Back to Journals » Lung Cancer: Targets and Therapy » Volume 5

Gastroesophageal junction adenocarcinoma displays abnormalities in homologous recombination and nucleotide excision repair

Authors Dewalt RI, Kesler K, Hammoud ZT, Baldridge L, Hattab EM, Jalal S

Received 15 November 2013

Accepted for publication 6 December 2013

Published 15 February 2014 Volume 2014:5 Pages 11—20


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Robin I Dewalt,1 Kenneth A Kesler,2 Zane T Hammoud,3 LeeAnn Baldridge,4 Eyas M Hattab,4 Shadia I Jalal1,5

1Division of Hematology/Oncology, Department of Medicine, 2Cardiothoracic Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; 3Henry Ford Hospital, Detroit, MI, USA; 4Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; 5Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA

Objective: Esophageal adenocarcinoma (EAC) continues to be a disease associated with high mortality. Among the factors leading to poor outcomes are innate resistance to currently available therapies, advanced stage at diagnosis, and complex biology. Platinum and ionizing radiation form the backbone of treatment for the majority of patients with EAC. Of the multiple processes involved in response to platinum chemotherapy or ionizing radiation, deoxyribonucleic acid (DNA) repair has been a major player in cancer sensitivity to these agents. DNA repair defects have been described in various malignancies. The purpose of this study was to determine whether alterations in DNA repair are present in EAC compared with normal gastroesophageal tissues.
Methods: We analyzed the expression of genes involved in homologous recombination (HR), nonhomologous end-joining, and nucleotide excision repair (NER) pathways in 12 EAC tumor samples with their matched normal counterparts. These pathways were chosen because they are the main pathways involved in the repair of platinum- or ionizing-radiation-induced damage. In addition, abnormalities in these pathways have not been well characterized in EAC.
Results: We identified increased expression of at least one HR gene in eight of the EAC tumor samples. Alterations in the expression of EME1, a structure-specific endonuclease involved in HR, were the most prevalent, with messenger (m)RNA overexpression in six of the EAC samples. In addition, all EAC samples revealed decreased expression of at least one of numerous NER genes including XPC, XPA, DDB2, XPF, and XPG.
Conclusion: Our study identified DNA repair dysregulation in EAC involving two critical pathways, HR and NER, and is the first demonstration of EME1 upregulation in any cancer. These DNA repair abnormalities have the potential to affect a number of processes such as genomic instability and therapy response, and the consequences of these defects deserve further study in EAC.

Keywords: esophageal adenocarcinoma, DNA repair, MUS81/EME1

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]