Supplementary Material

Direct comparison of five serum biomarkers in early detection of hepatocellular carcinoma

Authors: Hongda Chen ${ }^{1 \#}$, Yue Zhang ${ }^{1 \#}$, Siwen $\mathrm{Li}^{2 \#}$, $\mathrm{Ni} \mathrm{Li}^{1}$, Yuhan Chen ${ }^{3}$, Bei Zhang ${ }^{2}$,
\section*{Affiliations:}
${ }^{1}$ National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
${ }^{2}$ Liver Research Center, Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing, China
${ }^{3}$ Department of Gastrointestinal and Hepatology, Beijing You' An Hospital Affiliated to Capital Medical University, Beijing, China.
${ }^{4}$ National Clinical Research Center of Digestive Diseases, Beijing, China \# contributed equally to this work

Address for correspondence: Prof. Dr. Min Dai, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Email: daimin2002@hotmail.com; Tel: +86-10-8778-7394, and Prof. Dr. Jiang Huang, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Email:
huangj1966@hotmail.com; Tel: +86-10-6313-9310

Supplementary Material

Supporting information:

Table S1. Clinicopathologic characteristics of patients with HCC, CHB or LC
Table S2. Association between the serum levels of six markers and clinicopathological factors in HCC patients

Table S3. Diagnostic performance of the combination of AFP with CENPF or SCCA for detecting HCC or early HCC

Table S4. Diagnostic performance of marker combinations for discriminating earlystage hepatocellular carcinoma and decompensated or compensated liver cirrhosis

Table S5. Diagnostic performance of AFP+DCP and their combination with age and sex for detecting hepatocellular carcinoma

Table S6. The regression equations and optimal probabilities of the combination of AFP and DCP

Table S7. The regression equations and optimal probabilities of the combination of AFP, DCP, age and sex

Figure S1. Scatter plot showing the expression intensity of AFP, AFP-L3, DCP, SCCA and CENPF-Ab between different study groups

Figure S2. Comparison of apparent and .632+ adjusted receiver operating characteristics (ROC) curves for AFP in discriminating: (a) HCC vs. CHB+LC+HC; (b) HCC vs. CHB+LC; (c) HCC vs CHB; (d) Early-stage HCC vs CHB+LC+HC; (e) Earlystage HCC vs CHB+LC; (f) Early-stage HCC vs LC

Figure S3. Comparison of apparent and .632+ adjusted receiver operating characteristics (ROC) curves for AFP-L3 in discriminating: (a) HCC vs. CHB+LC+HC; (b) HCC vs. CHB+LC; (c) HCC vs CHB; (d) Early-stage HCC vs CHB+LC+HC; (e) Early-stage HCC vs CHB+LC; (f) Early-stage HCC vs LC

Figure S4. Comparison of apparent and .632+ adjusted receiver operating characteristics (ROC) curves for DCP in discriminating: (a) HCC vs. CHB+LC+HC; (b) HCC vs. CHB+LC; (c) HCC vs CHB; (d) Early-stage HCC vs CHB+LC+HC; (e) Early-stage HCC vs CHB+LC; (f) Early-stage HCC vs LC

Figure S5. Comparison of apparent and .632+ adjusted receiver operating characteristics (ROC) curves for SCCA in discriminating: (a) HCC vs. CHB+LC+HC;

Supplementary Material

(b) HCC vs. CHB+LC; (c) HCC vs CHB; (d) Early-stage HCC vs CHB+LC+HC; (e) Early-stage HCC vs CHB+LC; (f) Early-stage HCC vs LC

Figure S6. Comparison of apparent and .632+ adjusted receiver operating characteristics (ROC) curves for CENPF in discriminating: (a) HCC vs. CHB+LC+HC; (b) HCC vs. CHB+LC; (c) HCC vs CHB; (d) Early-stage HCC vs CHB+LC+HC; (e) Early-stage HCC vs CHB+LC; (f) Early-stage HCC vs LC

Figure S7. Comparison of .632+ adjusted receiver operating characteristics curves of two prediction algorithms (AFP+DCP and AFP+DPC+age+sex) for discriminating: (a) HCC vs. CHB+LC+HC; (b) HCC vs. CHB+LC; (c) HCC vs CHB; (d) Early-stage HCC vs CHB+LC+HC; (e) Early-stage HCC vs CHB+LC; (f) Early-stage HCC vs LC

