
Supplementary Materials and methods 
Data download and Standardization 
The expression profile data of pancreatic cancers (IlluminaHiSeq_RNASeq platform) were 
downloaded from TCGA. In total, 183 samples with corresponding clinical information were 
downloaded, along with data from multi-omics, including copy number and methylation data 
(Supplementary Table 1). 
 
Level 3 data from TCGA were standardized from the read count. As the expression level of different 
genes varied greatly, transcriptional gene expression profiles were preprocessed so that they can be 
evaluated effectively. First the data were transformed by taking their logarithm, and if the original 
value was 0, it was replaced with the mean value. Then for each gene, the mean and standard 
deviation were calculated, and values outside 95% confidence interval were replaced by the 
boundary value. Last the expression profile matrix were normalized with z-score, so that the 
expression value of each gene could obey the standard normal distribution [1]. 
 
Unsupervised hierarchical clustering 
Hierarchical clustering was used for the analysis of the above standardized transcription data. 
Related pancreatic cancer genes were downloaded from the OMIM database (http://www.omim.org) 
[2], including 132 Entrez gene IDs, gene name, MIM number, and chromosome location 
(Supplementary file 1); Entrez gene IDs were converted to gene symbols. All pancreatic cancer 
samples were analyzed by unsupervised hierarchical clustering[3] with Euclidean distance matrices 
[4] and the average linkage method [5]. 
 
Subgroup clinical characteristics 
Clinical information from different subgroup samples were statistical analyzed, including age, sex, 
smoking and drinking history, and survival time (Supplementary file 2). 
 
Gene distribution in specific subgroups 
Through hierarchical clustering, samples with similar molecular basis were clustered into one group, 
and candidate genes were assigned to each subgroup. To determine whether a specific gene belonged 
to a particular subgroup, a Student’s t-test was used to determine the significance of its expression 
among subgroups [6]. A gene was assigned to one subgroup if its expression in the subgroup was 
significantly different from other subgroups (P < 0.05). In the end, each subgroup was assigned a 
specific set of genes (Supplementary file 3, 4). 
 
Identification of specific pathways and genes in subgroups 
Specific gene sets were identified by comparing individual genes among different cancer subgroups 
(Supplementary file 5). Genes within specific gene sets showed different expression patterns in 
different subgroups (e.g., highly expressed in some subgroups and lowly expressed in others), 
suggesting that these gene sets were important for distinguishing pancreatic cancer subgroups at the 
molecular levels. Specific genes for each subtype were unioned, and KEGG pathway enrichment 
analysis was performed using DAVID [7]; pathways with a P-value of <0.05 were considered 
statistically significant. 
 
Pathway deviation score 
Specific gene set for different subgroups were identified that had different expression patterns in 
different subgroups, thereby serving a variety of functions at different levels in different subgroups. 
At different functional levels, these pathways were important for the analysis and individualized 
treatment of different clinical subgroups of pancreatic cancer patients. These pathways were 
quantified by gene enrichment according to Formula 1: 

𝑠𝑐𝑜𝑟𝑒(𝑃) =
√∑ (𝐺𝑖−𝑚𝑒𝑎𝑛)2𝑛

𝑖=1

𝑛
             (Formula 1) 

wherein pathway P is assumed to contain n number of enriched genes and mean represents the 
expression mean of a given gene (Gi) in all samples. The larger the score(P), the more pathway P 
deviated from the normal level and vice versa.  
By calculating the Euclidean distance of all genes in pathway P in each subgroup and summing 
them, the extent by which pathway P deviated from normal in the subgroup was calculated [8]. 
Finally, by comparing the degree of pathway deviation among different subgroups, functional 
pathways with specific alterations and genes involved were identified. 
 

http://www.omim.org/
Supplementary%20file%201-OMIM%20info.xls
Supplementary%20file%202-clinical%20info.xlsx
Supplementary%20file%203-subtype%20gene%20set.txt
Supplementary%20file%204-subtype_gene_significant.txt


Diagnosis and prediction model based on specific pathways 
A SVM model was trained to predict the subtype of pancreatic cancer samplers using functional 
pathways as features and the eigenvector score (Formula 2) as their values. The eigenvector score 
showed whether there were significant differences in the function of different pancreatic cancer 
subgroups. The eigenvector score was defined as 

