Supplementary materials

APPENDIX

Sampling of experimental linguistic constructions in affirmative and negative pattern Non-factive verbs

 (affirmative) O Pávlos prótine ston Táso na taksidépsi argótera. Pavlos proposed Tasos to travel later.
 Who might have traveled later?
 1a. Tasos (the Y)
 1b. Pavlos (the X)
 1c. I cannot decide who might have traveled later

(negative) Ο Pάvlos den prótine ston Tάso na taksidépsi argótera.
 Pavlos didn't propose Tasos to travel later.
 Who might have not traveled later?
 1a. Tasos (the Y)
 1b. Pavlos (the X)
 1c. I cannot decide who might have not traveled later

2 (affirmative) O Yórgos sinfónise me ton Miháli na alláksi to prógramma ton kalokerinón diakopón.

Yorgos proposed Mihalis to change the summer holiday schedule.

Who might have changed the schedule?

2a. Yorgos (the X)

2b. Mihalis (the Y)

2c. I cannot decide who might have changed the schedule

2 (negative) O Yórgos den sinfónise me ton Miháli na alláksi to prógramma ton kalokerinón diakopón.

Yorgos did not propose Mihalis to change the summer holiday schedule. Who might have not changed the schedule?

2a. Yorgos (the X)

2b. Mihalis (the Y)

2c. I cannot decide who might have not changed the schedule

3 (affirmative) O Stávros iposhéthike ston Alexi na agorási perissótera vivlía. Stavros promised Alexis to buy more books.

Who might have bought more books?

3a. Stavros (the X)

3b. Alexis (the Y)

3c. I cannot decide who might have bought more books

3 (negative) O Stávros den iposhéthike ston Alexi na agorási perissótera vivlía.
Stavros didn't promise Alexis to buy more books.
Who might have not bought more books?
3a. Alexis (the Y)
3b. Stavros (the X)
3c. I cannot decide who might have not bought more books

Factive verbs

1 (affirmative) I Chrisí thimíthike na apantísi éngera stin epistolí Chrisi remembered to answer the letter in time. Is it true that:

1a. the letter might have been answered in time

1b. the letter was not answered in time

1c. the letter was answered in time

1 (negative) I Chrisí den thimíthike na apantísi éngera stin epistolí Chrisi didn't remember to answer the letter in time.

Is it true that:

1a. the letter was not answered in time

1b. the letter might have been answered in time

1c. the letter was answered in time

2 (affirmative) O Kiriάkos lismónise na klidósi tin pórta tou spitioύ Kiriakos forgot to lock the door of the house.

Is it true that:

1a. the door of the house was locked

1b. the door of the house was not locked

1c. the door of the house might haven't been locked

2 (negative) Ο Kiriάkos den lismónise na klidósi tin pórta tou spitioύ Kiriakos didn't forget to lock the door of the house.

Is it true that:

1a. the door of the house was locked

1b. the door of the house might haven't been locked

1c. the door of the house was not locked

3 (affirmative) I Eléni gnórize óti i Lukía éfige norís to proí Helen knew that Lucia left early in the morning.

Is it true that:

1a. Lucia didn't leave early in the morning

1b. Lucia might have left early in the morning

1c. Lucia left early in the morning

3 (negative) I Eléni den gnórize óti i Lukía éfige norís to proí Helen didn't know that Lucia left early in the morning. Is it true that:

1a. Lucia might have left early in the morning

1b. Lucia didn't leave early in the morning

1c. Lucia left early in the morning

The stimuli of the SMVUT and the CMVUT in the pseudo-randomized order in which were presented to the participants.

1. Anthimos proposed Perikles to play basketball with the school team.

Who might have played basketball?

1a. Perikles

1b. Anthimos

1c.I cannot decide who might have played basketball

2. Lucia didn't know that Irene came back from holiday.

Is it true that:

2a. Irene didn't come back from holiday

2b. Irene might have come back from holiday

2c. Irene came back from holiday

3. Pavlos agreed with Christos to spend less money.

Who might have spent less money?

3a. Christos

3b.Pavlos

3c. I cannot decide who might have spent less money

4. Socrates didn't forget to return the books to the library in time. Is it true that:

4a. The books might have not been returned on time

4b. The books were not returned on time

4c. The books were returned on time

5. Stavros didn't promise Alexis to buy more books.

Who might have not bought more books?

5a. Stavros

5b. Alexis

5c. I cannot decide who might have not bought more books

6. Chrisi remembered to answer to the letter in time.

Is it true that:

6a. The letter was not answered in time

6b. The letter might have been answered in time

6c. The letter was answered in time

7. Yorgos didn't propose Mihalis to change the summer holiday schedule. Who might have not changed the schedule?

7a. Yorgos

7b. Mihalis

7c. I cannot decide who might have not changed the schedule

8. Kyriakos forgot to lock the door

Is it true that:

8a. The door was locked

8b. The door might have been locked

8c.The door was not locked

9. Mihalis promised Giannes to invite a lot of friends to the party.

Who might have invited a lot of friends?

9a. Giannes

9b. Mihalis

9c. I cannot decide who might have invited a lot of friends

10. Chrisanthi didn't remember to pay the installment of the loan.

Is it true that:

10a. The installment of the loan was paid

10b. The installment of the loan wasn't paid

10c. The installment of the loan might have been paid

11. Fotis didn't agree with Takis to be paid at the end of each week.

Who might have not been paid in the end of each week?

11a. Fotis

11b.Takis

11c. I cannot decide who might have not been paid in the end of each week

12. Maria didn't know that Georgia bought a lot of books.

Is it true that:

12a. Georgia might have bought a lot of books

12b. Georgia did not buy a lot of books

12c. Georgia bought a lot of books

13. Pavlos proposed Tasos to travel later.

Who might have traveled later?

13a. Tasos

13b. Pavlos

13c. I cannot decide who might have traveled later

14. Charis didn't forget to leash the dog.

Is it true that:

14a. The dog was not leashed

14b. The dog was leashed

14c. The dog might has been leashed

15. Kostas didn't promise Yorgos to drive the car.

Who might have not driven the car?

15a. Kostas

15b. Yorgos

15c. I cannot decide who might have not driven the car

16. Ioanna didn't remember to feed the dog in the morning. Is it true that:

16a. The dog might have been fed in the morning

16b. The dog was not fed in the morning

16c.The dog was fed in the morning

17. Dimos agreed with Basilis to work more time. Who might have worked more time?

17a. Basilis

17b. Dimos

17c. I cannot decide who might have worked more time

18. Eleni knew that Lucia left early in the morning. Is it true that:

18a. Lucia did not leave early in the morning

18b. Lucia might have left early in the morning 18c. Lucia left early in the morning

19. Grigoris didn't propose Petros to sell the old car.

Who might have not sold the old car?

19a. Grigoris

19b. Petros

19c. I cannot decide who might have not sold the old car

20. Antonis forgot to send wishes for his friend's birthday.

Is it true that:

20a. Antonis's friend might have received wishes

20b. Antonis's friend did not receive wishes

20c. Antonis's friend received wishes

21. Nikos promised Thanos to travel the next day.

Who might have traveled the next day?

21a. Thanos

21b. Nikos

21c. I cannot decide who might have traveled the next day

22. Fotini remembered to lend books to Eleftheria.

Is it true that:

22a. Eleftheria was lent books

22b. Eleftheria might have lent books

22c. Eleftheria was not lent books

23. Sotiris didn't agree with Andreas to visit the new museum.

Who might have not visited the new museum?

24a. Sotiris

24b. Andreas

24c. I cannot decide who might have not visited the new museum

24. Maria knew that Eleni travelled.

Is it true that:

24a. Eleni travelled

24b. Eleni did not travel

24c. Eleni might have travelled

SUPPLEMENTARY MATERIAL

One-factor solution vs. two-factor solution for the SMVUT model withour the old-old adult group

EQS, A STRUCTURAL EQUATION PROGRAM MULTIVARIATE SOFTWARE, INC. COPYRIGHT BY P.M. BENTLER

VERSION 6.1 (C) 1985 - 2005 (B85).