Abbreviations: AUC=area under the curve. HCC=hepatocellular carcinoma; HC=healthy control; $\mathrm{CHB}=$ chronic hepatitis B virus infection; $\mathrm{LC}=$ liver cirrhosis

Supplementary Material

Table S1. Clinicopathologic characteristics of patients with HCC, CHB or LC

Variable	HCC ($\mathrm{N}=202$)	CHB ($\mathrm{N}=215$)	LC ($\mathrm{N}=226$)
AFP ($\mathrm{n}, \%$)			
$\leqslant 20 \mathrm{ng} / \mathrm{ml}$	103 (51.0)	172 (80.0)	199 (88.1)
>20 ng/ml	99 (19.0)	43 (20.0)	27 (11.9)
HBV-DNA (n , \%)			
Negative	47 (23.3)	129 (60.0)	160 (70.8)
Positive	36 (17.8)	72 (33.5)	44 (19.5)
Missing	119 (58.9)	14 (6.5)	22 (9.7)
HBsAg (n , \%)			
Negative	27 (13.3)	0 (0.0)	6 (2.7)
Positive	132 (65.3)	184 (85.6)	184 (81.4)
Missing	43 (21.3)	31 (14.4)	36 (15.9)
HBeAg (\mathbf{n}, \%)			
Negative	36 (17.8)	98 (45.6)	136 (60.9)
Positive	123 (60.9)	86 (40.0)	54 (17.8)
Missing	43 (21.3)	31 (14.4)	36 (21.3)
HBsAb (n , \%)			
Negative	120 (59.4)	153 (71.2)	164 (72.6)
Positive	39 (19.3)	31 (14.4)	24 (10.6)
Missing	43 (21.3)	31 (14.4)	36 (15.9)
HBeAb (\mathbf{n}, \%)			
Negative	45 (22.3)	97 (45.1)	55 (24.3)
Positive	114 (56.4)	87 (40.5)	135 (59.7)
Missing	43 (21.3)	31 (14.4)	36 (15.9)
HBcAb (n , \%)			
Negative	9 (4.5)	0 (0.0)	3 (1.3)
Positive	149 (73.8)	184 (85.6)	187 (82.7)
Missing	44 (21.8)	31 (14.4)	36 (15.9)
HCV-DNA (n , \%)			
Negative	133 (65.8)	31 (14.4)	100 (44.2)
Positive	14 (6.9)	0 (0)	2 (8.9)
Missing	55 (27.2)	184 (85.6)	124 (54.9)

Abbreviations: AFP, alpha-fetoprotein; CHB , chronic hepatitis B ; HBV, hepatitis B virus; HBsAg , hepatitis B surface antigen; $H B s A b$, hepatitis B surface antibody; $H B e A g$, hepatitis B e antigen; HBeAb, hepatitis B e antibody; HBcAb, hepatitis B core antibody; HCC, hepatocellular carcinoma; LC, liver cirrhosis

Supplementary Material

Table S2. Association between the serum levels of six markers and clinicopathological factors in HCC patients