𝐸𝑉𝑠𝑐𝑜𝑟𝑒 = 𝑙𝑜𝑔2
√∑ (𝐺𝑖−𝜇)2𝑚

𝑖=1

√∑ (𝐺𝑗−𝛾)2𝑛
𝑗=1

            (Formula 2) 

where EVscore is the eigenvector score, m is the number of upregulated genes in different pathways, 
Gi is the mean expression value of up-regulated gene i in all samples, μ is the mean expression of 
gene i in control samples, n is the number of genes downregulated, Gj is the mean expression value 
of down-regulated gene j in all samples, and γ is the mean expression value of gene j in control 
samples.  
Finally, ratios of the distances from normal levels to up-regulated/down-regulated levels were 
calculated for logarithm; a positive EVscore was considered a positive fluctuation and a negative 
EVscore was considered a negative fluctuation. A 10 fold cross validation was used to validate the 
model. All samples were randomly rearranged into 10 parts; nine were used as a training set to train 
the model and obtain threshold parameters, leaving one for the test set. The trained model was used 
to predict in the test set, and false-positive/negative rates and prediction accuracy were calculated. 
The above procedure was repeated 10 times until all samples were predicted in a test set. The 
receiver operating characteristic curve was then used to evaluate the classification efficiency and 
robustness of the model. 
 
Multi-omics data analysis 
Copy number analysis and methylation data were integrated to analyze genetic variations specific 
to each pancreatic cancer subgroup from multiple omics levels. Specific genes from all subgroups 
were integrated, including their variability at regulatory and methylation levels and copy number 
variation, to determine the reason for abnormal transcription levels in different subgroups. 
 
MicroRNA (miRNA)-long noncoding RNA (lncRNA)-mRNA co-expression analysis 
mRNA alone may not explain the differences in pancreatic cancer pathologies at the molecular level. 
Therefore, mRNA, miRNA, and lncRNA expression profiles were integrated for further analysis. 
miRNA expression profile data, including 183 pancreatic cancer samples, 1046 miRNA molecules, 
and lncRNA data containing 178 pancreatic cancer samples and 2441 lncRNA molecules, were 
gathered from TCGA. 
A composite regulatory network was constructed with coexpression analysis. First molecules 
expressed significantly differently (P < 0.05) in at least two subgroups were identified from the 
expression profile, and coexpression analysis was performed [9]. Co-expression analysis included 
the following relationships: mRNA-mRNA, miRNA-mRNA, lncRNA-mRNA, and lncRNA-
miRNA. These coexpression relationships reflected the interaction among mRNAs, the regulation 
of mRNA by miRNA/lncRNA, and other regulators. The correlation between any relationship pairs 
was evaluated by the Pearson correlation coefficient. A composite regulatory network was 
constructed with the coexpression correlation, with mRNA, miRNA, and lncRNA as nodes, with 
edges indicating their correlations [4, 10]. The correlation coefficient threshold was 0.5, i.e., there 
was an edge between two nodes if and only if the correlation coefficient was greater than 0.5. 

 

Supplementary Table 1. Pancreatic cancer data downloaded from The Cancer Genome Atlas (TCGA) 

database. 

Data Expression 

profile 

CNV copy number Methylation profile 

Platform IlluminaHiSeq_R

NASeqV2 

segmented_scna_minus

_germline_cnv 

PAAD.Methylation_Prepro

cess 

Number of samples 183 183 183 

Data level  3 3 3 

 



Supplementary Table 2. Functional annotation analysis. 

Term Count P-Value 

Aminoacyl-tRNA biosynthesis  8 2.34E-09 

Antigen processing and presentation  8 2.19E-08 

Cell adhesion molecules  12 7.97E-08 

Cytokine-cytokine receptor interaction  6 8.81E-06 

Focal adhesion  6 3.62E-05 

Glutamate metabolism  5 3.79E-05 

Glycosphingolipid biosynthesis–ganglio-series 5 1.03E-04 

GnRH signaling pathway  5 2.54E-04 

Hematopoietic cell lineage  4 3.12E-04 

Jak-STAT signaling pathway  5 3.17E-04 

Leukocyte transendothelial migration  5 3.71E-04 

Natural killer cell-mediated cytotoxicity  5 7.13E-04 

Nonhomologous end joining  6 
  2.84E-

03 

Pathogenic Escherichia coli infection-EHEC  5 1.35E-02 

Purine metabolism  4 1.97E-02 

Actin cytoskeletal regulation 3 3.00E-02 

 

Supplementary Table 3. Pathway deviation score. 

Pathway Subgroup 1 Subgroup 2 Subgroup3 

Aminoacyl-tRNA biosynthesis 0.3 1.44 1.02 

Antigen processing and presentation 0.87 0.67 0.52 

Cell adhesion molecules  0.76 0.57 0.49 

Cytokine-cytokine receptor interaction 0.77 0.69 0.56 

Focal adhesion 0.73 1.15 1.22 

Glutamate metabolism 0.3 1.44 1.02 

Glycosphingolipid biosynthesis–ganglio-series 0.94 1.44 1.37 



GnRH signaling pathway 1.12 1.14 1.11 

Hematopoietic cell lineage 1.07 0.62 0.97 

Jak-STAT signaling pathway 1.11 1.12 0.87 

Leukocyte transendothelial migration 0.77 0.67 0.59 

Natural killer cell-mediated cytotoxicity 0.84 0.7 0.57 

Nonhomologous end joining 1.26 1.24 1.31 

Pathogenic Escherichia coli infection-EHEC 1.13 0.58 0.93 

Purine metabolism 1.26 1.01 1.04 

Actin cytoskeletal regulation 0.88 0.6 0.83 

 

 

Supplementary Table 4. Analysis of copy number variation. 

