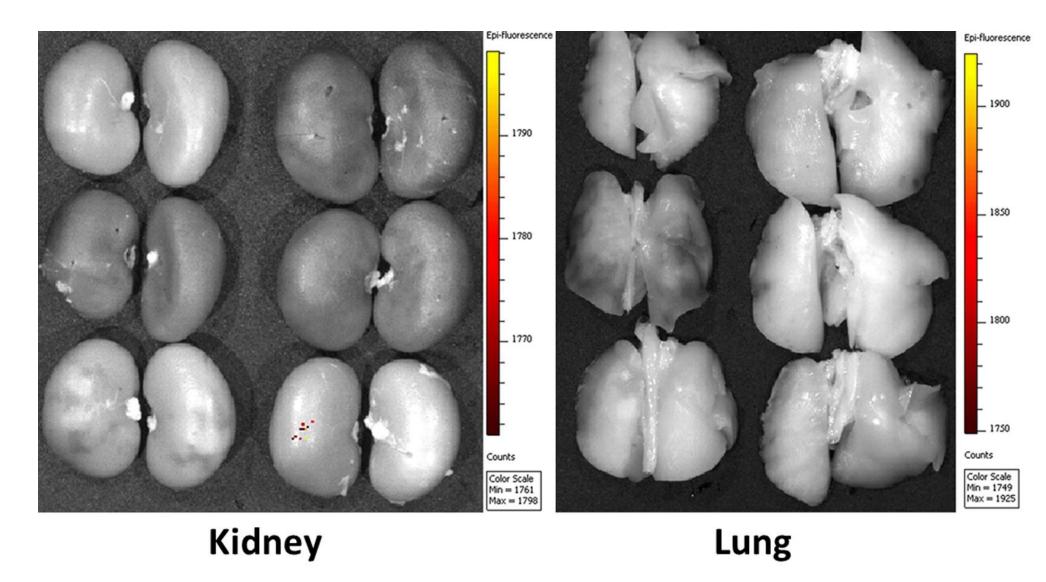
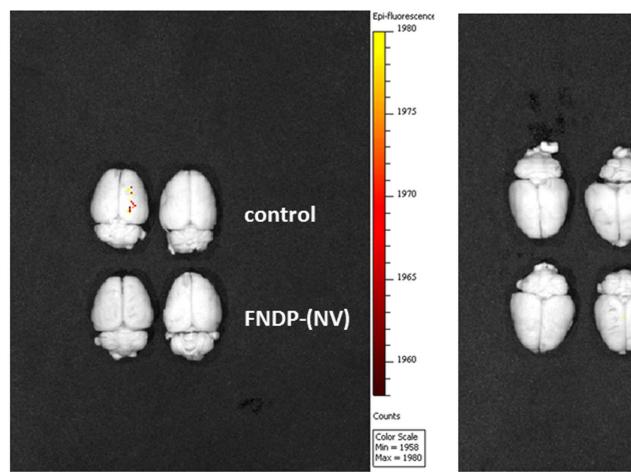
Salivarygland

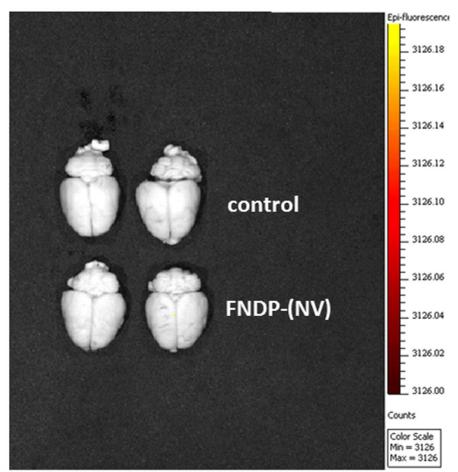
(not sampled)

Pancreas (not sampled)

(not sampled)