Variable	AFP		AFP-L3		DCP		SCCA		CENPF	
	Median $\text { (} 1^{\text {st }} \text { Qu. }-3^{\text {rd }} \text { Qu.) }$	P-value ${ }^{\text {I }}$	Median $\left(1^{\text {st }} \text { Qu. }-3^{\text {rd }} \text { Qu. }\right)$	P-value ${ }^{\text {I }}$	Median $\text { (} 1^{\text {st }} \text { Qu. }-3^{\text {rd }} \text { Qu.) }$	P-value ${ }^{\text {I }}$	Median $\text { (} \left.1^{\text {st }} \text { Qu. }-3^{\text {rd }} \text { Qu. }\right)$	P-value ${ }^{\text {I }}$	Median $\text { (} 1^{\text {st }} \text { Qu. }-3^{\text {rd }} \text { Qu.) }$	P-value ${ }^{\text {I }}$
Age (years)										
≤ 55	35.6(6.7-330.7)	0.245	0.50(0.50-30.49)	0.904	222.0(52.3-2611.0)	0.329	113.9 (47.9-200.6)	0.133	169.9 (105.9-256.1)	0.662
>55	15.4(3.6-282.9)		0.50(0.50-29.46)		266.0(33.0-1432.0)		133.5 (67.7-390.4)		155.8 (82.3-267.1)	
Sex										
Male	15.1(4.4-238.7)	0.084	22.5(0.5-30.1)	0.439	248.5(39.0-1970.0)	0.851	119.7 (51.3-281.4)	0.484	167.2 (97.4-269.1)	0.594
Female	104.4(103-478.2)		1.7(0.5-36.0)		314.0(40.3-1322.0)		138.1 (71.6-216.8)		150.8 (109.6-205.8)	
HBsAg										
Positive	4.1 (2.2-23.2)	0.063	0.5 (0.5-0.5)	0.420	28.0 (21.0-50.0)	0.4700	150.6 (77.6-312.6)	0.056	142.3 (69.8-209.4)	0.412
Negative	7.8 (2.72-273.5)		0.5 (0.5-0.5)		35.0 (28.5-61.0)		75.9 (58.3-175.5)		143.8 (64.1-523.5)	
HBeAg										
Positive	15.0(4.3-248.8)	0.218	0.50(0.50-21.8)	0.239	212.0(40.0-2122.0)	0.608	135.2(67.7-303.7)	0.186	150.8(78.0-226.6)	0.324
Negative	67.6(8.4-545.0)		3.2(0.50-59.9)		391.0(55.0-2020.0)		111.7(63.9-179.2)		185.7(126.2-259.3)	
HCV infection										
Positive	17.7(4.9-337.9)	0.912	0.50(0.50-22.0)	0.437	251.0(42.0-2083.0)	0.852	135.9(68.9-296.0)	0.069	162.8(97.7-238.7)	0.784
Negative	20.4(5.7-167.7)		1.6(0.50-42.2)		337.0(36.5-1164.0)		84.8(41.4-141.6)		187.9(74.3-416.0)	
TNM tumor stage										
Stage I	13.2(3.3-184.5)	0.034	0.5(0.5-0.8)	0.002	71.5(30.0-518.0)	<0.001	135.9(67.6-289.0)	0.036	138.9(70.9-192.1)	0.039
>Stage I	48.6(6.4-346.6)		9.6(0.5-41.3)		542.0(67.5-4126.0)		71.8(47.7-86.9)		192.3(100.1-320.0)	

" The differences between the two groups were examined by the Wilcoxon Test.

Supplementary Material

Table S3a. Diagnostic performance of the combination of AFP with CENPF or SCCA for detecting HCC

Marker combination	HCC vs LC+HC		HCC vs LC		HCC vs HC	
	AUC ${ }^{\text {a }}$	SEN at 90\% SPE ${ }^{\text { }}$	AUC ${ }^{\text {a }}$	SEN at 95\% SPE ${ }^{\text {s }}$	AUC"	SEN at 90\% SPE ${ }^{\text { }}$
AFP+CENPF	0.77 (0.72-0.87)	46.2 (28.6-64.6)	0.68 (0.63-0.80)	35.3 (20.9-55.0)	0.90 (0.45-0.70)	79.3 (67.3-90.9)
AFP+SCCA	0.63 (0.56-0.79)	34.0 (20.0-56.8)	0.60 (0.54-0.75)	29.2 (17.9-52.6)	0.82 (0.43-0.72)	70.1 (57.9-85.7)
Table S3b. Diagnostic performance of the combination of AFP with CENPF or SCCA for detecting Early-stage HCC						
Marker combination	Early-HCC vs LC+HC		Early-HCC vs LC		Early-HCC vs HC	
	AUC ${ }^{\text {a }}$	SEN at 90\% SPE ${ }^{\text {¢ }}$	AUC ${ }^{\text {a }}$	SEN at 95\% SPE ${ }^{\text {s }}$	AUC ${ }^{1}$	SEN at 90\% SPE ${ }^{\text {b }}$
AFP+CENPF	0.61 (0.52-0.79)	27.5 (9.1-53.0)	0.53 (0.41-0.71)	20.6 (0-41.7)	0.84 (0.44-0.79)	68.3 (44.4-91.7)
AFP+SCCA	0.62 (0.54-0.78)	31.7 (19.4-55.6)	0.59 (0.53-0.74)	30.0 (17.5-52.8)	0.82 (0.44-0.72)	71.1 (56.4-87.1)

