Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia

Authors Liao S, Liu C, Bastakoti BP, Suzuki N, Chang Y, Yamauchi Y, Lin FL, Wu K

Received 2 June 2014

Accepted for publication 25 October 2014

Published 4 May 2015 Volume 2015:10(1) Pages 3315—3328


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Editor who approved publication: Dr Thomas J Webster

Shih-Hsiang Liao,1 Chia-Hung Liu,2 Bishnu Prasad Bastakoti,3 Norihiro Suzuki,7 Yung Chang,4 Yusuke Yamauchi,3 Feng-Huei Lin,5,6 Kevin C-W Wu1,6

1Department of Chemical Engineering, National Taiwan University No 1, Taipei, 2Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; 3National Institute for Materials Science, Ibaraki, Japan; 4R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyua, 5Institute of Biomedical Engineering, National Taiwan University No 1, Taipei City, 6Division of Medical Engineering Research, National Health Research Institutes, Miaoli County, Taiwan, 7International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan

Abstract: Hyperthermia is one of the promising treatments for cancer therapy. However, the development of a magnetic fluid agent that can selectively target a tumor and efficiently elevate temperature while exhibiting excellent biocompatibility still remains challenging. Here a new core-shell nanostructure consisting of inorganic iron oxide (Fe3O4) nanoparticles as the core, organic alginate as the shell, and cell-targeting ligands (ie, D-galactosamine) decorated on the outer surface (denoted as Fe3O4@Alg-GA nanoparticles) was prepared using a combination of a pre-gel method and coprecipitation in aqueous solution. After treatment with an AC magnetic field, the results indicate that Fe3O4@Alg-GA nanoparticles had excellent hyperthermic efficacy in a human hepatocellular carcinoma cell line (HepG2) owing to enhanced cellular uptake, and show great potential as therapeutic agents for future in vivo drug delivery systems.

Keywords: hyperthermia, iron oxide, alginate, pre-gel, targeting

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other article by this author:

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010