Liver Spleen Heart

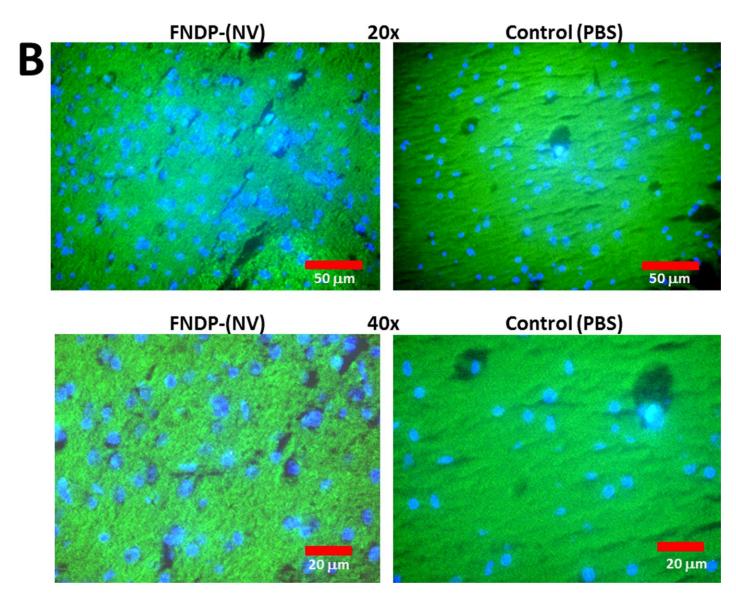
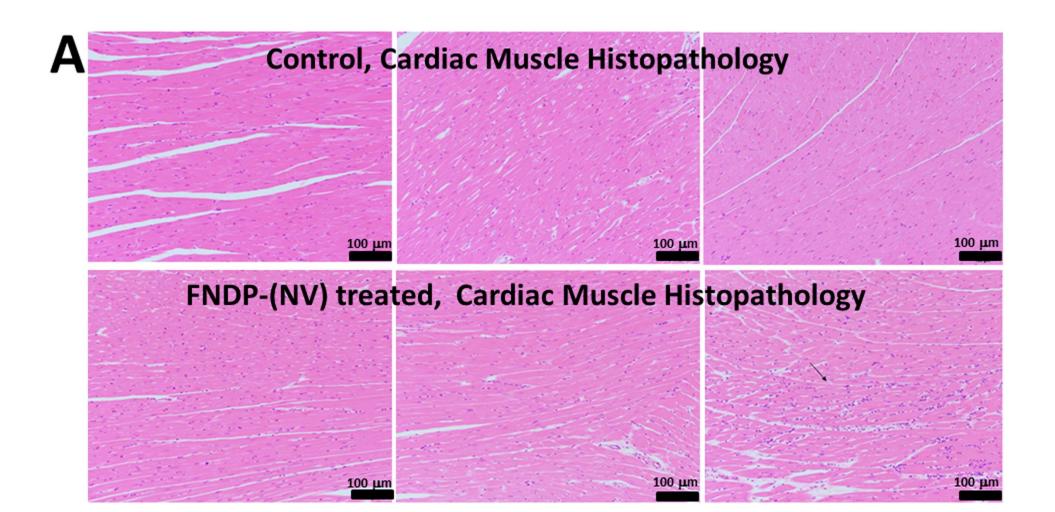
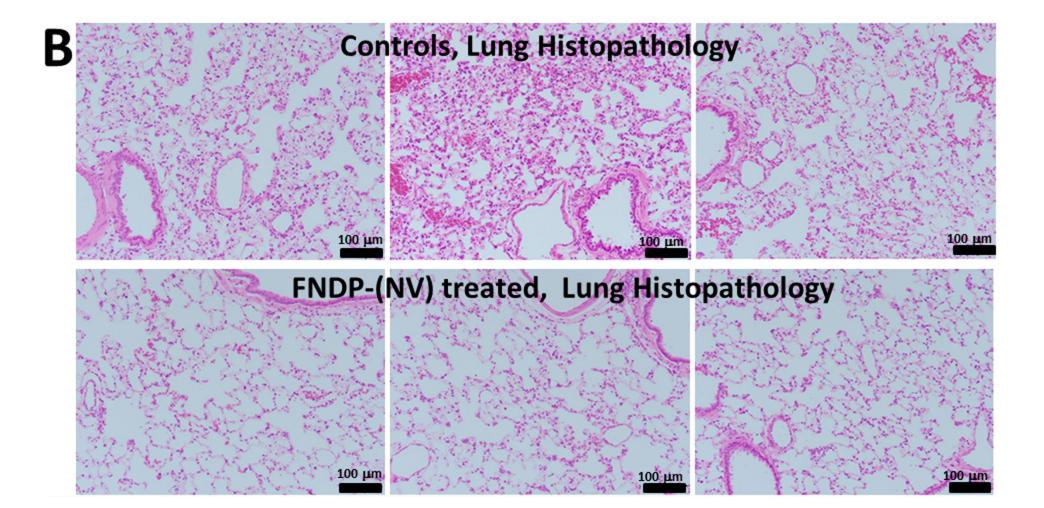