Abbreviations: AUC, area under the curve; CHB , chronic hepatitis $\mathrm{B} ; \mathrm{HCC}$, hepatocellular carcinoma; LC, liver cirrohosis; SEN, sensitivity; SPE, specificity
II AUC was adjusted for potential overfitting by .632+ bootstrap method
$\S .632+$ bootstrap adjusted sensitivity at cutoffs yielding 90% specificity

Supplementary Material

Table S4. Diagnostic performance of marker combinations for discriminating early-stage hepatocellular carcinoma and liver cirrhosis

Marker combination	Early-stage HCC vs decompensated LC		Early-stage HCC vs compensated LC		P-value*
	Apparent AUC [95\% CI]	.632+ AUC [95\% CI]	Apparent AUC [95\% CI]	.632+ AUC [95\% CI]	
AFP+AFP-L3	0.63 [0.52-0.74]	0.61 [0.39-0.75]	0.62 [0.50-0.74]	0.61 [0.37-0.77]	0.904
AFP+DCP	0.81 [0.75-0.86]	0.73 [0.71-0.87]	0.84 [0.78-0.90]	0.80 [0.53-0.88]	0.422
AFP-L3+DCP	0.63 [0.52-0.74]	0.61 [0.41-0.78]	0.81 [0.70-0.90]	0.76 [0.36-0.80]	0.018
AFP+AFP-L3+DCP	0.72 [0.61-0.82]	0.68 [0.48-0.82]	0.82 [0.73-0.91]	0.77 [0.33-0.80]	0.126

Abbreviations: AUC, area under the curve; HCC, hepatocellular carcinoma; LC, liver cirrhosis

* p -value for examining the differences between the AUC of the marker combination for discriminating early-stage HCC vs. decompensated LC and the AUC for discriminating early-stage HCC vs. compensated LC, using bootstrapping method (1000 bootstrap samples)

Supplementary Material

Table S5. Diagnostic performance of AFP+DCP and their combination with age and sex for detecting hepatocellular carcinoma

Combination	AFP+DCP		AFP+DCP+age+sex	
	AUC ${ }^{\prime}$	SEN at 90\% SPE 5	AUC ${ }^{1}$	SEN at 90\% SPE 5
HCC vs LC+CHB+HC	0.87[0.68-0.84]	73.8[63.6-84.2]	0.92[0.73-0.88]	77.3[66.6-86.3]
HCC vs LC+CHB	0.84[0.67-0.83]	68.2[59.4-78.5]	0.91[0.74-0.88]	75.3[64.1-85.1]
HCC vs LC	0.83[0.68-0.84]	64.2[53.9-76.6]	0.87[0.70-0.86]]	64.2[53.9-76.6]
Early HCC vs LC+CHB+HC	0.79[0.73-0.88]	59.8[46.4-77.4]	0.88[0.80-0.93]	65.4[51.7-81.8]
Early HCC vs LC+CHB	0.77[0.71-0.86]	56.0[43.2-70.6]	0.87[0.79-0.92]	63.2[48.4-78.4]
Early HCC vs LC	0.75[0.71-0.87]	52.6[37.0-68.6]	0.81[0.71-0.89]	56.1[40.5-72.7]

Abbreviations: AUC, area under the curve; CHB, chronic hepatitis B; HCC, hepatocellular carcinoma; LC, liver cirrohosis; SEN, sensitivity; SPE, specificity
II AUC was adjusted for potential overfitting by . 632+ bootstrap method
$\S .632+$ bootstrap adjusted sensitivity at cutoffs yielding 90% specificity

Supplementary Material

Table S6. The regression equations and optimal probabilities of the combination of AFP and DCP