PROGRAM CONTROL INFORMATION

- 1 /TITLE
- 2 Model built by EQS 6 for Windows
- 3 /SPECIFICATIONS
- 4 DATA='c:\users\user\desktop\berlinverbswithoutoldest 1.ess';
- 5 VARIABLES=71; CASES=86;
- 6 METHOD=ML, ROBUST; ANALYSIS=COVARIANCE; MATRIX=RAW;
- 7 /LABELS
- 8 V1=CODE; V2=GENDER; V3=AGECAT; V4=AGE; V5=EDUC;
- 9 V6=XARA; V7=EKPLIXI; V8=OUDETERO; V9=LIPIMENO; V10=THUMOS;
- 10 V11=AGXOS; V12=AIDIA; V13=CORRECT; V14=RANGE; V15=PR1P;
- 11 V16=GN1N; V17=S1P; V18=L1N; V19=Y1N; V20=TH1P;
- 12 V21=P1N; V22=PR2N; V23=L2P; V24=Y2P; V25=TH2N;
- 13 V26=P2P; V27=S2N; V28=GN2N; V29=PR3P; V30=L3N;
- 14 V31=Y3N; V32=TH3N; V33=P3N; V34=S3P; V35=GN3P;
- 15 V36=PR4N; V37=L4P; V38=Y4P; V39=TH4P; V40=P4P;
- 16 V41=GN4P; V42=S4N; V43=PRP; V44=PRN; V45=SP;
- 17 V46=SN; V47=YP; V48=YN; V49=PP; V50=PN;
- 18 V51=PROTOTAL; V52=SYMFVNVT; V53=YPOSXOMA; V54=PISTEYVT; V55=SYNOLOPR;
- 19 V56=SYNOLOSY; V57=SYNOLOYP; V58=SYNOLOPI; V59=TASITDEC; V60=TOTALPOS;
- 20 V61=TOTALNEG; V62=FACTIVEP; V63=FACTIVEN; V64=TOTALNON; V65=TOTALFAC;
- 21 V66=GNORIZOP; V67=GNORIZON; V68=LISMOMOP; V69=LISMOMON; V70=THYMAMAI;
- 22 V71=V71 A;
- 23 /EOUATIONS
- $24 \quad V43 = 1F1 + E43;$
- $25 \quad V44 = *F1 + E44;$
- $26 \quad V45 = *F1 + E45;$
- $27 \quad V46 = *F1 + E46;$

 $28 \quad V47 = *F1 + E47;$ 29 V48 = *F1 + E48; 30 /VARIANCES 31 F1 = *; 32 E43 = *; 33 E44 = *; 34 E45 = *; 35 E46 = *; 36 E47 = *; 37 E48 = *; 38 /COVARIANCES 39 E45, E43 = *;40 /PRINT 41 FIT=ALL; 42 TABLE=EQUATION; 43 /LMTEST 44 PROCESS=SIMULTANEOUS; 45 SET=PVV, PFV, PFF, PDD, GVV, GVF, GFV, GFF, 46 BVF, BFF; 47 /WTEST 48 PVAL=0.05; 49 PRIORITY=ZERO;

50 /END

50 RECORDS OF INPUT MODEL FILE WERE READ

DATA IS READ FROM c:\user\user\desktop\berlinverbswithoutoldest_1.ess THERE ARE 71 VARIABLES AND 86 CASES IT IS A RAW DATA ESS FILE

02-Aug-18 PAGE : 2 EQS Licensee: TITLE: Model built by EQS 6 for Windows

SAMPLE STATISTICS BASED ON COMPLETE CASES

UNIVARIATE STATISTICS

VARIABLE	PRP V43	PRN V44	SP V45	SN V46	YP V47
MEAN	.3372	.5814	.5116	.7093	.1860
SKEWNESS (G1)	1.5348	.8950	.9669	.5732	2.3693
KURTOSIS (G2)	1.2998	8511	2899	-1.2272	5.0148
STANDARD DEV.	.5863	.8039	.6816	.8097	.4475

VARIABLE	YN V48
MEAN	.5581
SKEWNESS (G1)	.8429
KURTOSIS (G2)	5213
STANDARD DEV.	.6963

MULTIVARIATE KURTOSIS

MARDIA'S COEFFICIENT (G2,P) = 14.8015 NORMALIZED ESTIMATE = 7.0047

BONETT-WOODWARD-RANDALL TEST SHOWS SIGNIFICANT EXCESS KURTOSIS INDICATIVE OF NON-NORMALITY AT A ONE-TAIL .05 LEVEL.

ELLIPTICAL THEORY KURTOSIS ESTIMATES

MARDIA-BASED KAPPA = .3084 MEAN SCALED UNIVARIATE KURTOSIS = .1903

MARDIA-BASED KAPPA IS USED IN COMPUTATION. KAPPA= .3084

CASE NUMBERS WITH LARGEST CONTRIBUTION TO NORMALIZED MULTIVARIATE KURTOSIS:

CASE NUMBER	BER 6		26	34	43
ESTIMATE	93.5890	182.5853	135.7264	139.2267	270.4189

02-Aug-18 PAGE : 3 EQS Licensee: TITLE: Model built by EQS 6 for Windows

COVARIANCE MATRIX TO BE ANALYZED: 6 VARIABLES (SELECTED FROM 71 VARIABLES) BASED ON 86 CASES.

		PRP	PRN	SP	SN	ΥP
		V43	V44	V45	V46	V47
PRP	V43	.344				
PRN	V44	.237	.646			
SP	V45	.249	.217	.465		
SN	V46	.229	.395	.315	.656	
ΥP	V47	.078	.091	.092	.184	.200
YN	V48	.174	.283	.170	.270	.107

		YN
		V48
YN	V48	.485

BENTLER-WEEKS STRUCTURAL REPRESENTATION:

```
NUMBER OF DEPENDENT VARIABLES = 6

DEPENDENT V'S : 43 44 45 46 47 48

NUMBER OF INDEPENDENT VARIABLES = 7

INDEPENDENT F'S : 1

INDEPENDENT E'S : 43 44 45 46 47 48

NUMBER OF FREE PARAMETERS = 13

NUMBER OF FIXED NONZERO PARAMETERS = 7
```

*** WARNING MESSAGES ABOVE, IF ANY, REFER TO THE MODEL PROVIDED.

CALCULATIONS FOR INDEPENDENCE MODEL NOW BEGIN.

*** WARNING MESSAGES ABOVE, IF ANY, REFER TO INDEPENDENCE MODEL. CALCULATIONS FOR USER'S MODEL NOW BEGIN.

3RD STAGE OF COMPUTATION REQUIRED8393 WORDS OF MEMORY.PROGRAM ALLOCATED2000000 WORDS

DETERMINANT OF INPUT MATRIX IS .71446D-03

PARAMETER ESTIMATES APPEAR IN ORDER, NO SPECIAL PROBLEMS WERE ENCOUNTERED DURING OPTIMIZATION.

RESIDUAL COVARIANCE MATRIX (S-SIGMA) :

		PRP	PRN	SP	SN	ΥP
		V43	V44	V45	V46	V47
PRP	V43	.000				
PRN	V44	.033	.000			
SP	V45	.000	026	.000		
SN	V46	020	.001	.020	.000	
ΥP	V47	007	043	008	.022	.000
YN	V48	.021	.041	012	025	.007

YN V48 .000

YN V48

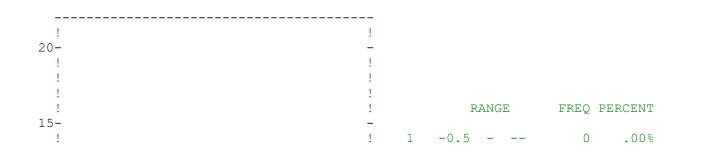
AVERAGE	ABSOLUTE	COVARIANCE	RESIDUALS	=	.0136
AVERAGE OFF-DIAGONAL	ABSOLUTE	COVARIANCE	RESIDUALS	=	.0190

STANDARDIZED RESIDUAL MATRIX:

		PRP	PRN	SP	SN	YP
		V43	V44	V45	V46	V47
PRP	V43	.000				
PRN	V44	.069	.000			
SP	V45	.000	048	.000		
SN	V46	042	.001	.036	.000	
ΥP	V47	025	120	027	.059	.000
YN	V48	.053	.074	025	044	.021

		YN
		V48
YN	V48	.000

AVERAGE	ABSOLUTE	STANDARDIZED	RESIDUALS	=	.0307
AVERAGE OFF-DIAGONAL	ABSOLUTE	STANDARDIZED	RESIDUALS	=	.0429


02-Aug-18 PAGE: 4 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

LARGEST STANDARDIZED RESIDUALS:

NO.	PARAMETER	ESTIMATE	NO.	PARAMETER	ESTIMATE
1	V47, V44	120	11	V47, V43	025
2	V48, V44	.074	12	V48, V45	025
3	V44, V43	.069	13	V48, V47	.021
4	V47, V46	.059	14	V46, V44	.001
5	V48, V43	.053	15	V46, V46	.000
6	V45, V44	048	16	V45, V45	.000
7	V48, V46	044	17	V47, V47	.000
8	V46, V43	042	18	V45, V43	.000
9	V46, V45	.036	19	V44, V44	.000
10	V47, V45	027	20	V48, V48	.000

