Supplementary material

Inclusion and exclusion criteria for the review

The inclusion criteria for this review included English language articles containing any models predicting COPD in adults in the general population or in populations at high risk of development of COPD (smokers, asthmatics).

Studies with COPD risk prediction tools were included in this review if they met all of the following inclusion criteria:

- 1) the study's main aim was to develop a prediction tool for development of COPD in adults without prior diagnosis of COPD;
- 2) the prediction model was developed in adults in the general population, healthcare population or high risk populations (smokers, asthmatics);
- 3) the outcome of the prediction model was diagnosed COPD by: i) spirometry, ii) self-reported COPD, or related condition such as chronic bronchitis, emphysema, or chronic airways obstruction, not otherwise specified, or iii) COPD coded by an administrative coding system; (See Supplementary Table E7 for specific definitions)
- 4) development of a model based on: an *a-priori* set of predictors or predictors that were selected by statistical modelling or; updating an existing model; and
- 5) the study reported a formal prediction model or regression equation that has the ability to predict risk of COPD in other individuals.

We excluded studies that:

1) had a main objective to develop a predictive model for prognosis of COPD (i.e. models to predict exacerbations, hospital admissions or mortality in previously diagnosed COPD patients);

- 2) predicted undiagnosed COPD in a cross-sectional population;
- 3) used only one biomarker or one predictor in developing the model.
- 4) were reviews, letters, conference abstracts or expert opinion.

We assessed risk of bias and of applicability to our specific research question based on the CHARMS checklist for critical appraisal of prediction modelling studies. For the risk of bias assessment, we utilised a similar approach to that used by Smit et al 2015 and developed similar assessment criteria for applicability concerns. Risk of bias was assessed in relation to five domains: participant selection, predictor assessment, outcome assessment, attrition and analysis. Applicability was assessed in relation to six domains: participant selection, predictor assessment, outcome assessment, analysis, results and interpretation (e-Table 3 and 4). The risk of bias or applicability was rated as high, medium or low based on criteria for each domain. If the study achieved all criteria in a specific domain, it was rated as low risk of bias or applicability concerns. If at least one of the criteria for low risk was not achieved, the study was rated as medium risk of bias or applicability concerns. If multiple criteria were not achieved or the criteria were missing or not reported, the study was rated as high risk of bias (e-Tables 3 and 4).

Table S1 Search terms used in PubMed for this review

Type of search terms	Search terms
Search terms related to	COPD[Title] OR
outcomes of interest	COAD[Title] OR
	"chronic obstructive airway disease"[Title] OR
	"chronic obstructive pulmonary disease"[Title] OR

	COPD[MeSH Terms]
Search terms related to	"risk prediction model\$" OR
prediction models	"risk prediction" OR
	"predictive model\$" OR
	"predictive equation\$" OR
	"prediction model\$" OR
	"risk calculator\$" OR
	"prediction rule\$" OR
	"risk model\$" OR
	"Risk assessment model\$" OR
	"Assessment tool\$" OR
	"Prediction score\$" OR
	"Risk Score\$" OR
	roc curve OR
	c-statistic OR
	c statistic OR
	area under the curve OR

tic model*" OR
on tool\$" OR
ve tool\$" OR
ve accuracy\$" OR
tic tool\$" OR
ic factors" OR
ve value\$" OR
ediction\$" OR
ic indicator\$" OR
liction tool\$" OR
Operating Characteristic\$"
ssification improvement"

Table S2 Search terms used in EMBASE for this review

Number	Search term
1	CORD
1	COPD.m_titl.
2	COAD.m_titl.
3	chronic obstructive airway disease.m_titl.
4	chronic obstructive pulmonary disease.m_titl.
5	chronic obstructive lung disease/
6	1 or 2 or 3 or 4 or 5
7	risk prediction model\$.mp.
8	risk prediction.mp.
9	predictive model\$.mp.
10	predictive equation\$.mp.
11	prediction model\$.mp.
12	risk calculator\$.mp.
13	prediction rule\$.mp.
14	risk model\$.mp.

15	Risk assessment model\$.mp.
16	Assessment tool\$.mp.
17	Prediction score\$.mp.
18	Risk Score\$.mp.
19	roc curve.mp.
20	c-statistic.mp.
21	c statistic.mp.
22	area under the curve.mp.
23	AUC.mp.
24	Prognostic model*.mp.
25	Prediction tool\$.mp.
26	Predictive tool\$.mp.
27	Predictive accuracy\$.mp.
28	Prognostic tool\$.mp.
29	prognostic factors.mp.
30	predictive value\$.mp.