Group	No.	Regression model ${ }^{\text {II }}$ $[\ln (p /(1-p)]$	Optimal probability ${ }^{\text { }}$	Sensitivity (\%) ${ }^{5}$	Specificity (\%) ${ }^{\text {¢ }}$
HCC vs $\mathrm{CHB}+\mathrm{LC}+\mathrm{HC}$	202 vs 644	$0.004 \times \mathrm{AFP}+0.004 \mathrm{DCP}-2.106$	0.129	83.7	85.1
HCC vs CHB+LC	202 vs 441	$0.003 x$ AFP $+0.003 D C P-1.698$	0.178	83.2	78.9
HCC vs LC	202 vs 226	$0.003 \times A F P+0.002 \mathrm{DCP}-0.959$	0.301	83.7	77.4
Early-HCC vs $\mathrm{CHB}+\mathrm{LC}+\mathrm{HC}$	94 vs 644	$0.004 \times \mathrm{AFP}+0.002 \mathrm{DCP}-2.496$	0.084	79.8	81.2
Early-HCC vs CHB+LC	94 vs 441	$0.003 x$ AFP +0.002 DCP- 2.102	0.119	76.6	76.6
Early-HCC vs LC	94 vs 226	$0.003 \times A F P+0.001$ DCP-1.395	0.210	79.8	75.2

Abbreviations: CHB, chronic hepatitis B; HCC, hepatocellular carcinoma; LC, liver cirrohosis;
${ }^{\text {a }}$ The algorithm was constructed using logistic regression model
\$ The optimal probability was defined by threshold showing the highest Youden's index (i.e., sensitivity + speficity-1)
${ }^{\S}$ Apparent sensitivity/specificity without correction for potential overfitting at respective optimal probability (defined by the Youden's index)

Supplementary Material

Table S7. The regression equations and optimal probabilities of the combination of AFP, DCP, age and sex.

Group	No.	Regression model ${ }^{\boxed{1}}$ $[\ln (p /(1-p)]$	Optimal probability ${ }^{\text {s }}$	Sensitivity (\%) ${ }^{\text {¢ }}$	Specificity (\%) ${ }^{\text {¢ }}$
HCC vs $\mathrm{CHB}+\mathrm{LC}+\mathrm{HC}$	201 vs 636	$0.005 \times \mathrm{AFP}+0.003 \times D C P+0.09 \times$ AGE-1.648xSEX-4.661	0.200	86.6	83.2
HCC vs CHB+LC	201 vs 433	$0.004 \times A F P+0.002 \times D C P+0.102 \times A G E-1.646 \times S E X-4.909$	0.319	79.6	88.5
HCC vs LC	201 vs 225	$0.004 \times A F P+0.002 \times D C P+0.079 \times$ AGE-1.512xSEX-3.378	0.398	79.6	83.1
Early-HCC vs CHB+LC+HC	94 vs 636	$0.004 \times A F P+0.002 x$ DCP $+0.079 \times$ AGE-1.767xSEX-4.370	0.119	85.1	78.1
Early-HCC vs CHB+LC	94 vs 433	$0.004 \times A F P+0.001 \times D C P+0.092 \times$ AGE-1.732xSEX-4.678	0.155	86.2	75.1
Early-HCC vs LC	94 vs 225	$0.003 \times A F P+0.001 \times$ CPP $+0.0068 \times$ AGE-1.587xSEX-3.164	0.296	69.1	84.9

[^0]
Supplementary Materia

Figure S1. Scatter plot showing the expression intensity of AFP, AFP-L3, DCP, SCCA and CENPFAb between different study groups

Abbreviations: ROC=receiver operating characteristics. HCC=hepatocellular carcinoma;
$\mathrm{HC}=$ healthy control; $\mathrm{CHB}=$ chronic hepatitis B virus infection; LC=liver cirrhosis

Supplementary Material

Figure S2. Comparison of apparent and .632+ adjusted receiver operating characteristics (ROC) curves for AFP in discriminating: (a) HCC vs. CHB+LC+HC; (b) HCC vs. CHB+LC; (c) HCC vs CHB; (d) Early-stage HCC vs CHB+LC+HC; (e) Early-stage HCC vs CHB+LC; (f) Early-stage HCC vs LC.