DISTRIBUTION OF STANDARDIZED RESIDUALS

1							*						1	2	-0.4	_	-0.5	0	.00%
1							*						1	3	-0.3	-	-0.4	0	.00%
1							*						1	4	-0.2	-	-0.3	0	.00%
10-							*						-	5	-0.1	-	-0.2	1	4.76%
1							*						1	6	0.0	-	-0.1	7	33.33%
1							*						!	7	0.1	-	0.0	13	61.90%
1						*	*						1	8	0.2	-	0.1	0	.00%
1						*	*						1	9	0.3	-	0.2	0	.00%
5-						*	*						-	А	0.4	-	0.3	0	.00%
1						*	*						1	В	0.5	-	0.4	0	.00%
1						*	*						1	С	++	-	0.5	0	.00%
1						*	*						1						
1					*	*	*						!		Г	OTA	L	21	100.00%
		2		4		6				 A	в	C		EACH	"*" F	REPR	ESENTS	1 RE	SIDUALS
	_	_	-	-	-	-		-	-		_				-				

02-Aug-18 PAGE : 5 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

```
GOODNESS OF FIT SUMMARY FOR METHOD = ML
INDEPENDENCE MODEL CHI-SOUARE = 188.602 ON 15 DEGREES OF FREEDOM
INDEPENDENCE AIC = 158.60167 INDEPENDENCE CAIC = 106.78646
     MODEL AIC = -1.07129 MODEL CAIC = -28.70607
CHI-SQUARE = 14.929 BASED ON 8 DEGREES OF FREEDOM
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .06055
THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS 14.422.
FIT INDICES
_____
BENTLER-BONETT NORMED FIT INDEX = .921
BENTLER-BONETT NON-NORMED FIT INDEX =
                                 .925
COMPARATIVE FIT INDEX (CFI)
                          =
                                 .960
BOLLEN (IFI) FIT INDEX
                                 .962
                          =
MCDONALD (MFI) FIT INDEX
                                 .961
                           =
                                 .946
LISREL GFI FIT INDEX
                           =
LISREL AGFI FIT INDEX
                          =
                                  .859
ROOT MEAN-SQUARE RESIDUAL (RMR) =
                                  .019
                          =
                                  .044
STANDARDIZED RMR
ROOT MEAN-SQUARE ERROR OF APPROXIMATION (RMSEA) = .101
```

RELIABILITY COEFFICIENTS

= .826 CRONBACH'S ALPHA = .827 COEFFICIENT ALPHA FOR AN OPTIMAL SHORT SCALE BASED ON 5 VARIABLES, ALL EXCEPT: ΥP RELIABILITY COEFFICIENT RHO = .835 GREATEST LOWER BOUND RELIABILITY .903 = GLB RELIABILITY FOR AN OPTIMAL SHORT SCALE = .903 BASED ON ALL VARIABLES .902 BENTLER'S DIMENSION-FREE LOWER BOUND RELIABILITY = SHAPIRO'S LOWER BOUND RELIABILITY FOR A WEIGHTED COMPOSITE = .910 WEIGHTS THAT ACHIEVE SHAPIRO'S LOWER BOUND: PRP PRN SP SN YP YN .374 .476 .435 .541 .263 .289 MAXIMAL INTERNAL CONSISTENCY RELIABILITY = .856 MAXIMAL RELIABILITY CAN BE OBTAINED BY WEIGHTING THE VARIABLES AS FOLLOWS: PRP PRN SP SN YP YN .685 .725 .621 1.607 .665 .575 GOODNESS OF FIT SUMMARY FOR METHOD = ROBUST ROBUST INDEPENDENCE MODEL CHI-SQUARE = 138.134 ON 15 DEGREES OF FREEDOM INDEPENDENCE AIC = 108.13366 INDEPENDENCE CAIC = 56.31845 MODEL AIC = -6.48314 MODEL CAIC = -34.11792SATORRA-BENTLER SCALED CHI-SQUARE = 9.5169 ON 8 DEGREES OF FREEDOM .30059 PROBABILITY VALUE FOR THE CHI-SOUARE STATISTIC IS RESIDUAL-BASED TEST STATISTIC = 8.313 PROBABILITY VALUE FOR THE CHI-SOUARE STATISTIC IS .40353 YUAN-BENTLER RESIDUAL-BASED TEST STATISTIC = 7.580 PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .47553

YUAN-BENTLER RESIDUAL-BASED F-STATISTIC	=	.954	
DEGREES OF FREEDOM =	8	, 78	
PROBABILITY VALUE FOR THE F-STATISTIC IS		.47834	
FIT INDICES			
BENTLER-BONETT NORMED FIT INDEX =	.931		
BENTLER-BONETT NON-NORMED FIT INDEX =	.977		
COMPARATIVE FIT INDEX (CFI) =	.988		
BOLLEN (IFI) FIT INDEX =	.988		
MCDONALD (MFI) FIT INDEX =	.991		
ROOT MEAN-SQUARE ERROR OF APPROXIMATION	(RMSEA)	= .04	17
90% CONFIDENCE INTERVAL OF RMSEA (.000,	.140)	

ITERATIVE SUMMARY

	PARAMETER		
ITERATION	ABS CHANGE	ALPHA	FUNCTION
1	.174662	1.00000	.41802
2	.134222	1.00000	.19287
3	.014803	1.00000	.17697
4	.008350	1.00000	.17588
5	.003853	1.00000	.17568
6	.001572	1.00000	.17564
7	.000745	1.00000	.17563

02-Aug-18 PAGE: 6 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @. (ROBUST STATISTICS IN PARENTHESES)

PRP =V43 = 1.000 F1 +1.000 E43

PRN	=V44	(1.586*F1 .315 5.0350 .311) 5.1060	+1.000	E44
SP	=V45	(1.190*F1 .199 5.968@ .217) 5.476@	+1.000	E45
SN	=V46	(1.928*F1 .352 5.477@ .366) 5.264@	+1.000	E46

- YP =V47 = .654*F1 +1.000 E47 .163 4.023@ (.219) (2.991@ YN =V48 = 1.186*F1 +1.000 E48 .262 4.533@ (.283)
 - (4.1890

02-Aug-18 PAGE: 7 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

VARIANCES OF INDEPENDENT VARIABLES

STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

V			F	
	I F1 -	F1		.129*I
	I			.045 I
	I			2.872@I
	I			(.048)I
	I			(2.6880I
	I			I

02-Aug-18 PAGE: 8 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

VARIANCES OF INDEPENDENT VARIABLES

STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

	E		D	
E43 - F		.215*I	 I	г
±10 1		.037 I	I	
		5.7330I	I	
	(.044)I	I	
		4.8560I	I	
	(I	I	
E44 - F	PRN	.322*I	I	
		.062 I	I	
		5.2320I	I	
	(.069) I	I	
		4.65501	I	
	(I	I	
E45 - S	3P	.282*1	I	
		.050 I	I	
		5.677@I	I	
	(.052) I	I	
		5.42701	I	
	Υ.	I	I	
E46 - S	SN	.177*I	I	
210 2		.055 I	I	
		3.20901	I	
	(.064)I	I	
		2.74501	I	
	(I	I	
E47 - Y	ΎР	.145*I	I	

	.024 I	I	
	6.061@I	I	
(.034)I	I	
(4.290@I	I	
	I	I	
	.304*I	I	
	.052 I	I	
	5.786@I	I	
(.055)I	I	
(5.512@I	I	
	I	I	

E48 - YN

02-Aug-18 PAGE: 9 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

COVARIANCES AMONG INDEPENDENT VARIABLES

STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

		E	D	
E45 -	SP	.096*I		I
E43 -	PRP	.034 I		I
		2.83201		I
		(.031)I		I
		(3.1060I		I
		I		I

02-Aug-18 PAGE : 10 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

STANDARDIZED SOLUTION:

R-SQUARED

PRP	=V43 =	.612 F1	+ .791 E43	.375
PRN	=V44 =	.708*F1	+ .706 E44	.501
SP	=V45 =	.626*F1	+ .779 E45	.392
SN	=V46 =	.855*F1	+ .519 E46	.730
ΥP	=V47 =	.525*F1	+ .851 E47	.276
YN	=V48 =	.611*F1	+ .791 E48	.374

02-Aug-18 PAGE : 11 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

CORRELATIONS AMONG INDEPENDENT VARIABLES

	E 	D
E45 - E43 -	.389*I I	I
	I	I

E	N D	O F	МЕТНО D

EQS, A STRUCTURAL EQUATION PROGRAM MULTIVARIATE SOFTWARE, INC. COPYRIGHT BY P.M. BENTLER VERSION 6.1 (C) 1985 - 2005 COPYRIGHT BY P.M. BENTLER

VERSION 6.1 (C) 1985 - 2005 (B85).