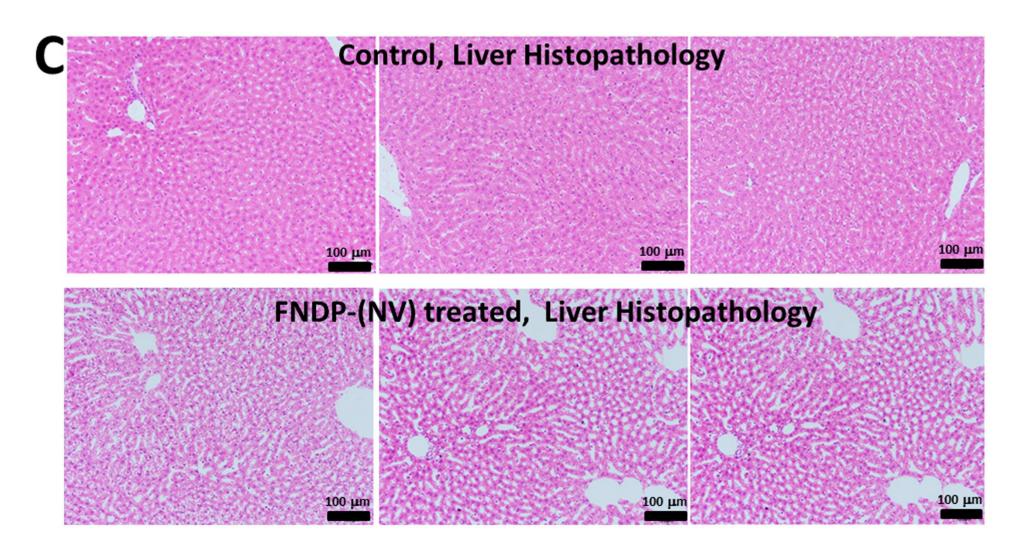

Figure S2. IVIS images of dissected, isolated intact organs of rats, representing examples of organs.

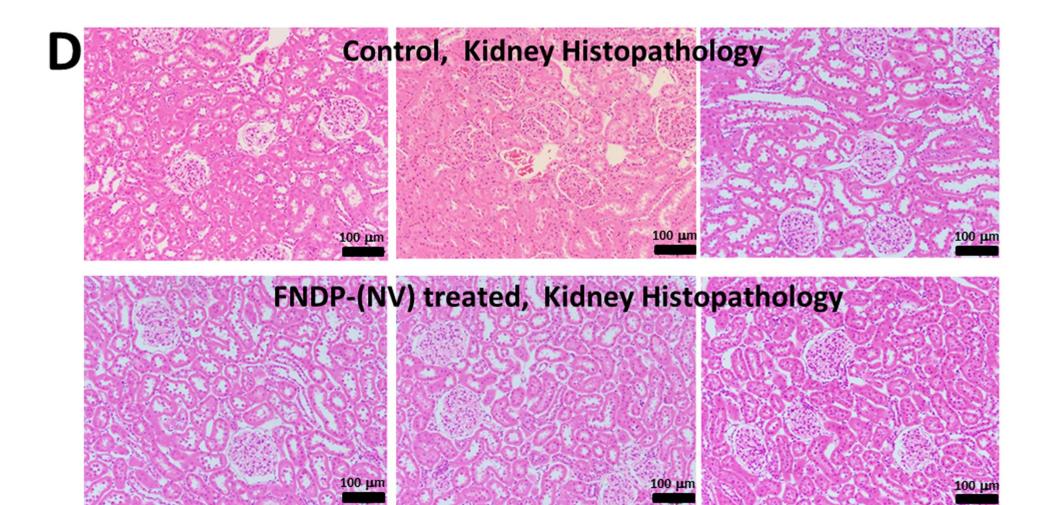
Note: Organs obtained from three control animals (injected with PBS) are presented on the left column of each image, three FNDP-(NV) treated animals are presented on right column of each image. Intensity of fluorescence is in red (low) to yellow (high) color scale.