Abbreviations: AUC=area under the curve. HCC=hepatocellular carcinoma; $\mathrm{HC}=$ healthy control; $C H B=$ chronic hepatitis B virus infection; $L C=$ liver cirrhosis

Supplementary Material

Figure S3. Comparison of apparent and .632+ adjusted receiver operating characteristics (ROC) curves for AFP-L3 in discriminating: (a) HCC vs. CHB+LC+HC; (b) HCC vs. CHB+LC; (c) HCC vs CHB; (d) Early-stage HCC vs CHB+LC+HC; (e) Early-stage HCC vs CHB+LC; (f) Early-stage HCC vs LC.

Abbreviations: AUC=area under the curve. $\mathrm{HCC}=$ hepatocellular carcinoma; $\mathrm{HC}=$ healthy control; $\mathrm{CHB}=$ chronic hepatitis B virus infection; $\mathrm{LC}=$ liver cirrhosis

Supplementary Material

Figure S4. Comparison of apparent and .632+ adjusted receiver operating characteristics (ROC) curves for DCP in discriminating: (a) HCC vs. CHB+LC+HC; (b) HCC vs. CHB+LC; (c) HCC vs CHB; (d) Early-stage HCC vs CHB+LC+HC; (e) Early-stage HCC vs CHB+LC; (f) Early-stage HCC vs LC.

Abbreviations: AUC=area under the curve. $\mathrm{HCC}=$ hepatocellular carcinoma; $\mathrm{HC}=$ healthy control; $\mathrm{CHB}=$ chronic hepatitis B virus infection; $\mathrm{LC}=$ liver cirrhosis

Supplementary Material

Figure S5. Comparison of apparent and .632+ adjusted receiver operating characteristics (ROC) curves for SCCA in discriminating: (a) HCC vs. CHB+LC+HC; (b) HCC vs. CHB+LC; (c) HCC vs CHB; (d) Early-stage HCC vs CHB+LC+HC; (e) Early-stage HCC vs CHB+LC; (f) Early-stage HCC vs LC.

Abbreviations: AUC=area under the curve. HCC=hepatocellular carcinoma; HC=healthy control; $\mathrm{CHB}=$ chronic hepatitis B virus infection; $\mathrm{LC}=$ liver cirrhosis

Supplementary Material

Figure S6. Comparison of apparent and .632+ adjusted receiver operating characteristics (ROC) curves for CENPF in discriminating: (a) HCC vs. CHB+LC+HC; (b) HCC vs. CHB+LC; (c) HCC vs CHB; (d) Early-stage HCC vs CHB+LC+HC; (e) Early-stage HCC vs CHB+LC; (f) Early-stage HCC vs LC.

Abbreviations: AUC=area under the curve. HCC=hepatocellular carcinoma;
$\mathrm{HC}=$ healthy control; $\mathrm{CHB}=$ chronic hepatitis B virus infection; $\mathrm{LC}=$ liver cirrhosis

Supplementary Material

Figure S7. Comparison of .632+ adjusted receiver operating characteristics curves of two prediction algorithms (AFP+DCP and AFP+DPC+age+sex) for discriminating: (a) HCC vs. CHB+LC+HC; (b) HCC vs. CHB+LC; (c) HCC vs CHB; (d) Early-stage HCC vs CHB+LC+HC; (e) Early-stage HCC vs CHB+LC; (f) Early-stage HCC vs LC

Abbreviations: AUC=area under the curve. HCC=hepatocellular carcinoma;
HC=healthy control; $\mathrm{CHB}=$ chronic hepatitis B virus infection; $\mathrm{LC}=$ liver cirrhosis

[^0]: Abbreviations: CHB , chronic hepatitis $\mathrm{B} ; \mathrm{HCC}$, hepatocellular carcinoma; LC, liver cirrohosis
 आ The algorithm was constructed using logistic regression model, the age was continuous variable in years and the sex was categorical variable (male=1, female=2).
 \$ The optimal probability was defined by threshold showing the highest Youden's index (i.e., sensitivity + speficity-1)
 ${ }^{\S}$ Apparent sensitivity/specificity without correction for potential overfitting at respective optimal probability (defined by the Youden's index)