PROGRAM CONTROL INFORMATION

1 /TITLE

- 2 Model built by EQS 6 for Windows 3 /SPECIFICATIONS 4 DATA='c:\users\user\desktop\berlinverbswithoutoldest 1.ess'; 5 VARIABLES=71; CASES=86; 6 METHOD=ML, ROBUST; ANALYSIS=COVARIANCE; MATRIX=RAW; 7 /LABELS 8 V1=CODE; V2=GENDER; V3=AGECAT; V4=AGE; V5=EDUC; 9 V6=XARA; V7=EKPLIXI; V8=OUDETERO; V9=LIPIMENO; V10=THUMOS; 10 V11=AGXOS; V12=AIDIA; V13=CORRECT; V14=RANGE; V15=PR1P; 11 V16=GN1N; V17=S1P; V18=L1N; V19=Y1N; V20=TH1P; 12 V21=P1N; V22=PR2N; V23=L2P; V24=Y2P; V25=TH2N; 13 V26=P2P; V27=S2N; V28=GN2N; V29=PR3P; V30=L3N; 14 V31=Y3N; V32=TH3N; V33=P3N; V34=S3P; V35=GN3P; 15 V36=PR4N; V37=L4P; V38=Y4P; V39=TH4P; V40=P4P; 16 V41=GN4P; V42=S4N; V43=PRP; V44=PRN; V45=SP; 17 V46=SN; V47=YP; V48=YN; V49=PP; V50=PN; 18 V51=PROTOTAL; V52=SYMFVNVT; V53=YPOSXOMA; V54=PISTEYVT; V55=SYNOLOPR; 19 V56=SYNOLOSY; V57=SYNOLOYP; V58=SYNOLOPI; V59=TASITDEC; V60=TOTALPOS; 20 V61=TOTALNEG; V62=FACTIVEP; V63=FACTIVEN; V64=TOTALNON; V65=TOTALFAC; 21 V66=GNORIZOP; V67=GNORIZON; V68=LISMOMOP; V69=LISMOMON; V70=THYMAMAI; 22 V71=V71 A; 23 /EOUATIONS $24 \quad V43 = 1F1 + E43;$ $25 \quad V44 = 1F2 + E44;$ $26 \quad V45 = *F1 + E45;$ $27 \quad V46 = *F2 + E46;$ $28 \quad V47 = *F1 + E47;$ $29 \quad V48 = *F2 + E48;$
- 30 /VARIANCES

- 31 F1 = *;
- 32 F2 = *;
- 33 E43 = *;
- $34 \quad E44 = *;$
- 35 E45 = *;
- $36 \quad E46 = *;$
- $37 \quad E47 = *;$
- 38 E48 = *;
- 39 /COVARIANCES
- 40 F2,F1 = *;
- 41 E45,E43 = *;
- 42 /PRINT
- 43 FIT=ALL;
- 44 TABLE=EQUATION;
- 45 /LMTEST
- 46 PROCESS=SIMULTANEOUS;
- 47 SET=PVV, PFV, PFF, PDD, GVV, GVF, GFV, GFF,
- 48 BVF, BFF;
- 49 /WTEST
- 50 PVAL=0.05;
- 51 PRIORITY=ZERO;
- 52 /END

52 RECORDS OF INPUT MODEL FILE WERE READ

DATA IS READ FROM c:\user\desktop\berlinverbswithoutoldest_1.ess THERE ARE 71 VARIABLES AND 86 CASES IT IS A RAW DATA ESS FILE

02-Aug-18 PAGE : 2 EQS Licensee: TITLE: Model built by EQS 6 for Windows

SAMPLE STATISTICS BASED ON COMPLETE CASES

UNIVARIATE STATISTICS

VARIABLE	PRP V43	PRN V44	SP V45	SN V46	YP V47
MEAN	.3372	.5814	.5116	.7093	.1860
SKEWNESS (G1)	1.5348	.8950	.9669	.5732	2.3693
KURTOSIS (G2)	1.2998	8511	2899	-1.2272	5.0148
STANDARD DEV.	.5863	.8039	.6816	.8097	.4475

VARIABLE	YN V48
MEAN	.5581
SKEWNESS (G1)	.8429
KURTOSIS (G2)	5213
STANDARD DEV.	.6963

MULTIVARIATE KURTOSIS

MARDIA'S COEFFICIENT (G2,P) = 14.8015 NORMALIZED ESTIMATE = 7.0047

BONETT-WOODWARD-RANDALL TEST SHOWS SIGNIFICANT EXCESS KURTOSIS INDICATIVE OF NON-NORMALITY AT A ONE-TAIL .05 LEVEL.

ELLIPTICAL THEORY KURTOSIS ESTIMATES

MARDIA-BASED KAPPA = .3084 MEAN SCALED UNIVARIATE KURTOSIS = .1903

MARDIA-BASED KAPPA IS USED IN COMPUTATION. KAPPA= .3084

CASE NUMBERS WITH LARGEST CONTRIBUTION TO NORMALIZED MULTIVARIATE KURTOSIS:

CASE NUMBER	6	15	26	34	43
ESTIMATE	93.5890	182.5853	135.7264	139.2267	270.4189

02-Aug-18 PAGE : 3 EQS Licensee: TITLE: Model built by EQS 6 for Windows

COVARIANCE MATRIX TO BE ANALYZED: 6 VARIABLES (SELECTED FROM 71 VARIABLES) BASED ON 86 CASES.

		PRP	PRN	SP	SN	ΥP
		V43	V44	V45	V46	V47
PRP	V43	.344				
PRN	V44	.237	.646			
SP	V45	.249	.217	.465		
SN	V46	.229	.395	.315	.656	
ΥP	V47	.078	.091	.092	.184	.200
YN	V48	.174	.283	.170	.270	.107

		YN
		V48
YN	V48	.485

BENTLER-WEEKS STRUCTURAL REPRESENTATION:

```
NUMBER OF DEPENDENT VARIABLES = 6

DEPENDENT V'S : 43 44 45 46 47 48

NUMBER OF INDEPENDENT VARIABLES = 8

INDEPENDENT F'S : 1 2

INDEPENDENT E'S : 43 44 45 46 47 48

NUMBER OF FREE PARAMETERS = 14

NUMBER OF FIXED NONZERO PARAMETERS = 8
```

*** WARNING MESSAGES ABOVE, IF ANY, REFER TO THE MODEL PROVIDED.

CALCULATIONS FOR INDEPENDENCE MODEL NOW BEGIN.

*** WARNING MESSAGES ABOVE, IF ANY, REFER TO INDEPENDENCE MODEL. CALCULATIONS FOR USER'S MODEL NOW BEGIN.

3RD STAGE OF COMPUTATION REQUIRED8625 WORDS OF MEMORY.PROGRAM ALLOCATED2000000 WORDS

DETERMINANT OF INPUT MATRIX IS .71446D-03

IN ITERATION # 1, MATRIX W_CFUNCT MAY NOT BE POSITIVE DEFINITE. YOU HAVE BAD START VALUES TO BEGIN WITH. IF ABOVE MESSAGE APPEARS ON EVERY ITERATION, PLEASE PROVIDE BETTER START VALUES AND RE-RUN THE JOB.

PARAMETER ESTIMATES APPEAR IN ORDER, NO SPECIAL PROBLEMS WERE ENCOUNTERED DURING OPTIMIZATION.