31	early prediction\$.mp.
32	prognostic indicator\$.mp.
33	risk prediction tool\$.mp.
34	Receiver Operating Characteristic\$.mp.
35	net reclassification improvement.mp.

Table S3 Criteria for scoring of risk of bias based on the CHARMS checklist

Potential	Items to be considered for potential bias	Guo et	Kotz et	Himes	Higgins
bias		al.,	al.,	et al.,	et al.,
		2015 ²¹	2014 ²²	2009 ²³	1982 ²⁴
Participant					
selection					
	Low risk of bias if:		√	√	√
	- selection bias was unlikely	*	✓	✓	✓
	- study avoided inappropriate inclusions or exclusions	✓	✓	✓	✓
	- in- and exclusion criteria were adequately described	✓	✓	✓	√
	- participants were enrolled at a similar presentation of their disease	√	✓	✓	√
	Moderate risk of bias if:				
	- not satisfying one of the above or	✓			
	- no adequate description of recruitment of study sample				
	- no adequate description of the sample for key predictors				
	High risk of bias if: - both items were not adequately described				

Predictor					
assessment					
	Low risk of bias if:		√		√
	- predictor definitions were the same for all				
	participants,	✓	√	√	✓
	participants,				
	- predictor measurement was blinded to outcome	√	✓	✓	√
	data				
	- all predictors were available at the time the model				
		✓	✓	✓	✓
	is intended to be used				
	- predictors were measured with valid and				
	reproducible methods such that misclassification	×	✓	✓	
	was limited				
	- sufficient sample size to number of predictor	✓	✓	×	√
	- predictors were assessed in a similar way for all				
	study participants	√	✓	√	✓
	Moderate risk of bias if one of the criteria was not	✓		✓	
	satisfied				
	High risk of bias if predictor assessment was not				
	adequately described				
Outcome					
assessment					
	Low risk of bias if:		√	√	√
	- outcome was pre-specified	✓	✓	✓	√

	- measured with sufficient validity and				
	reproducibility	✓	✓	✓	✓
	reproductomy				
	- measured in a similar way for all study participants	√	✓	✓	✓
	- measured in a similar way for all study participants		•		•
	- if the outcome was assessed independent from				
	- If the outcome was assessed independent from	×	✓	✓	✓
	assessment of predictors.				
	Moderate risk of bias if: - method for assessment				
	of outcome was not adequately described	_			
	of outcome was not adequately described				
	High risk of bias if method for assessment of				
	outcome was not adequately described				
Attrition					
	Low risk of bias if				
	there was no loss-to-follow-up				
	1100				
	there were no important differences on key				
	characteristics between included participants and				
	those				
	those				
	who were lost to follow up or missing				
	who were lost-to-follow-up or missing				
	Moderate risk of bias if				
	Wiodelate 115K Of Dias II				
	1 loss-to-follow-up was lower than 20% and there				
	_				
	were no important differences on key characteristics				
	between included participants and those who were				
	lost-to-follow-up or missing OR:				
	2 less to follow we week bished 2007 less				
	2 loss-to-follow-up was higher than 20% but				
	missing data and loss-to-follow-up were imputed				

	adequately or there were no important differences on				
	key characteristics between included participants				
	and those who were lost-to-follow- up or missing				
	and those who were rost-to-ronow- up or missing				
	High risk of bias if	√	√	√	✓
	loss-to-follow-up was higher than 20% and/or	-	-	-	✓
	there were important differences on key				
	characteristics between included participants and	-	-	-	✓
	those who were lost-to-follow-up or missing				
	loss-to-follow-up was not described	*	*	×	*
Analysis^					
	Low risk of bias if				
	- relevant aspects of analysis were described				
	allowing to judge the quality of the analysis to be				
	adequate				
	- # outcome events per candidate predictor				
	reasonable	×	✓	*	✓
	- missing data handled appropriately or no				
		×	✓	×	×
	differences				
	- predictors included independent of p-value	✓	√	√	✓
	- over-fitting and optimism accounted for	×	*	*	×
	- weights assigned according to regression	√	 		√
	coefficient	v	· ·	ľ	•

- calibration and discrimination assessed	×	√	×	×
- recalibrated or described that it was not needed	×	√	*	×
Moderate risk of bias if:				
-relevant aspects of analysis were described				
allowing to judge the quality of the analysis to be	√	_\	__	√
adequate and part or none of the model evaluation				
items were reported				
High risk of bias if: - not satisfying any of the				
aspects under low risk of bias				

Table S4 Criteria for scoring of Applicability or Generalisability to answer the specific research question posed by this review based on the CHARMS checklist