Gene Subgroup 1 Subgroup 2 Subgroup 3 

STARD13 0.035714 −0.0125 0.142857 

EEF1A1 −0.19048 −0.575 0.285714 

ANO7 0.083333 0.05 0.071429 

FAM84B 0.416667 0.6 −0.07143 

CASC3 0.202381 −0.025 0.142857 

PBOV1 −0.27381 −0.575 0 

ADH1B −0.15476 −0.0625 −0.07143 

CASC5 −0.09524 −0.15 −0.21429 

BLCAP 0.154762 0.3 0.214286 

STEAP2 0.25 0.4 0.357143 

TFDP3 0.059524 −0.0875 0 

NDC80 −0.14286 −0.0125 −0.28571 

BCAS1 0.190476 0.3375 0.214286 

 

 

Supplementary Table 5. Analysis of the methylation spectrum.  

Gene        Subgroup 1 Subgroup 2 Subgroup 3 



ANO7 0.740217 1.005277 0.754314 

CASC3 0.822278 1.199015 0.812373 

ADH1B 0.818939 1.184669 0.833363 

CASC5 0.047211 0.068949 0.050742 

BLCAP 0.482866 0.658869 0.482699 

BCAS1 0.460157 0.652133 0.455947 

 

Supplementary Table 6. Correlation analysis of copy number and the transcriptome. 

Gene P-value R 

STARD13 0.036296 0.639427 

EEF1A1 0.412647 2.47E-01 

ANO7 0.052716 0.496066 

FAM84B 0.017453 0.821803 

CASC3 0.055112 0.476666 

PBOV1 0.087464 0.258158 

ADH1B 0.008338 0.914325 

CASC5 0.011056 0.886559 

BLCAP 0.119864 0.120599 

STEAP2 0.026326 0.734043 

TFDP3 0.014922 0.847309 

NDC80 0.019118 0.805132 

BCAS1 0.089485 0.247274 

 

Supplementary Table 7. Correlation analysis of methylation and the transcriptome.  

gene P-value R 

ANO7 0.06599593 −0.6333894 

CASC3 0.09286334 0.02622384 

ADH1B 0.07561739 −0.547573 

CASC5 0.01819148 −0.3235922 



BLCAP 0.09636655 −0.205003 

BCAS1 0.03743212 −0.7420775 

 

Supplementary Table 8. Topology analysis of the top 10 highest degrees of mRNA.  

Name Degree ASPL CC NC TC 

SYT7 126 3.101078 0.511746 81.46825 0.305035 

ADH1A 67 3.684636 0.048847 9.164179 0.056897 

DLEC1 54 3.719677 0.410901 51.2963 0.260582 

TUNAR 50 3.669811 0.914286 99.96 0.51 

TUSC3 42 3.440701 0.498258 63.14286 0.282511 

MIR7-3HG 38 3.58221 0.786629 93.76316 0.413054 

TFDP3 38 3.97035 0.998578 98.10526 0.645429 

MEG3 35 3.634771 0.678992 84.51429 0.34637 

VWA5A 35 3.834232 0.904202 76.28571 0.412355 

DPH1 29 3.52965 0.768473 74.31034 0.347245 

ave 5.79 4.64 0.32 31.49 0.23 

Degree, node degree; ASPL, average shortest path length; CC, clustering coefficient; NC, neighborhood connectivity; 

TC, topological coefficient; ave, the mean of each topological property.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Figure 1. Survival analysis. There was no statistically significant difference in survival time among 

the three subgroups. 

 

 

 
Supplementary Figure 2. Venn diagram of the three pancreatic cancer subgroups. The number of specific genes 

shared by subgroups 1 and 2 was 31, by subgroups 2 and 3 was 17, and by subgroups 1 and 3 was 16; there were 14 

overlapping genes in all three subgroups. 
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Supplementary Figure 3. Boxplot of pathway deviation scores. Overall, these data show that there were functional 

differences among the three subgroups. 

 

 

Supplementary Figure 4. Receiver operating characteristic (ROC) curve. Five predicted results were randomly 

selected for statistics in the ROC curve. The average accuracy was 0.84. These data confirm that the 16 functional 

pathways identified could effectively differentiate the pancreatic cancer subgroups and that the model had high 

precision and robustness. 
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