RESIDUAL COVARIANCE MATRIX (S-SIGMA) :

		PRP	PRN	SP	SN	ΥP
		V43	V44	V45	V46	V47
PRP	V43	.000				
PRN	V44	.032	.000			
SP	V45	.000	027	.000		
SN	V46	022	.004	.017	.000	
ΥP	V47	.000	045	.000	.018	.000
YN	V48	.020	.043	013	024	.005

		YN
		V48
YN	V48	.000

	AVERAGE	ABSOLUTE	COVARIANCE	RESIDUALS	=	.0129
AVERAGE	OFF-DIAGONAL	ABSOLUTE	COVARIANCE	RESIDUALS	=	.0181

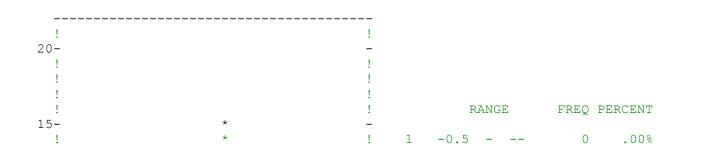
STANDARDIZED RESIDUAL MATRIX:

		PRP	PRN	SP	SN	ΥP
		V43	V44	V45	V46	V47
PRP	V43	.000				
PRN	V44	.068	.000			
SP	V45	.000	049	.000		
SN	V46	046	.006	.031	.000	
ΥP	V47	.001	125	001	.051	.000
YN	V48	.049	.077	028	043	.015

YN V48 .000

YN V48

	AVERAGE	ABSOLUTE	STANDARDIZED	RESIDUALS	=	.0281
AVERAGE	OFF-DIAGONAL	ABSOLUTE	STANDARDIZED	RESIDUALS	=	.0394


02-Aug-18 PAGE: 4 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

LARGEST STANDARDIZED RESIDUALS:

NO.	PARAMETER	ESTIMATE	NO.	PARAMETER	ESTIMATE
1	V47, V44	125	11	V48, V47	.015
2	V48, V44	.077	12	V46, V44	.006
3	V44, V43	.068	13	V47, V43	.001
4	V47, V46	.051	14	V47, V45	001
5	V48, V43	.049	15	V46, V46	.000
6	V45, V44	049	16	V48, V48	.000
7	V46, V43	046	17	V47, V47	.000
8	V48, V46	043	18	V45, V45	.000
9	V46, V45	.031	19	V45, V43	.000
10	V48, V45	028	20	V44, V44	.000

DISTRIBUTION OF STANDARDIZED RESIDUALS

!							*						1	2	-0.4	_	-0.5	0	.00%
!							*						1	3	-0.3	-	-0.4	0	.00%
1							*						1	4	-0.2	-	-0.3	0	.00%
10-							*						-	5	-0.1	-	-0.2	1	4.76%
1							*						1	6	0.0	-	-0.1	5	23.81%
1							*						1	7	0.1	-	0.0	15	71.43%
1							*						1	8	0.2	-	0.1	0	.00%
!							*						1	9	0.3	-	0.2	0	.00%
5-						*	*						-	A	0.4	-	0.3	0	.00%
!						*	*						1	В	0.5	-	0.4	0	.00%
!						*	*						1	С	++	-	0.5	0	.00%
1						*	*						!						
1					*	*	*						!		Г	OTA	L	21	100.00%
	1	2	3	4	5	6	7	8	9	Α	В	С		EACH	"*" F	REPR	ESENTS	1 RE	SIDUALS

02-Aug-18 PAGE : 5 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

GOODNESS OF FIT SUMMARY FOR METHOD = ML INDEPENDENCE MODEL CHI-SOUARE = 188.602 ON 15 DEGREES OF FREEDOM INDEPENDENCE AIC = 158.60167 INDEPENDENCE CAIC = 106.78646 MODEL AIC = .66023 MODEL CAIC = -23.52020 CHI-SQUARE = 14.660 BASED ON 7 DEGREES OF FREEDOM PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .04061 THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS 14.070. FIT INDICES _____ BENTLER-BONETT NORMED FIT INDEX = .922 BENTLER-BONETT NON-NORMED FIT INDEX = .905 COMPARATIVE FIT INDEX (CFI) = .956 BOLLEN (IFI) FIT INDEX .958 = MCDONALD (MFI) FIT INDEX .956 = LISREL GFI FIT INDEX = .948 LISREL AGFI FIT INDEX = .843 ROOT MEAN-SQUARE RESIDUAL (RMR) = .019 = .043 STANDARDIZED RMR ROOT MEAN-SQUARE ERROR OF APPROXIMATION (RMSEA) = .113 .194) 90% CONFIDENCE INTERVAL OF RMSEA (.022,

RELIABILITY COEFFICIENTS

CRONBACH'S	ALPHA		=	.826			
COEFFICIEN	T ALPHA FOR	R AN OPTIM	AL SHORT S	CALE		=	.827
BASED ON	5 VARIABLES	S, ALL EXC	EPT:				
YP							
RELIABILIT	Y COEFFICIE	ENT RHO	=	.810			
GREATEST L	OWER BOUND	RELIABILI	ТҮ			=	.903
GLB RELIABILITY FOR AN OPTIMAL SHORT SCALE						=	.903
BASED ON A	LL VARIABLE	ES					
BENTLER'S	DIMENSION-H	FREE LOWER	BOUND REL	IABILITY		=	.902
SHAPIRO'S	LOWER BOUNI) RELIABIL	ITY FOR A	WEIGHTED	COMPOSITE	=	.910
WEIGHTS TH	AT ACHIEVE	SHAPIRO'S	LOWER BOU	ND:			
PRP	PRN	SP	SN	YP	YN		
.374	.476	.435	.541	.263	.289		

GOODNESS OF FIT SUMMARY FOR METHOD = ROBUST ROBUST INDEPENDENCE MODEL CHI-SQUARE = 138.134 ON 15 DEGREES OF FREEDOM INDEPENDENCE AIC = 108.13366 INDEPENDENCE CAIC = 56.31845 MODEL AIC = -4.49022 MODEL CAIC = -28.67065 SATORRA-BENTLER SCALED CHI-SQUARE = 9.5098 ON 7 DEGREES OF FREEDOM PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .21810 RESIDUAL-BASED TEST STATISTIC = 8.259 PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .31034 YUAN-BENTLER RESIDUAL-BASED TEST STATISTIC IS .37537 YUAN-BENTLER RESIDUAL-BASED F-STATISTIC = 1.097 DEGREES OF FREEDOM = 7, 79 PROBABILITY VALUE FOR THE F-STATISTIC IS .37364 FIT INDICES

BENTLER-BONETT NORMED FIT IN	NDEX =	.931		
BENTLER-BONETT NON-NORMED FIT IN	NDEX =	.956		
COMPARATIVE FIT INDEX (CFI)	=	.980		
BOLLEN (IFI) FIT INDEX	=	.981		
MCDONALD (MFI) FIT INDEX	=	.986		
ROOT MEAN-SQUARE ERROR OF APPROX	XIMATION	(RMSEA)	=	.065
90% CONFIDENCE INTERVAL OF RMSEA	A (.000,		.157)

ITERATIVE SUMMARY

	PARAMETER		
ITERATION	ABS CHANGE	ALPHA	FUNCTION
1	.183329	.50000	1.19757
2	.252677	1.00000	.78416
3	.089912	1.00000	.44955
4	.139772	.50000	.25848
5	.043356	1.00000	.18037
6	.019545	1.00000	.17383
7	.006617	1.00000	.17273
8	.003017	1.00000	.17252
9	.001513	1.00000	.17248
10	.000646	1.00000	.17247

02-Aug-18 PAGE : 6 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @. (ROBUST STATISTICS IN PARENTHESES)

PRP =V43 = 1.000 F1 +1.000 E43

PRN =V44 = 1.000 F2 +1.000 E44

SP =V45 = 1.190*F1 +1.000 E45 .199 5.9810 (.214) (5.5690

SN =V46 = 1.224*F2 +1.000 E46 .190 6.449@ (.181) (6.747@

- YP =V47 = .662*F1 +1.000 E47 .166 3.992@ (.218) (3.034@ YN =V48 = .753*F2 +1.000 E48 .149 5.036@ (.146)
 - (5.1640

02-Aug-18 PAGE: 7 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

VARIANCES OF INDEPENDENT VARIABLES

V				F	
	1		-1		110
	I F1	-	F1		.117*I
	I				.048 I
	I				2.4410I
	I				(.046)I
	I				(2.523@I
	I				I
	I F2	-	F2		.319*I
	I				.093 I
	I				3.444@I
	I				(.081)I
	I				(3.941@I
	I				I

02-Aug-18 PAGE: 8 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

VARIANCES OF INDEPENDENT VARIABLES

	E	D
E43 - PR		I
	.044 I	I
	5.14801	I
	(.059)I	I
	(3.812@I	I
	I	I
E44 - PR		I
	.062 I	I
	5.304@I	I
	(.069)I	I
	(4.711@I	I
	I	I
E45 - SP		I
	.060 I	I
	5.01601	I
	(.070)I	I
	(4.287@I	I
	I	I
E46 - SN		I
	.055 I	I
	3.207@I	I
	(.069)I	I
	(2.590@I	I
	I	I

E47 -	YP	.149*I	I
		.026 I	I
	5	.8230I	I
	(.038)I	I
	(3	.9010I	I
		I	I
E48 -	YN	.304*I	I
		.052 I	I
	5	.80401	I
	(.055)I	I
	(5	.5490I	I
		I	I