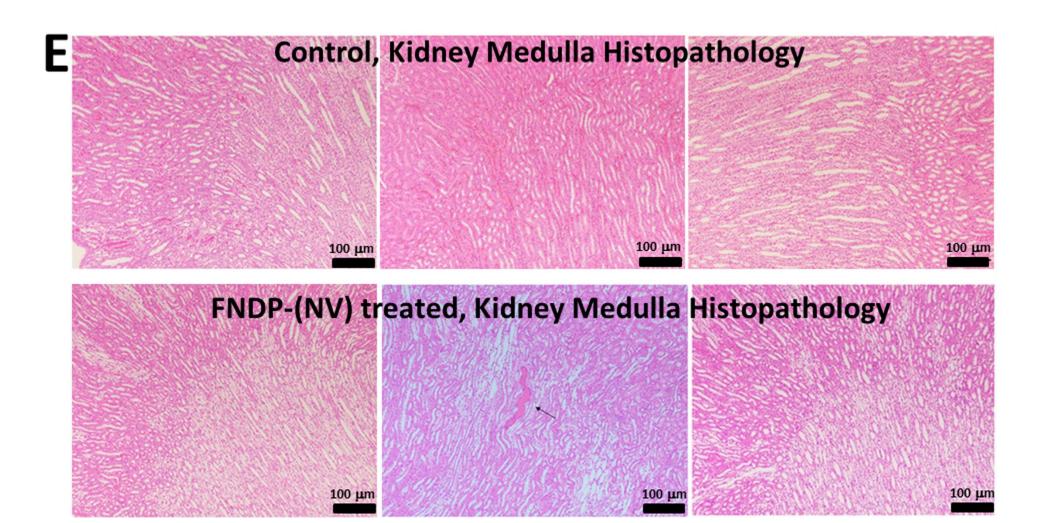
Abbreviations: FNDP-(NV), fluorescence nanodiamonds particles with NV active centers; IVIS, in vivo imaging system

A


Figure S3. Detection of FNDP-(NV) in the brain of rats


Note: (A) IVIS images of dissected brains isolated in post-injection day 5 (left panel) and day 14 (right panel). The images of brains from control (PBS) animals are presented in top rows, whereas images of brains of animals treated with FNDP-(NV) are presented on the bottom rows. The intensity of fluorescence is in red (low) to yellow (high) color scale. (B) Fluorescence microscope images of paraffin sections of brains from 14 days study. Tissue slides were stained with FITC phalloidin (green) and DAPI (blue). FNDP-(NV) are expected to be marked by red to yellow speckles in red filter (TRITC). Slides were analyzed using fluorescence microscope (Olympus FSX100) with two objectives (20x and 40x).


Abbreviations: FNDP-(NV), fluorescence NanoDiamonds particles with NV active centers; IVIS, in vivo imaging system; DAPI, 4',6-diamidino-2-phenylindole; FITC, fluorescein isothiocyanate; TRITC, tetramethylrhodamine isothiocyanate.

