Back to Journals » International Journal of Nanomedicine » Volume 11

Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens

Authors Rattanata N, Klaynongsruang S, Leelayuwat C, Limpaiboon T, Lulitanond A, Boonsiri P, Chio-Srichan S, Soontaranon S, Rugmai S, Daduang J

Received 3 April 2016

Accepted for publication 22 May 2016

Published 27 July 2016 Volume 2016:11 Pages 3347—3356

DOI https://doi.org/10.2147/IJN.S109795

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Thomas Webster


Narintorn Rattanata,1 Sompong Klaynongsruang,1 Chanvit Leelayuwat,2 Temduang Limpaiboon,2 Aroonlug Lulitanond,2 Patcharee Boonsiri,3 Sirinart Chio-Srichan,4 Siriwat Soontaranon,4 Supagorn Rugmai,4 Jureerut Daduang2

1Department of Biochemistry, Faculty of Science, 2Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, 3Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 4Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand


Abstract: Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP–GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core–shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP–GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP–GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP–GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP–GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP–GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP–GA has potential for further application in biomedical sciences.

Keywords: gold nanoparticles, gallic acid, antibacterial activity, foodborne bacteria, small-angle X-ray scattering (SAXS)
 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]