Applicability	Items to be considered for applicability	Guo et	Kotz	Himes	Higgins
concerns	concerns	al.,	et al.,	et al.,	et al.,
		2015 ²¹	2014 ²²	2009 ²³	1982 ²⁴
Participant	Low risk of applicability concerns if:		✓		
selection					
	- selection bias was unlikely	*	✓		
	- in- and ex-clusion criteria were adequately				,
	described and appropriate	×	√	√	✓
	- participant description adequate and population	×	✓	×	✓
	appropriate for RQ				
	- study dates provided and relevant	√	√	✓	×
	Moderate risk of applicability concerns if:	✓		✓	✓
	- not satisfying one of the above or				
	- no adequate description of recruitment of study				
	sample				
	- no adequate description of the key predictors				
	High risk of applicability concerns if:				
	- no adequate description of study sample				
Outcome	Low risk of applicability concerns if:	✓	√	√	×

	- outcome definition appropriate and measured				
	with sufficient validity and reproducibility				
	appropriate for the RQ				
	- measured in a similar way for all study				/
	participants				,
	- if the outcome was assessed independent from				✓
	assessment of predictors.				,
	Moderate risk of applicability concerns if:				
	- one of the criteria was not satisfied				✓
	High risk of applicability concerns if:				
	- not satisfying any of the aspects under low risk of				
	bias				
Predictor	Low risk of applicability concerns if:				
	- predictor definition appropriate and measured	*	✓	✓	✓
	with sufficient validity and reproducibility				
	- measured in a similar way for all study participants	✓	✓	✓	✓
	r ······r				
	- measured at an appropriate time (e.g., at patient	✓	√	√	✓
	presentation, at diagnosis, at treatment initiation)				
	Moderate risk of applicability concerns if:	√			
	- one of the criteria was not satisfied	·			
	High risk of applicability concerns if:				

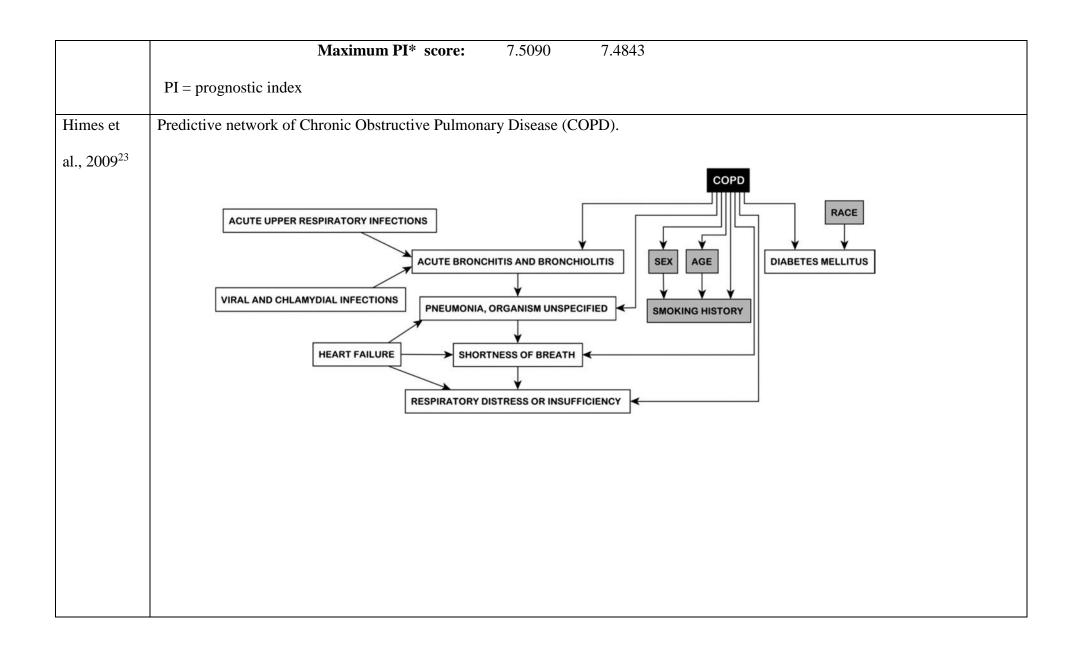
	- not satisfying any of the aspects under low risk of				
	bias				
Analysis	Low risk of applicability concerns if:				
Allalysis	Low risk of applicability concerns in.				
	- shrinkage of predictor weights or regression to	×	×	×	×
	improve applicability and avoid over-fitting and				
	optimism				
	- calibration and discrimination assessed	*	✓	×	×
	- recalibrated or described that it was not needed	*	×	×	×
	Moderate risk of applicability concerns if:				
	-relevant aspects of analysis were described				
	allowing the quality of the analysis to be judged as		√		
	adequate and part or none of the model evaluation				
	items were reported				
	High risk of applicability concerns if:				
	- not satisfying any of the aspects under low risk of	✓		✓	✓
	bias				
Results	Low risk of applicability concerns if:				
	-Final and other multivariable models (e.g., basic,				
	extended, simplified) presented, including				
	predictor weights or regression coefficients,	✓	✓		✓
	intercept, baseline survival, model performance				
	measures (with standard errors or confidence				
	intervals)				

