Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Gene expression profiles in primary duodenal chick cells following transfection with avian influenza virus H5 DNA plasmid encapsulated in silver nanoparticles

Authors Jazayeri SD, Ideris A, Shameli K, Moeini H, Omar AR

Received 12 October 2012

Accepted for publication 2 December 2012

Published 21 February 2013 Volume 2013:8(1) Pages 781—790

DOI https://doi.org/10.2147/IJN.S39074

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Seyed Davoud Jazayeri,1 Aini Ideris,1,2 Kamyar Shameli,3 Hassan Moeini,1 Abdul Rahman Omar1,2

1Institute of Bioscience, 2Faculty of Veterinary Medicine, 3Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Abstract: In order to develop a systemically administered safe and effective nonviral gene delivery system against avian influenza virus (AIV) that induced cytokine expression, the hemagglutinin (H5) gene of AIV, A/Ck/Malaysia/5858/04 (H5N1) and green fluorescent protein were cloned into a coexpression vector pIRES (pIREGFP-H5) and formulated using green synthesis of silver nanoparticles (AgNPs) with poly(ethylene glycol) and transfected into primary duodenal cells taken from 18-day-old specific-pathogen-free chick embryos. The AgNPs were prepared using moderated temperature and characterized for particle size, surface charge, ultraviolet-visible spectra, DNA loading, and stability. AgNPs and AgNP-pIREGFP-H5 were prepared in the size range of 13.9 nm and 25 nm with a positive charge of +78 ± 0.6 mV and +40 ± 6.2 mV, respectively. AgNPs with a positive surface charge could encapsulate pIREGFP-H5 efficiently. The ultraviolet-visible spectra for AgNP-pIREGFP-H5 treated with DNase I showed that the AgNPs were able to encapsulate pIREGFP-H5 efficiently. Polymerase chain reaction showed that AgNP-pIREGFP-H5 entered into primary duodenal cells rapidly, as early as one hour after transfection. Green fluorescent protein expression was observed after 36 hours, peaked at 48 hours, and remained stable for up to 60 hours. In addition, green fluorescent protein expression generally increased with increasing DNA concentration and time. Cells were transfected using Lipocurax in vitro transfection reagent as a positive control. A multiplex quantitative mRNA gene expression assay in the transfected primary duodenal cells via the transfection reagent and AgNPs with pIREGFP-H5 revealed expression of interleukin (IL)-18, IL-15, and IL-12β.

Keywords: silver nanoparticles, avian influenza, hemagglutinin, transfection, primary cells

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Acquired hemophilia A: emerging treatment options

Janbain M, Leissinger CA, Kruse-Jarres R

Journal of Blood Medicine 2015, 6:143-150

Published Date: 8 May 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Second case report of successful electroconvulsive therapy for a patient with schizophrenia and severe hemophilia A

Saito N, Shioda K, Nisijima K, Kobayashi T, Kato S

Neuropsychiatric Disease and Treatment 2014, 10:865-867

Published Date: 16 May 2014

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia

Rivka Yatuv, Micah Robinson, Inbal Dayan-Tarshish, et al

International Journal of Nanomedicine 2010, 5:581-591

Published Date: 6 August 2010