Back to Journals » Drug Design, Development and Therapy » Volume 9

Ultrasound contrast agent loaded with nitric oxide as a theranostic microdevice

Authors Grishenkov D, Gonon A, Weitzberg E, Lundberg J, Harmark J, Cerroni B, Paradossi G, Janerot-Sjoberg B

Received 19 November 2014

Accepted for publication 15 January 2015

Published 29 April 2015 Volume 2015:9 Pages 2409—2419


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Professor Shu-Feng Zhou

Dmitry Grishenkov,1–3 Adrian Gonon,3,4 Eddie Weitzberg,5 Jon O Lundberg,5 Johan Harmark,6 Barbara Cerroni,7 Gaio Paradossi,7 Birgitta Janerot-Sjoberg1–3

1Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden; 2Department of Medical Engineering, KTH, Royal Institute of Technology, School of Technology and Health, Stockholm, Sweden; 3Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden; 4Department of Medicine, Karolinska Institutet, Stockholm, Sweden; 5Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; 6Department of Biosciences and Nutrition, Karolinska Institutet, KTH, Royal Institute of Technology, School of Technology and Health, Stockholm, Sweden; 7Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy

Abstract: The current study describes novel multifunctional polymer-shelled microbubbles (MBs) loaded with nitric oxide (NO) for integrated therapeutic and diagnostic applications (ie, theranostics) of myocardial ischemia. We used gas-filled MBs with an average diameter of 4 µm stabilized by a biocompatible shell of polyvinyl alcohol. In vitro acoustic tests showed sufficient enhancement of the backscattered power (20 dB) acquired from the MBs’ suspension. The values of attenuation coefficient (0.8 dB/cm MHz) and phase velocities (1,517 m/s) were comparable with those reported for the soft tissue. Moreover, polymer MBs demonstrate increased stability compared with clinically approved contrast agents with a fracture threshold of about 900 kPa. In vitro chemiluminescence measurements demonstrated that dry powder of NO-loaded MBs releases its gas content in about 2 hours following an exponential decay profile with an exponential time constant equal to 36 minutes. The application of high-power ultrasound pulse (mechanical index =1.2) on the MBs resuspended in saline decreases the exponential time constant from 55 to 4 minutes in air-saturated solution and from 17 to 10 minutes in degassed solution. Thus, ultrasound-triggered release of NO is achieved. Cytotoxicity tests indicate that phagocytosis of the MBs by macrophages starts within 6–8 hours. This is a suitable time for initial diagnostics, treatment, and monitoring of the therapeutic effect using a single injection of the proposed multifunctional MBs.

Keywords: microbubbles, contrast agent, ultrasound, nitric oxide, myocardial ischemia

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]