	- Any alternative presentation of the final				
	prediction models, e.g., sum score, nomogram,				
	score chart, predictions for specific risk subgroups	✓	✓	×	✓
	with performance				
	Moderate risk of applicability concerns if:			√	
	- one of the criteria was not satisfied			·	
	High risk of applicability concerns if:				
	- not satisfying any of the aspects under low risk of				
	bias				
Interpretation	Low risk of applicability concerns if:				
and			✓		
Discussion					
	-Interpretation of presented models (confirmatory,				
	i.e., model useful for practice versus exploratory,	×	✓	✓	✓
	i.e., more research needed)				
	-Comparison with other studies, discussion of				
	generalizability, strengths and limitations.	✓	✓	×	×
	generalizability, strengths and minitations.				
	Moderate risk of applicability concerns if:				
		✓		✓	✓
	- one of the criteria was not satisfied				
	High risk of applicability concerns if:				
	- not satisfying any of the aspects under low risk of				
	bias				
	•				

 ${\bf Table~S5~Definitions~of~predictors~included~in~the~presented~final~prediction~models}$

Ref	Age	Sex	Smoking	Asthma	Race	SES	Other
Guo et	_	Male and	Smoking history	_	_	_	Respiratory infection in
al.,		female	(presence of				early life; low birth
2015 ²¹			smoking history $= 1$,				weight (<2,500 g) and six
			no smoking history =				genetic variables
			0)				(rs2070600, rs10947233,
							rs10947233, rs1800629,
							rs2241712 and rs1205)
Kotz et	Categorise	Develope	Ever-smokers	Asthma	_	Measured	_
al.,	d into 35–	d two	(patients recorded as	diagnosis		using the	
2014 ²²	39, 40–44,	models	'smoker' or 'ex-	(Identified as		Carstairs	
	45–49,	for males	smoker' at any time)	a risk factor if		Index of	
	50–54,	and	and never-smokers	recorded prior		Deprivation	
	55–59,	females	(patients recorded as	to the patient's		(coded 1 =	
			'non-smoker' at any			least deprived	
			time and no coding				

	60–64 and	separatel	as 'smoker' or 'ex-	entry date into		to 5 = most	
	65+ years	у	smoker' at any other	the cohort)		deprived)	
			time in electronic				
			medical database).				
Himes et	Categorise	Male and	Smoking history	_	"White,"	_	Eight comorbidities:
al.,	d into 18–	female	("Negative" if the		"Black,"		Acute upper respiratory
2009^{23}	44, 45–64,		smoking status was		"Hispani		infections; acute
	65–74,		determined to be		c," and		bronchitis and
	and 75+		"never smoker"		"Asian."		bronchiolitits;
	years		or"Positive"				pneumonia, organism
			otherwise)				unspecified; shortness of
							breath; heart failure;
							respiratory distress
							or insufficiency; and
							diabetes mellitus


Higgins	Age in	Develope	Cigarettes/Day 0, 4,	_	_	-	%FEV1 (only in females)
et al.,	years 20,	d two	9, 13, 18, 22, 27, 31,				and %Vmax50
1982 ²⁴ ^	25, 30, 35,	models	35				
	40, 45, 50,	for males	Change in				
	55, 60, 65	and	Cigarettes/Day -37, -				
		females	28, -19, -9, 0, 9, 19,				
		separatel	28, 37				
		у					

[^]Definitions given for the predictors included in best predictive models for males and females

Table S6 Prediction models presentation format

Ref	Prediction model a	s presented in paper								
Guo et al.,	COPD = 1/[1 + exp]	(-2.4933-1.2197 gene	der + 1.1842 respiratory	infection in early life + 2.4350 low birth weight + 1.8524 smoking						
2015 ²¹	- 1.1978 rs2070600 + 2.0270 rs10947233 + 1.1913 rs10947233 + 0.6468 rs1800629 + 0.5272 rs2241712 + 0.4024 rs1205)]									
		value calculated using r to becoming sympto		an individual, it can be speculated that the patient is more likely to						
Kotz et al.,			Males	Females						
2014 ²²	Age category	35-39	0.0000	0.0000						
		40-44	0.7226	0.7195						
		45-49	1.3540	1.3113						
		50-54	1.7945	1.7030						
		55-59	2.2681	2.0982						
		60-64	2.6401	2.3529						