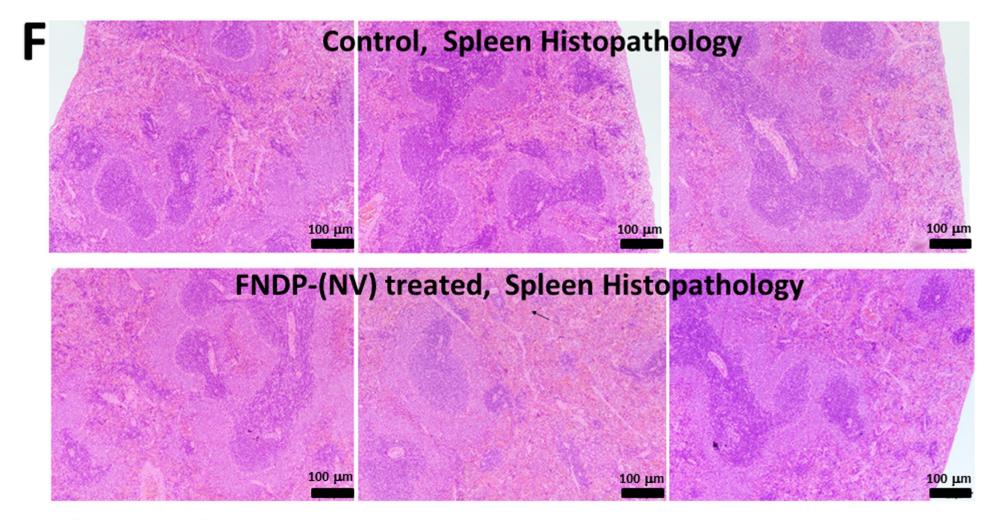


Figure S4. Images of paraffin embedded tissue sections of the organs dissected from the rats treated or not with FNDP-(NV).

Note: (A) Images of heart tissue obtained from control, vehicle (PBS) treated rats (three top images) and FNDP-(NV)-treated rats (three bottom images). Arrow indicates single mononuclear cell. (B) Images of lung tissue obtained from control, vehicle (PBS) treated rats (two top images) and FNDP-(NV)-treated rats (two bottom images). (C) Images of liver tissue obtained from control, vehicle (PBS) treated rats (two top images) and FNDP-(NV)-treated rats (two bottom images). (D) Images of kidney tissue obtained from control, vehicle (PBS) treated rats (two top images) and FNDP-(NV)-treated rats (two bottom images). Arrow indicates hyaline deposit in one collecting duck.(F) Images of spleen tissue obtained from control, vehicle (PBS) treated rats (two top images) and FNDP-(NV)-treated rats (two top images) and FNDP-(NV)-treated rats (two top images) and FNDP-(NV)-treated rats (two top images). Arrow indicates (two bottom images). Arrow indicates slight pigmentation zone suspected as hemosiderin.

Abbreviations: FNDP-(NV), fluorescence nanodiamonds particles with NV active centers

II. Supplementary Tables

Table S1. Dataset of blood analysis of rats treated or not with FNDP-(NV).

Abbreviation: All symbols used for description of blood parameters are described in Figure 4 legend.

