Supplementary Material

Synergistic effects of A-B-C type amphiphilic copolymer on reversal of

 drug resistance in MCF-7/ADR breast carcinoma

PELA54-CD

Figure S1 Synthesis route of PELA54-CD.
Abbreviations: β-CD, β-cyclodextrin; PEG5000-CD, PEGylated β-CD derivants; PELA54, copolymer with a feed ratio of mPEG5000 to LA: 5/4; PELA54-CD, a linear amphiphilic copolymer by linking $\beta-\mathrm{CD}$ at the end of hydrophobic block of PEGylated poly(D,L-lactide) at 1:1 mole ratio; $\mathrm{Sn}(\mathrm{Oct})_{2}$, stannous octoate; $\mathrm{Et}_{3} \mathrm{~N}$, triethylamine; CI-CD, carbonyldiimidazole activated β-CD.

Figure S2 TEM micrographs of polymeric micelles.
Notes: (A) PELA54-CD. (B) PELA54. (C) PEG5000-CD. Bar=0.1 $\mu \mathrm{m}$.
Abbreviations: PEG5000-CD, PEGylated β-CD derivants; PELA54, copolymer with a feed ratio of mPEG5000 to LA: 5/4; PELA54-CD, a linear amphiphilic copolymer by linking β-CD at the end of hydrophobic block of PEGylated poly(D,L-lactide) at 1:1 mole ratio; TEM, Transmission Electron Microscope.

Figure S3 DSC curves of DOX•HCl, blank PELA54-CD micelles, physical mixture of DOX $\cdot \mathrm{HCl}$ and blank PELA54-CD micelles, and lyophilized PELA54-CD/DOX micelles.
Abbreviations: DOX, doxorubicin; DOX•HCl, free doxorubicin hydrochloride; PELA54-CD, a linear amphiphilic copolymer by linking β-CD at the end of hydrophobic block of PEGylated poly(D,L-lactide) at $1: 1$ mole ratio; PELA54-CD/DOX, DOX-loaded micelles; DSC, differential scanning calorimetry.

Figure S4 Evolution of powder X-ray diffraction patterns of DOX•HCl powder, PELA54-CD lyophilized powder, physical mixture of DOX $\cdot \mathrm{HCl}$ and blank PELA54-CD and PELA54-CD/DOX lyophilized powder.
Abbreviations: DOX, doxorubicin; DOX•HCl, free doxorubicin hydrochloride; PELA54-CD, a linear amphiphilic copolymer by linking β-CD at the end of hydrophobic block of PEGylated poly(D,L-lactide) at 1:1 mole ratio; PELA54-CD/DOX, DOX-loaded micelles; XRD, X Ray diffraction.

Figure S5 Percentage of DOX-induced apoptosis in MCF-7/ADR cells detected by flow cytometry.
Notes: Cells were treated with DOX $\cdot \mathrm{HCl}$ solution or in DOX-loaded micelles containing total DOX concentration of $2 \mu \mathrm{~g} / \mathrm{mL}$ for 48 h . The histogram shows the percentage of apoptosis represented as mean \pm S.D. $(\mathrm{n}=3)$, statistical significance ($\mathrm{p}<0.01$) was evaluated by using SPSS software when compared with DOX•HCl group.
Abbreviations: DOX•HCl, free doxorubicin hydrochloride; PELA54-CD/DOX, DOX-loaded micelles; PELA54/DOX, DOX-loaded micelles; PEG5000-CD/DOX, DOX-loaded cyclodextrin complex; β-CD/DOX, cyclodextrin-doxorubicin inclusion compound; Annexin-V FITC/PI, fluorescent dye used in flow cytometry.

Figure S6 The cellular accumulation of Rh123 in MCF-7/ADR cells in the presence of different polymers.
Notes: (A) PELA54-CD. (B) PELA54. (C) PEG5000-CD. (D) β-CD. The results are represented as mean \pm S.D. from three independent experiments ($n=3$).
Abbreviations: β-CD, β-cyclodextrin; PEG5000-CD, PEGylated β-CD derivants; PELA54, copolymer with a feed ratio of mPEG5000 to LA: 5/4; PELA54-CD, a linear amphiphilic copolymer by linking $\beta-\mathrm{CD}$ at the end of hydrophobic block of PEGylated poly(D,L-lactide) at $1: 1$ mole ratio; Rh123, Rhodamine 123.

Figure S7 Cellular uptake of DOX in MCF-7/ADR cells in the presence of one of the endocytosis inhibitors (chlorpromazine, nystatin or amiloride) and PELA-CD/DOX with 10 $\mu \mathrm{g} / \mathrm{mL}$ DOX concentration for 2 h at $37^{\circ} \mathrm{C}$.
Notes: The results are represented as mean \pm SD ($\mathrm{n}=3$), statistical significance ($\mathrm{p}<0.05$) was evaluated by using SPSS software when compared with control.
Abbreviations: PELA54-CD/DOX, DOX-loaded micelles; DOX, doxorubicin.

Figure S8 P-gp expression in MCF-7 cells and MCF-7/ADR cells treated with different polymers.
Notes: (A) the untreated MCF-7 cells. (B) the untreated MCF-7/ADR cells. (C-F) MCF-7/ADR cells treated with different micelles (PELA54-CD, PELA54, PEG5000-CD, $\beta-C D)$ at $50 \mu \mathrm{~g} / \mathrm{mL}$ for 24 h . P-gp expression was determined by flow cytometry using R-PE-conjugated mouse anti-human monoclonal antibody against P-gp. The percentage of area in the right frame indicated the relative quantity of P -gp expression.
Abbreviations: β-CD, β-cyclodextrin; PEG5000-CD, PEGylated β-CD derivants; PELA54, copolymer with a feed ratio of mPEG5000 to LA: 5/4; PELA54-CD, a linear amphiphilic copolymer by linking $\beta-\mathrm{CD}$ at the end of hydrophobic block of PEGylated poly(D,L-lactide) at 1:1 mole ratio; P -gp, P -glycoprotein.

Figure S9 Zebrafish xenografts by microinjection of MCF-7/ADR cells without fluorescence labeling.
Notes: (A) The green area represent of tumor cells, red fluorescence belongs to natural fluorescence of DOX (20 ng of PELA54-CD/DOX or DOX•HCl was microinjected into the yolk sac 24 h after xenografts of MCF-7/ADR cells). Scale bar=100 $\mu \mathrm{m}$. (B) Fluorescence of CM-Dil-labeled tumor cell and autofluorescence of DOX in zebrafish, which showed that fluorescence signal of CM-Dil were not interferenced by the natural fluorescence of DOX.
Abbreviations: DOX, doxorubicin; DOX $\cdot \mathrm{HCl}$, free doxorubicin hydrochloride; PELA54-CD/DOX, DOX-loaded micelles.