02-Aug-18 PAGE: 9 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

COVARIANCES AMONG INDEPENDENT VARIABLES

V				F	
	I F2	-	F2		.205*I
	I F1	-	F1		.051 I
	I				3.9880I
	I				(.053)I
	I				(3.8830I
	I				I

02-Aug-18 PAGE : 10 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

COVARIANCES AMONG INDEPENDENT VARIABLES

		E	D	
E45 -	SP	.110*I	I	
E43 -	PRP	.044 I	I	
		2.503@I	I	
		(.053)I	I	
		(2.084@I	I	
		I	I	

02-Aug-18 PAGE : 11 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

STANDARDIZED SOLUTION:

R-SQUARED

PRP	=V43 =	.584 F1	+ .812 E43	.341
PRN	=V44 =	.703 F2	+ .711 E44	.494
SP	=V45 =	.598*F1	+ .802 E45	.357
SN	=V46 =	.854*F2	+ .520 E46	.729
ΥP	=V47 =	.506*F1	+ .863 E47	.256
YN	=V48 =	.611*F2	+ .792 E48	.373

02-Aug-18 PAGE : 12 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

CORRELATIONS AMONG INDEPENDENT VARIABLES

V

			F	
II	F2 -	F2		1.059*I
II	F1 -	F1		I
I				I

02-Aug-18 PAGE : 13 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

CORRELATIONS AMONG INDEPENDENT VARIABLES

		E		D	
E45 -	SP		421*I		I
E43 -			I		I
			I		I

E	N D	O F	МЕТНОД

02-Aug-18 PAGE : 14 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

WALD TEST (FOR DROPPING PARAMETERS) ROBUST INFORMATION MATRIX USED IN THIS WALD TEST MULTIVARIATE WALD TEST BY SIMULTANEOUS PROCESS

	CUMULATIVE	MULTIVARIAT	E STAT	ISTICS	UNIVARIATE	INCREMENT
STEP	PARAMETER	CHI-SQUARE	D.F.	PROBABILITY	CHI-SQUARE	PROBABILITY

NONE OF THE FREE PARAMETERS IS DROPPED IN THIS PROCESS.

02-Aug-18 PAGE : 15 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

LAGRANGE MULTIPLIER TEST (FOR ADDING PARAMETERS)

ORDERED UNIVARIATE TEST STATISTICS:

						HANCOCK		STANDAR-
				CHI-		7 DF	PARAMETER	DIZED
NO	CC	DE	PARAMETER	SQUARE	PROB.	PROB.	CHANGE	CHANGE
1	2	12	V44,F1	3.191	.074	.867	4.183	15.206
2	2	12	V46,F1	2.511	.113	.926	-5.012	-18.089
3	2	12	V48,F1	.131	.717	1.000	659	-2.768
4	2	12	V45,F2	.001	.979	1.000	047	121
5	2	12	V43,F2	.001	.979	1.000	.039	.118
6	2	12	V47,F2	.000	1.000	1.000	.000	.000
7	2	0	V43,F1	.000	1.000	1.000	.000	.000
8	2	0	V44,F2	.000	1.000	1.000	.000	.000

**** NONE OF THE UNIVARIATE LAGRANGE MULTIPLIERS IS SIGNIFICANT, **** THE MULTIVARIATE TEST PROCEDURE WILL NOT BE EXECUTED.

LAGRANGIAN MULTIPLIER TEST REQUIRED 3363 WORDS OF MEMORY. PROGRAM ALLOCATES 2000000 WORDS. 1 Execution begins at 02:52:21 Execution ends at 02:52:21 Elapsed time = .00 seconds 02-Aug-18 PAGE : 12 EQS Licensee: TITLE: Model built by EQS 6 for Windows MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

WALD TEST (FOR DROPPING PARAMETERS) ROBUST INFORMATION MATRIX USED IN THIS WALD TEST MULTIVARIATE WALD TEST BY SIMULTANEOUS PROCESS

	CUMULATIVE	MULTIVARIAT	E STAT	ISTICS	UNIVARIATE	INCREMENT
STEP	PARAMETER	CHI-SQUARE	D.F.	PROBABILITY	CHI-SQUARE	PROBABILITY

NONE OF THE FREE PARAMETERS IS DROPPED IN THIS PROCESS.

02-Aug-18 PAGE : 13 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

LAGRANGE MULTIPLIER TEST (FOR ADDING PARAMETERS)

ORDERED UNIVARIATE TEST STATISTICS:

					HANCOCK		STANDAR-
			CHI-		8 DF	PARAMETER	DIZED
NO	CODE	PARAMETER	SQUARE	PROB.	PROB.	CHANGE	CHANGE
1	2 0	V43,F1	.000	1.000	.000	.000	.000

**** NONE OF THE UNIVARIATE LAGRANGE MULTIPLIERS IS SIGNIFICANT, **** THE MULTIVARIATE TEST PROCEDURE WILL NOT BE EXECUTED.

LAGRANGIAN MULTIPLIER TEST REQUIRED 2740 WORDS OF MEMORY. PROGRAM ALLOCATES 2000000 WORDS. 1 Execution begins at 02:47:35 Execution ends at 02:47:35 Elapsed time = .00 seconds

Exact age (in years) effects on latent factor and its indicators (non-significant)

EQS, A STRUCTURAL EQUATION PROGRAM MULTIVARIATE SOFTWARE, INC. COPYRIGHT BY P.M. BENTLER

VERSION 6.1 (C) 1985 - 2005 (B85).

PROGRAM CONTROL INFORMATION

1 /TITLE

1

- 2 Model built by EQS 6 for Windows
- 3 /SPECIFICATIONS
- 4 DATA='c:\users\user\desktop\berlinverbs-natsopoulos new 1.ess';
- 5 VARIABLES=71; CASES=94;
- 6 METHOD=ML, ROBUST; ANALYSIS=COVARIANCE; MATRIX=RAW;
- 7 /LABELS
- 8 V1=CODE; V2=GENDER; V3=AGECAT; V4=AGE; V5=EDUC;
- 9 V6=XARA; V7=EKPLIXI; V8=OUDETERO; V9=LIPIMENO; V10=THUMOS;
- 10 V11=AGXOS; V12=AIDIA; V13=CORRECT; V14=RANGE; V15=PR1P;
- 11 V16=GN1N; V17=S1P; V18=L1N; V19=Y1N; V20=TH1P;
- 12 V21=P1N; V22=PR2N; V23=L2P; V24=Y2P; V25=TH2N;
- 13 V26=P2P; V27=S2N; V28=GN2N; V29=PR3P; V30=L3N;
- 14 V31=Y3N; V32=TH3N; V33=P3N; V34=S3P; V35=GN3P;
- 15 V36=PR4N; V37=L4P; V38=Y4P; V39=TH4P; V40=P4P;
- 16 V41=GN4P; V42=S4N; V43=PRP; V44=PRN; V45=SP;
- 17 V46=SN; V47=YP; V48=YN; V49=PP; V50=PN;
- 18 V51=PROTOTAL; V52=SYMFVNVT; V53=YPOSXOMA; V54=PISTEYVT; V55=SYNOLOPR;
- 19 V56=SYNOLOSY; V57=SYNOLOYP; V58=SYNOLOPI; V59=TASITDEC; V60=TOTALPOS;
- 20 V61=TOTALNEG; V62=FACTIVEP; V63=FACTIVEN; V64=TOTALNON; V65=TOTALFAC;
- 21 V66=GNORIZOP; V67=GNORIZON; V68=LISMOMOP; V69=LISMOMON; V70=THYMAMAI;
- 22 V71=V71 A;
- 23 /EQUATIONS
- $24 \quad V43 = 1F1 + E43;$
- $25 \quad V44 = *F1 + E44;$
- $26 \quad V45 = *F1 + E45;$
- $27 \quad V46 = *F1 + E46;$
- $28 \quad V47 = *F1 + E47;$
- $29 \quad V48 = *F1 + E48;$

30 F1 = *V4 + D1;31 /VARIANCES 32 V4 = *; 33 E43 = *; 34 E44 = *; 35 E45 = *; 36 E46 = *; 37 E47 = *; 38 E48 = *; 39 D1 = *; 40 /COVARIANCES 41 E45, E43 = *;42 /PRINT 43 FIT=ALL; 44 TABLE=EQUATION; 45 /LMTEST 46 PROCESS=SIMULTANEOUS; 47 SET=PVV, PFV, PFF, PDD, GVV, GVF, GFV, GFF, 48 BVF, BFF; 49 /WTEST 50 PVAL=0.05; 51 PRIORITY=ZERO;

52 /END

52 RECORDS OF INPUT MODEL FILE WERE READ

DATA IS READ FROM c:\user\desktop\berlinverbs-natsopoulos new_1.ess THERE ARE 71 VARIABLES AND 94 CASES IT IS A RAW DATA ESS FILE

02-Aug-18 PAGE: 2 EQS Licensee: TITLE: Model built by EQS 6 for Windows

SAMPLE STATISTICS BASED ON COMPLETE CASES

UNIVARIATE STATISTICS

VARIABLE	AGE V4	PRP V43	PRN V44	SP V45	SN V46
MEAN	52.1170	.3191	.5957	.5106	.7234
SKEWNESS (G1)	1104	1.6068	.8491	.9757	.5475
KURTOSIS (G2)	-1.3954	1.5617	8791	2855	-1.2911
STANDARD DEV.	23.1074	.5720	.7941	.6838	.8218
VARIABLE	YP V47	YN V48			
MEAN	.2021	.5319			
SKEWNESS (G1)	2.3302	.9016			
KURTOSIS (G2)	4.7141	3947			
STANDARD DEV.	.4770	.6832			

MULTIVARIATE KURTOSIS

MARDIA'S COEFFICIENT (G2,P) = 12.2627 NORMALIZED ESTIMATE = 5.2958

BONETT-WOODWARD-RANDALL TEST SHOWS SIGNIFICANT EXCESS KURTOSIS INDICATIVE OF NON-NORMALITY AT A ONE-TAIL .05 LEVEL.