Clinical Blood Tests		F۱	NDP(N	V)-Z80	00		Control							
Animal#:	1	2	3	4	5	6	1	2	3	4	5	6	7	8
Hematology														
WBC (k/ul)	9.25	12.66	7.08	6.37	5.55	6.21	2.07	5.52	2.62	-	5.93	5.82	5.82	15.29
RBC (m/ul)	8.32	8.15	8.17	7.72	8.02	7.72	8.05	8.46	8.23	-	8.24	7.53	8.22	7.56
HGB (g/dl)	14.5	14.2	13.9	13.5	14.6	13.9	15.2	15.5	15.7	-	14.7	14.3	14.9	14.8
HCT (%)	45.5	43.1	43.2	42.2	44.3	43.5	45.7	47.2	46.3	-	45.2	43	44.5	43.9
MCV (fL)	54.7	52.8	52.9	54.7	55.3	56.3	56.8	55.8	56.3	-	54.8	57.2	54.1	58.1
MCH (pg)	17.5	17.4	17	17.5	18.2	18.1	18.9	18.4	19.1	-	17.8	18.9	18.2	19.5
MCHC (g/dL)	31.9	32.9	32.1	32	32.8	32.1	33.3	33	33.9	-	32.5	33.1	33.6	33.6
RDW (%)	13.9	13.5	12.5	13.7	12.4	13.3	11.6	12	11.6	-	11.9	11.7	12.1	10.9
PLAT (k/UL)	1083	856	949	1100	776	1000	874	938	745	-	1040	859	912	805
MPV (fL)	7.3	7.4	7.7	8	7.4	7	7.4	7.5	7.8	-	7.6	7.4	7.6	7.1
Coagulation														
APTT(sec)	no	no	16.6	>100	no	17.7	-	-	no	-	no	no	16.6	no
Fibrinogen(mg/dL)	156	136	157	144	155	144	-	-	165	-	152	164	163	154
Prothrombin Time(sec)	10.6	11.2	11.3	11.5	11.8	12.1	-	-	10.7	-	10.9	10.7	11.2	11.2
INR	0.9	1	1	1	1	1	-	-	0.9	-	0.9	0.9	1	1
General														
Sodium (mmol/l)	143	141	142	142	144	143	145	141	140	145	141	143	144	142
Potassium (mmol/L)	7.2	6.7	6.2	6.1	5.9	5.2	6.2	7.4	9.5	5.7	6.8	6.3	6.7	6.1
Chloride (mmol/L)	99	101	101	103	103	103	103	101	100	103	99	101	100	100
CO2 (mmol/L)	24	23	24	24	22	22	23	22	23	19	24	27	26	26
Glucose Random (mg/dL)	133	211	164	196	158	158	142	187	124	161	176	176	171	196
BUN (mg/dL)	20	18	18	15	18	16	16	15	17	18	14	18	18	19
Creatinine (mg/dl)	0.3	0.31	0.36	0.3	0.34	0.32	0.29	0.26	0.32	0.23	0.24	0.3	0.35	0.3
Protein Total (g/dL)	6.8	6.3	6.7	5.8	6.2	5.9	6	6.3	7	5.9	6.1	6.3	6.4	5.6
Albumin (g/dl)	3.31	3.06	3.13	2.93	2.97	2.91	3.25	3.3	3.7	3.13	3.26	3.42	3.28	3.03
Alkaline Phosphatase(U/L)	291	154	212	135	135	150	285	171	185	185	291	187	205	260
AST (u/L)	109	163	123	105	122	113	135	100	200	201	160	92	89	90
ALT (u/L)	42	84	37	51	48	42	41	51	54	47	49	38	48	41
Calcium (mg/dL)	10.3	10.2	10.2	9.6	9.9	9.8	10	9.9	10	9.9	9.8	10.2	10.2	9.9
Total Bilirubin (mg/dl)	0.2	0.1	0.1	0.2	0.2	0.1	0.2	0.3	0.6	0.2	0.2	0.1	0.1	0.1

Table S2. Active place avoidance (APA) test results for each individual animal.

Abbreviations: FNDP, fluorescence nanodiamonds particles; Dist, distance; m, meters; s, seconds; #, number.