	65+	3.4623	3.2485
Ever smoker	Ever smoker	1.9057	2.2623
Zver smoner	Never smoker	0.0000	0.0000
	THE VOLUME OF THE PROPERTY OF	0.0000	
Level of deprivation	1 st quintile (least deprived)	0.0000	0.0000
(Carstairs)			
	2 nd quintile	0.3073	0.2233
	3 rd quintile	0.4686	0.4989
	4 th quintile	0.6470	0.6666
	5 th quintile (most	0.9262	0.9485
	deprived)		
History of asthma	yes	1.2148	1.0250
motory of asumia	no	0.0000	0.0000
		3.0000	
	Minimum PI* score:	0.0000	0.0000

Higgins et al., 1982 ²⁴ ^	Points Age	0 20	1 25	2 30	3 35	4 40	5 45	6 50		8 60	9 65	10	11	12	13	14	15	16	17	18
	Cigarettes/Day Change in Cigarettes/ Day	-62		19 - 31		37	4615		46	62										

FEV ₁ % Predicted	144 14	10 136	131	127	123	119	114	110	106	102	98	93	89	85	81	76	72	68
			To	otal														
			Po	ints	Prol	babilit	y											
Calculation of Probability			<	19	Lov	w Risk												
Age			1	.9		.01												
+ Cigarettes/Day	y		2	20		.02												
+ Change in Cig	garettes/ I	Day	2	21		.03												
+ FEV ₁ % Predi	cted		2	22		.04												
= Total Points =	→ Probab	oility	2	23		.06												
			2	24		.10												
			2	25		.14												
			2	26		.21												
			<u>></u>	27	Hig	gh risk												

Table S7: Definitions of COPD in the selected prediction models

Reference	Definition of COPD	Incidence of COPD
		reported in
		derivation cohort
Guo et al.,	COPD was diagnosed according to the criteria established	Case-control study
2015 ²¹	by the National Heart, Lung and Blood Institute/World	
	Health Organization Global Initiative for COPD (GOLD):	
	post BD FEV1/FVC ratio, 0.70 cut-off.	
Kotz et al.,	The definition of COPD was based on codes from the Read	5.53 per 1,000 patient-
2014 ²²	Clinical Classification System, which was produced for	years (5.46-5.60)
	clinicians in primary care and is used by the majority of	
	primary care electronic patient record systems (read codes	
	H3, H31 and below (excluding H3101, H31y0, H3122),	
	H32 and below, and H36 to H3z).	
Himes et	Cases are those subjects who had COPD, determined by	COPD 9.02%
al., 2009 ²³	having a value of "1" in International Classification of	(843/9349)
	Diseases, Ninth Revision (ICD-9) codes corresponding to at	
	least one of the following: "Chronic Bronchitis,"	
	"Emphysema," or "Chronic Airways Obstruction, not	
	otherwise specified."	
Higgins et	COPD was defined as obstructive airways disease	Males 65/1225 – 5.3%
al., 1982 ²⁴	manifested by a FEV1 less than 65% of the predicted value	
	in combination with an FEV1/FVC ratio less than 80%.	

Values of FEV1 in the range of 65 to 69% of predicted were	Females 43/1405 –
considered to be borderline abnormal.	3.1%

References

- 15. Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. *PLoS Med.* 2014 11(10):e1001744.
- 16. Smit HA, Pinart M, Antó JM, et al. Childhood asthma prediction models: a systematic review. *Lancet Respir Med.* . 2015;3(12):973-984.
- 21. Guo YI, Qian Y, Gong YI, et al. A predictive model for the development of chronic obstructive pulmonary disease. *Biomed Rep* 2015;3(6):853-63.
- 22. Kotz D, Simpson CR, Viechtbauer W, et al. Development and validation of a model to predict the 10-year risk of general practitioner-recorded COPD. *NPJ Prim Care Respir Med* 2014;24:14011.
- 23. Himes BE, Dai Y, Kohane IS, et al. Prediction of chronic obstructive pulmonary disease (COPD) in asthma patients using electronic medical records. *J Am Med Inform Assoc* 2009;16(3):371-79
- 24. Higgins MW, Jacob B. Keller, Mark Becker, et al. An Index of Risk for Obstructive Airways Disease. *Am Rev Respir Dis* 1982;125(2):144-51.