ELLIPTICAL THEORY KURTOSIS ESTIMATES

MARDIA-BASED KAPPA = .1946 MEAN SCALED UNIVARIATE KURTOSIS = .0967 MARDIA-BASED KAPPA IS USED IN COMPUTATION. KAPPA= .1946

CASE NUMBERS WITH LARGEST CONTRIBUTION TO NORMALIZED MULTIVARIATE KURTOSIS:

CASE NUMBER	15	26	34	43	70
ESTIMATE	159.0846	135.5504	137.6989	187.2339	177.5028

02-Aug-18 PAGE : 3 EQS Licensee: TITLE: Model built by EQS 6 for Windows

COVARIANCE MATRIX TO BE ANALYZED: 7 VARIABLES (SELECTED FROM 71 VARIABLES) BASED ON 94 CASES.

		AGE	PRP	PRN	SP	SN
		V4	V43	V44	V45	V46
AGE	V4	533.954				
PRP	V43	-3.339	.327			
PRN	V44	802	.216	.631		
SP	V45	-2.512	.233	.219	.468	
SN	V46	365	.218	.403	.315	.675
ΥP	V47	497	.075	.093	.078	.207
YN	V48	-3.310	.173	.271	.177	.267

		ΥP	YN
		V47	V48
ΥP	V47	.228	
YN	V48	.096	.467

BENTLER-WEEKS STRUCTURAL REPRESENTATION:

```
NUMBER OF DEPENDENT VARIABLES = 7

DEPENDENT V'S : 43 44 45 46 47 48

DEPENDENT F'S : 1

NUMBER OF INDEPENDENT VARIABLES = 8

INDEPENDENT V'S : 4

INDEPENDENT E'S : 43 44 45 46 47 48

INDEPENDENT D'S : 1
```

NUMBER OF FREE PARAMETERS = 15 NUMBER OF FIXED NONZERO PARAMETERS = 8

- *** WARNING MESSAGES ABOVE, IF ANY, REFER TO THE MODEL PROVIDED. CALCULATIONS FOR INDEPENDENCE MODEL NOW BEGIN.
- *** WARNING MESSAGES ABOVE, IF ANY, REFER TO INDEPENDENCE MODEL. CALCULATIONS FOR USER'S MODEL NOW BEGIN.

3RD STAGE OF COMPUTATION REQUIRED 13253 WORDS OF MEMORY. PROGRAM ALLOCATED 2000000 WORDS

DETERMINANT OF INPUT MATRIX IS .37099D+00

PARAMETER ESTIMATES APPEAR IN ORDER, NO SPECIAL PROBLEMS WERE ENCOUNTERED DURING OPTIMIZATION.

RESIDUAL COVARIANCE MATRIX (S-SIGMA) :

		AGE	PRP	PRN	SP	SN
		V4	V43	V44	V45	V46
AGE	V4	.000				
PRP	V43	-2.457	.000			
PRN	V44	.668	.025	.000		
SP	V45	-1.412	.000	019	.000	
SN	V46	1.481	022	.003	.015	.000
ΥP	V47	.145	009	046	026	.032
YN	V48	-2.233	.032	.037	.002	027

YP YN V47 V48

ΥP	V47	.000	
YN	V48	006	.000

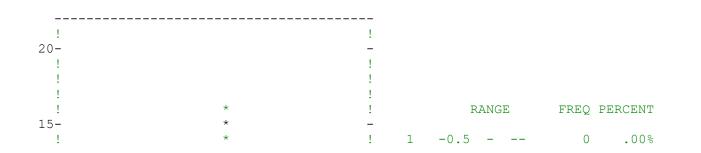
AVERAGE .	ABSOLUTE	COVARIANCE	RESIDUALS	=	.3106
AVERAGE OFF-DIAGONAL .	ABSOLUTE	COVARIANCE	RESIDUALS	=	.4142

STANDARDIZED RESIDUAL MATRIX:

		AGE	PRP	PRN	SP	SN
		V4	V43	V44	V45	V46
AGE	V4	.000				
PRP	V43	186	.000			
PRN	V44	.036	.055	.000		
SP	V45	089	.000	035	.000	
SN	V46	.078	047	.004	.027	.000
ΥP	V47	.013	033	121	079	.082
YN	V48	141	.083	.069	.005	047

		ΥP	YN
		V47	V48
ΥP	V47	.000	
YN	V48	020	.000

AVERAGE	ABSOLUTE	STANDARDIZED	RESIDUALS	=	.0447
AVERAGE OFF-DIAGONAL	ABSOLUTE	STANDARDIZED	RESIDUALS	=	.0596


02-Aug-18 PAGE: 4 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

LARGEST STANDARDIZED RESIDUALS:

NO.	PARAMETER	ESTIMATE	NO.	PARAMETER	ESTIMATE
1	V43, V4	186	11	V48, V46	047
2	V48, V4	141	12	V46, V43	047
3	V47, V44	121	13	V44, V4	.036
4	V45, V4	089	14	V45, V44	035
5	V48, V43	.083	15	V47, V43	033
6	V47, V46	.082	16	V46, V45	.027
7	V47, V45	079	17	V48, V47	020
8	V46, V4	.078	18	V47, V4	.013
9	V48, V44	.069	19	V48, V45	.005
10	V44, V43	.055	20	V46, V44	.004

DISTRIBUTION OF STANDARDIZED RESIDUALS

!							*						1	2	-0.4	_	-0.5	0	.00%
!							*						1	3	-0.3	-	-0.4	0	.00%
1							*						1	4	-0.2	-	-0.3	0	.00%
10-							*						-	5	-0.1	-	-0.2	3	10.71%
1						*	*						1	6	0.0	-	-0.1	9	32.14%
1						*	*						1	7	0.1	-	0.0	16	57.14%
1						*	*						1	8	0.2	-	0.1	0	.00%
1						*	*						1	9	0.3	-	0.2	0	.00%
5-						*	*						-	А	0.4	-	0.3	0	.00%
!						*	*						1	В	0.5	-	0.4	0	.00%
1					*	*	*						1	С	++	-	0.5	0	.00%
!					*	*	*						1						
1					*	*	*						!		Г	OTA	L	28	100.00%
	1	2	3	4	5	6	7	8	9	А	В	С		EACH	"*" F	REPR	ESENTS	1 RE	SIDUALS

02-Aug-18 PAGE : 5 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

GOODNESS OF FIT SUMMARY FOR METHOD = ML INDEPENDENCE MODEL CHI-SOUARE = 213.736 ON 21 DEGREES OF FREEDOM INDEPENDENCE AIC = 171.73565 INDEPENDENCE CAIC = 97.32646 MODEL AIC = 2.14915 MODEL CAIC = -43.91368 CHI-SQUARE = 28.149 BASED ON 13 DEGREES OF FREEDOM PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .00863 THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS 27.959. FIT INDICES _____ BENTLER-BONETT NORMED FIT INDEX = .868 BENTLER-BONETT NON-NORMED FIT INDEX = .873 COMPARATIVE FIT INDEX (CFI) = .921 BOLLEN (IFI) FIT INDEX .925 = MCDONALD (MFI) FIT INDEX .923 = .921 LISREL GFI FIT INDEX = LISREL AGFI FIT INDEX = .830 ROOT MEAN-SQUARE RESIDUAL (RMR) = .748 = .066 STANDARDIZED RMR ROOT MEAN-SQUARE ERROR OF APPROXIMATION (RMSEA) = .112 90% CONFIDENCE INTERVAL OF RMSEA (.054, .168)