			Week 4							Week 8							Week 12						
	Animal	Run#	1	2	3	4	5	6	7	1	2	3	4	5	6	7	1	2	3	4	5	6	7
	1	Dist (m)	31.07	26.41	32.78	31.42	22.42	29.16	28.32	26.22	28.82	30.06	33.2	31.17	33.22	33.84	28.9	30.35	24.47	30.63	41.65	32.63	32.63
		Shock (#)	34	38	50	45	43	59	51	44	51	18	16	9	7	8	49	50	35	35	15	14	14
		Entrance (#)	16	22	19	10	22	17	11	8	9	11	12	9	7	8	10	10	8	10	13	12	12
		1st Entry (s)	31	15	20	48	39	25	36	24	29	11	30	51	17	51	23	9	9	47	6	45	14
		Dist (m)	34.36	52.33	40.05	39.87	45.44	44.98	43.76	53.86	40.49	36.4	35.76	39.75	39.09	24.81	44.51	39.84	39.69	38.61	37.7	37.34	37.34
	2	Shock (#)	27	12	7	2	2	0	2	15	6	0	0	1	0	1	3	0	0	0	0	0	1
	_	Entrance (#)	8	4	6	2	2	0	1	3	1	0	0	1	0	1	3	0	0	0	0	0	1
		1st Entry (s)	44	20	92	109	41	600	319	1	254	600	600	36	600	58	43	600	600	600	600	600	285
		Dist (m)	46.05	41.33	40.38	41.98	32.09	40.58	40.78	46.39	38.96	39.24	38.35	36.28	37.42	37.88	46.68	41.3	36.36	32.4	33.88	37.48	37.48
8	3	Shock (#)	15	1	0	1	0	0	1	7	0	0	3	0	0	2	3	1	1	1	1	0	0
Ř		Entrance (#)	12	1	0	1	0	0	1	3	0	0	2	0	0	2	3	1	1	1	1	0	0
ŝ		1st Entry (s)	29	33	600	9	600	600	108	157	600	600	397	600	600	507	7	430	380	27	101	600	600
FNDP(NV)-2800		Dist (m)	48.52	48.02	39.04	39.18	37.01	38.06	34.19	49.14	34.32	30.99	26.61	30.74	30.36	30.02	44.57	44.75	44.62	45.88	41.88	31.61	36.44
Ä	4	Shock (#)	31	11	3	17	7	2	4	33	28	1	19	3	0	3	29	14	15	21	16	9	5
		Entrance (#)	16	11	3	12	7	2	4	18	8	1	9	3	0	3	20	14	14	18	14	7	4
		1st Entry (s)	26	34	26	31	22	246	71	8	64	53	52	39	600	296	35	66	39	41	28	4	93
		Dist (m)	33.57	51.88	37.84	33.4	36.61	37	37	45.52	37.12	34.44	33.78	33.82	33.78	33.82	46.85	43.65	37.78	35.71	36.31	35.19	35.19
	5	Shock (#)	36	46	1	1	0	0	0	23	8	0	0	0	0	0	19	21	12	1	2	0	0
		Entrance (#)	12	16	1	1	0	0	0	14	3	0	0	0	0	0	18	14	9	1	2	0	0
		1# Entry (s)	3	22	317	252	600	600	600	52	119	600	600	600	600	600	20	37	345	21	51	600	600
		Dist (m)	34.07	37.89	49.8	49.33	41.27	41.69	37.07	25.38	38.27	46.04	38.58	37.66	40.76	42.59	43.85	42.44	42.49	41.23	43.22	40.71	27.09
	6	Shock (#)	44	35	17	15	3	2	3	38	33	19	7	8	9	9	19	16	15	12	3	10	3
		Entrance (#)	14	17	17	13	4	1 704	2 70	10	14	13	707	8	9	9	11	16	14	12	3 320	107	2 791
		Dist (m)	59.88	61.63	34.68	42.14	35.14	34.59	34.56	44.52	41.32	37.26	43.06	43.73	43.59	41.89	- 19	_	- 70	- 44	441	107	791
		Shock (#)	28	21	18	3	0	0	0	14	8	1	2	2	0	0							
	1	Entrance (#)	17	18	17	3	0	0	0	13	8	1	2	2	0	0							
		1st Entry (s)	102	12	20	22	600	600	600	1	26	251	21	219	600	600							
		Dist (m)	63.83	48.2	45.06	39.98	39.1	37.58	39.12	44.07	49.81	40.97	39.98	41.06	40.79	40.29							
	_	Shock (#)	38	28	1	1	0	0	1	9	27	3	1	2	1	0							
	2	Entrance (#)	19	11	1	1	0	0	1	4	8	2	1	1	1	0							
		1# Entry (s)	7	23	549	179	600	600	21	,	46	23	527	559	416	600							
		Dist (m)	50.3	57.29	49.47	40.03	39.67	43.75	40.05	49.05	33.91	30	48.68	42.06	41.95	41.09							
2		Shock (#)	24	27	23	5	3	3	1	30	11	22	6	0	0	1							
Control	3	Entrance (#)	16	25	18	1	2	3	1	15	3	9	3	0	0	1							
0		1st Entry (s)	3	21	32	4	10	16	535	28	97	18	11	600	600	241							
	4	Dist (m)	57.84	40.05	37.29	35.52	36.81	34.94	34.42	42.76	38.76	39.54	38.01	35.91	38.01	35.91							
		Shock (#)	12	4	2	0	0	1	1	7	1	0	0	0	0	0							
	4	Entrance (#)	6	4	2	0	0	1	1	6	1	0	0	0	0	0							
		1st Entry (s)	23	90	69	600	600	164	16	4	563	600	600	600	600	600							
		Dist (m)	65.87	69.15	56.93	58.32	66.19	61.36	57.88	69.12	60.45	62.09	51.17	49.95	48.74	48.35							
	5	Shock (#)	54	28	29	35	27	28	24	26	18	14	16	4	11	4							
	,	Entrance (#)	20	22	21	20	23	22	17	22	17	14	16	4	11	4							
		1# Entry (s)	10	23	63	46	7	33	4	6	19	8	10	33	28	65							

