Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Fullerene–biomolecule conjugates and their biomedicinal applications

Authors Yang X, Ebrahimi A, Li J, Cui Q

Received 12 August 2013

Accepted for publication 18 September 2013

Published 18 December 2013 Volume 2014:9(1) Pages 77—92

DOI https://doi.org/10.2147/IJN.S52829

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Xinlin Yang,1 Ali Ebrahimi,1 Jie Li,1,2 Quanjun Cui1

1Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA; 2School of Materials Science, Beijing Institute of Technology, Beijing, People's Republic of China

Abstract: Fullerenes are among the strongest antioxidants and are characterized as "radical sponges." The research on biomedicinal applications of fullerenes has achieved significant progress since the landmark publication by Friedman et al in 1993. Fullerene–biomolecule conjugates have become an important area of research during the past 2 decades. By a thorough literature search, we attempt to update the information about the synthesis of different types of fullerene–biomolecule conjugates, including fullerene-containing amino acids and peptides, oligonucleotides, sugars, and esters. Moreover, we also discuss in this review recently reported data on the biological and pharmaceutical utilities of these compounds and some other fullerene derivatives of biomedical importance. While within the fullerene–biomolecule conjugates, in which fullerene may act as both an antioxidant and a carrier, specific targeting biomolecules conjugated to fullerene will undoubtedly strengthen the delivery of functional fullerenes to sites of clinical interest.

Keywords: fullerene, amino acid, peptide, oligonucleotide, sugar, ester

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Multifaceted prospects of nanocomposites for cardiovascular grafts and stents

Vellayappan MV, Balaji A, Subramanian AP, John AA, Jaganathan SK, Murugesan S, Supriyanto E, Yusof M

International Journal of Nanomedicine 2015, 10:2785-2803

Published Date: 7 April 2015

Genetically engineered nanocarriers for drug delivery

Shi P, Gustafson JA, MacKay JA

International Journal of Nanomedicine 2014, 9:1617-1626

Published Date: 26 March 2014

Surface plasmon resonance-induced photoactivation of gold nanoparticles as bactericidal agents against methicillin-resistant Staphylococcus aureus

Mocan L, Ilie I, Matea C, Tabaran F, Kalman E, Iancu C, Mocan T

International Journal of Nanomedicine 2014, 9:1453-1461

Published Date: 22 March 2014

Biodistribution of newly synthesized PHEA-based polymer-coated SPION in Sprague Dawley rats as magnetic resonance contrast agent [Corrigendum]

Park J, Cho W, Park HJ, Cha KH, Ha DC, Choi YW, Lee HY, Cho SH, Hwang SJ

International Journal of Nanomedicine 2014, 9:559-560

Published Date: 20 January 2014

Evaluating the potential of cubosomal nanoparticles for oral delivery of amphotericin B in treating fungal infection

Yang Z, Chen M, Yang M, Chen J, Fang W, Xu P

International Journal of Nanomedicine 2014, 9:327-336

Published Date: 6 January 2014

Gemcitabine-loaded liposomes: rationale, potentialities and future perspectives

Federico C, Morittu VM, Britti D, Trapasso E, Cosco D

International Journal of Nanomedicine 2012, 7:5423-5436

Published Date: 1 November 2012

Entrapment in phospholipid vesicles quenches photoactivity of quantum dots

Generalov R, Kavaliauskiene S, Westrøm S, Chen W, Kristensen S, Juzenas P

International Journal of Nanomedicine 2011, 6:1875-1888

Published Date: 7 September 2011

Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model

Xu W, Ganz C, Weber U, Adam M, Holzhüter G, Wolter D, Frerich B, Vollmar B, Gerber T

International Journal of Nanomedicine 2011, 6:1543-1552

Published Date: 2 August 2011

Preliminary biocompatible evaluation of nano-hydroxyapatite/polyamide 66 composite porous membrane

Yili Qu, Ping Wang, Yi Man, et al

International Journal of Nanomedicine 2010, 5:429-435

Published Date: 21 June 2010