RELIABILITY COEFFICIENTS

= -.035 CRONBACH'S ALPHA = .825 COEFFICIENT ALPHA FOR AN OPTIMAL SHORT SCALE BASED ON 5 VARIABLES, ALL EXCEPT: SN YN = .087 GREATEST LOWER BOUND RELIABILITY GLB RELIABILITY FOR AN OPTIMAL SHORT SCALE .902 = BASED ON 6 VARIABLES, ALL EXCEPT: ΥN BENTLER'S DIMENSION-FREE LOWER BOUND RELIABILITY = .008 SHAPIRO'S LOWER BOUND RELIABILITY FOR A WEIGHTED COMPOSITE = .310 WEIGHTS THAT ACHIEVE SHAPIRO'S LOWER BOUND: AGE PRP PRN SP SN YP -.164 .360 .424 .406 .550 .266 YN .354 GOODNESS OF FIT SUMMARY FOR METHOD = ROBUST ROBUST INDEPENDENCE MODEL CHI-SQUARE = 172.548 ON 21 DEGREES OF FREEDOM INDEPENDENCE AIC = 130.54817 INDEPENDENCE CAIC = 56.13898 MODEL AIC = -5.32517 MODEL CAIC = -51.38800

SATORRA-BENTLER SCALED CHI-SQUARE = 20.6748 ON 13 DEGREES OF FREEDOM PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .07961

RESIDUAL-BASED TEST STATISTIC = 18.365 PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .14413

YUAN-BENTLER RESIDUAL-BASED TEST STATISTIC = 15.364 PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .28520

YUAN-BENTLER RESIDUAL-BASED F-STATISTIC = 1.230 DEGREES OF FREEDOM = 13, 81

PROBABILITY VALUE FOR THE F-STATISTIC IS	.27373
FIT INDICES	
BENTLER-BONETT NORMED FIT INDEX =	.880
BENTLER-BONETT NON-NORMED FIT INDEX =	.918
COMPARATIVE FIT INDEX (CFI) =	.949
BOLLEN (IFI) FIT INDEX =	.952
MCDONALD (MFI) FIT INDEX =	.960
ROOT MEAN-SQUARE ERROR OF APPROXIMATION	(RMSEA) = .080
90% CONFIDENCE INTERVAL OF RMSEA (.000, .141)

ITERATIVE SUMMARY

	PARAMETER		
ITERATION	ABS CHANGE	ALPHA	FUNCTION
1	35.992760	1.00000	17.96269
2	35.977040	1.00000	.96076
3	.153297	1.00000	.40547
4	.044869	1.00000	.31245
5	.020398	1.00000	.30488
6	.008858	1.00000	.30326
7	.005284	1.00000	.30283
8	.002511	1.00000	.30272
9	.001446	1.00000	.30269
10	.000710	1.00000	.30268

02-Aug-18 PAGE: 6 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @. (ROBUST STATISTICS IN PARENTHESES)

PRP =V43 = 1.000 F1 + 1.000 E43

PRN	=V44 = (1.666*F1 .324 5.1390 .334) 4.9900	+	1.000	E44
SP	=V45 = (1.247*F1 .211 5.907@ .236) 5.277@	+	1.000	E45
SN	=V46 = (2.093*F1 .377 5.5580 .411) 5.0890	+	1.000	E46

ΥΡ	=V47 = (.728*F1 .178 4.087@ .228) 3.190@	+	1.000	E47
YN	=V48 = (1.222*F1 .265 4.6090 .276) 4.4230	+	1.000	E48

02-Aug-18 PAGE: 7 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

CONSTRUCT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @. (ROBUST STATISTICS IN PARENTHESES)

F1 =F1 = -.002*V4 + 1.000 D1 .002 -.997 (.002) (-.911)

02-Aug-18 PAGE: 8 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

VARIANCES OF INDEPENDENT VARIABLES

			V	F	
V4	-	AGE	533.954	1 * I	I
			78.303	3 I	I
			6.819	€GI	I
			(42.594	4) I	I
			(12.536	50I	I
				I	I

02-Aug-18 PAGE: 9 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

VARIANCES OF INDEPENDENT VARIABLES

	E		D
E43 - PRP	 .212*J .035 J 6.096@J (.042)J	Ι	 .113*I .039 I 2.891@I (.042)I
E44 - PRN	(5.0450]] .312*] .057] 5.4650]	I I I	(2.7200I I I I I
E45 - SP	(.063)] (4.9410] 	I I I I	I I I I
	.048] 5.9990] (.048)] (5.9870]	I I I	I I I I I
E46 - SN	.172*1 .054 1 3.19601 (.064)1	I I I	I I I I I
E47 - YP	(2.7080) (2.7080) .167*]	I I	I I I

	.026 I	I
	6.3710I	I
(.040)I	I
(4.198@I	I
	I	I
	.295*I	I
	.049 I	I
	6.090@I	I
(.052)I	I
(5.645@I	I
	I	I

E48 - YN

02-Aug-18 PAGE : 10 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

COVARIANCES AMONG INDEPENDENT VARIABLES

		E		D	
E45 -	SP		.090*I		I
E43 -	PRP		.032 I		I
			2.8370I		I
		(.031)I		I
		(2.950@I		I
			I		I

02-Aug-18 PAGE : 11 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

STANDARDIZED SOLUTION:

R-SQUARED

PRP	=V43 =	.592 F1	+	.806 E43	.351
PRN	=V44 =	.711*F1	+	.703 E44	.506
SP	=V45 =	.618*F1	+	.786 E45	.382
SN	=V46 =	.863*F1	+	.505 E46	.745
ΥP	=V47 =	.517*F1	+	.856 E47	.267
YN	=V48 =	.606*F1	+	.796 E48	.367
F1	=F1 =	113*V4	+	.994 D1	.013

02-Aug-18 PAGE : 12 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

CORRELATIONS AMONG INDEPENDENT VARIABLES

		E 		D 	
E45 -			.363*I		I
E43 -	PKP		I I		I

E	Ν	D	0	F	Ν	1]	E '	Т	Η	0	D

02-Aug-18 PAGE : 13 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

WALD TEST (FOR DROPPING PARAMETERS) ROBUST INFORMATION MATRIX USED IN THIS WALD TEST MULTIVARIATE WALD TEST BY SIMULTANEOUS PROCESS

	CUMULATIVE	MULTIVARIAT	ISTICS	UNIVARIATE	INCREMENT	
STEP	PARAMETER	CHI-SQUARE	D.F.	PROBABILITY	CHI-SQUARE	PROBABILITY
1	F1,V4	.829	1	.362	.829	.362

02-Aug-18 PAGE : 14 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

LAGRANGE MULTIPLIER TEST (FOR ADDING PARAMETERS)

ORDERED UNIVARIATE TEST STATISTICS:

						HANCOCK		STANDAR-
				CHI-		13 DF	PARAMETER	DIZED
NO	CO	DE	PARAMETER	SQUARE	PROB.	PROB.	CHANGE	CHANGE
1	2	11	V46,V4	4.568	.033	.984	.006	.000
2	2	11	V43,V4	4.082	.043	.990	004	.000
3	2	11	V48,V4	3.337	.068	.996	005	.000
4	2	11	V44,V4	.304	.582	1.000	.002	.000
5	2	11	V45,V4	.104	.747	1.000	001	.000
6	2	11	V47,V4	.023	.879	1.000	.000	.000
7	2	0	V43,F1	.000	1.000	1.000	.000	.000

02-Aug-18 PAGE : 15 EQS Licensee: TITLE: Model built by EQS 6 for Windows

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY)

MULTIVARIATE LAGRANGE MULTIPLIER TEST BY SIMULTANEOUS PROCESS IN STAGE 1

PARAMETER SETS (SUBMATRICES) ACTIVE AT THIS STAGE ARE:

PVV PFV PFF PDD GVV GVF GFV GFF BVF BFF

	CUMULATIVE	MULTIVARIATE	STATI	STICS	UNIVARIATE	INCREME	REMENT			
							-	 DCK'S ENTIAL		
STEP	PARAMETER	CHI-SQUARE	D.F.	PROB.	CHI-SQUARE	PROB.	D.F.	PROB.		
1	V46,V4	4.568	1	.033	4.568	.033	13	.984		

LAGRANGIAN MULTIPLIER TEST REQUIRED 4049 WORDS OF MEMORY. PROGRAM ALLOCATES 2000000 WORDS.

1 Execution begins at 02:32:25 Execution ends at 02:32:26 Elapsed time = 1.00 seconds