III. Supplementary Reports

Histopathology report

DRAFT PATHOLOGY REPORT

HISTOPATHOLOGY EVALUATION OF THE RAT ORGANS

STUDY NO. 608-0001-PT

TESTING FACILITY

WUXI APPTEC (SUZHOU) CO., LTD. 1318 WUZHONG AVENUE, WUZHONG DISTRICT SUZHOU 215104, CHINA

SPONSOR

DEBINA DIAGNOSTICS INC **NEWTOWN SQUARE, PA 19073**

> REPORT DATE 2018-MM-DD

INTRODUCTION 1

The purpose of this study was to conduct histopathological evaluation of livers, spleens, kidneys, lungs and hearts obtained from rats that were treated with nanoparticles or PBS (vehicle).

A total of 6 rats (30 organs total) were examined (three treated and three controls rats).

2 REGULATORY COMPLIANCE

The pathology evaluation was not conducted in compliance with international Good Laboratory Practice (GLP) regulations. However, it was conducted in accordance with the study protocol, protocol amendment and Test Facility Standard Operating Procedures (SOPs).

3 MATERIALS AND METHODS

Six male rats were assigned to 2 groups of 3 rats each. The study design is summarized in the Text

Text Table 1 Study Design

Table 1.

	s	ingle Dose	Numbering of Animals	
Group	Daily Dose (mg/kg)	Volume (mL/kg)	Conc. (mg/mL)	Male
1	PBS	2 mL	NA	1, 2, 3
2	60 mg/kg	2mL	NA	1, 2, 3

When the in-life phase of the study was completed, animals were necropsied and the organs were collected after whole body-perfusion with 10% NBF. The wet tissues were shipped to WuXi (Suzhou), processed, sectioned, stained with hematoxylin and eosin, and examined microscopically. One section per slide was prepared and evaluated for each organ (livers, spleens, kidneys, lungs and hearts) as per test facility

HISTOPATHOLOGY RESULTS

There were no noteworthy findings in the organs evaluated. The findings observed were non-specific common background changes in rats of this age and strain and not considered to be test article (treatment)-related. Mononuclear cell infiltrates in the heart of young rats are common incidental findings and most likely related to the early stages of rodent progressive cardiomyopathy which is more common in males than females (1). Another common aging change in rats is chronic progressive nephropathy, which in young rats may begin with minor histopathologic changes in the kidneys (2). Hemosiderin deposition in the spleen of rats is a common finding related to the normal turnover of erythrocytes in the spleen.

Detailed individual histopathology findings were presented in Text Table 2.

Text Table 2 Individual Histopathology Data

Group		PBS	Nanoparticle 60 mg/kg					
Dosage Animal No.	1	2	3	1	o mg/k 2	.g 3		
Heart			32		225			
Mononuclear cell infiltration, focal	_	-	-	7.0	-	1+		
Liver	-	-	_	-	-	-		
Spleen								
Pigmentation (resemble hemosiderin)	-	-	-	-	1+	-		
Lung	1.5	-	-	÷	-	-		
kidney								
Cast, hyaline, focal					1+			

Note: -, Not remarkable; 1+, minimal; 2+, mild; 3+, moderate; 4+, marked; 5+, severe;

1 CONCLUSION

There were no pathologically significant findings in the organs evaluated. The findings observed were non-specific common background changes in rats of this age and strain and not considered to be treatment-related.

REFERENCES

1 Spontaneous Cardiomyopathy in Young Sprague-Dawley Rats: Evaluation of Biological and Environmental Variability: Franck Chanut, Carie Kimbrough, Rick Hailey, etal. Toxicologic Pathology Vol 41, Issue 8, pp. 1126 - 1136, 2013

2 Chronic Progressive Nephropathy in Aging Rats: Stephen W. Barthold, D.V.M., Ph.D. Toxicologic Pathology, Vol 7, Issue 1, pp. 1 – 6, First Published January 1, 1979